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Abstract— This paper presents two new approaches to detect
surrounding vehicles in 3D urban driving scenes and their cor-
responding Bird’s Eye View (BEV). The proposals integrate two
state-of-the-art Convolutional Neural Networks (CNNs), such as
YOLOv3 and Mask-RCNN, in a framework presented by the
authors in [1] for 3D vehicles detection fusing semantic image
segmentation and LIDAR point cloud. Our proposals take
advantage of multimodal fusion, geometrical constrains, and
pre-trained modules inside our framework. The methods have
been tested using the KITTI object detection benchmark and
comparison is presented. Experiments show new approaches
improve results with respect to the baseline and are on par
with other competitive state-of-the-art proposals, being the only
ones that do not apply an end-to-end learning process. In this
way, they remove the need to train on a specific dataset and
show a good capability of generalization to any domain, a
key point for self-driving systems. Finally, we have tested our
best proposal in KITTI in our driving environment, without
any adaptation, obtaining results suitable for our autonomous
driving application.

I. INTRODUCTION

One of the main problems when designing perception
systems for autonomous driving is object detection in 3D
space. An autonomous vehicle needs to localize and track
their surrounding obstacles from its own sensors in order
to plan its path in a safe way. Nowadays, most self-driving
vehicles are geared up with multiple high-precision sensors
such as LIDAR and cameras.

LIDAR-based detection methods provide accurate depth
information and obtain robust results in location, indepen-
dently of the environment lighting conditions. However,
these approaches struggle at long range and when dealing
with occluded objects due to the sparsity of the LIDAR point
samples over these regions [2]. On the other hand, camera-
based methods provide much more detailed semantic infor-
mation. However, their performance degrades in situations
with challenging lighting conditions (e.g. sun glares, dark
scenes) and with distance. Besides, precise 3D localization
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using only monocular cameras is hard to achieve due to
the loss of depth information, which must be recovered by
projection models that inevitably increase uncertainty in the
distance estimation. Recently, several works have proposed
methods that exploit LIDAR and cameras complementarily
to alleviate drawbacks present in the respective individual
modalities, thus achieving higher performance [3]. However,
the challenge lies in the applied fusion technique, especially
considering that LIDAR points are sparse and continuous,
while cameras capture dense features at a discrete state [2].

In recent years, Convolutional Neural Networks (CNNs)
have reached great success in object detection achieving the
top ranked results on public benchmarks such as KITTI [4].
2D detection from images has seen significant progress [5],
[6], [7]. However, there is still large room for improvement
in the 3D object detection case. Some proposals give 3D
pose estimation from solely monocular RGB images, as in
[8]. Others estimate 3D object detection directly on LIDAR
point clouds [9], [10], or convert point cloud data into a 2D
Bird’s Eye View (BEV) [11], [3]. Recent approaches exploit
both cameras and LIDAR jointly [10], [11], [12], [2].

All the above proposals use end-to-end supervised learn-
ing trained on the KITTI dataset, and their main research
efforts are being invested on designing and enlarging deep
architectures to achieve marginal accuracy boosts in specific
datasets, neglecting that these algorithms must be run in
a real vehicle with constrained computational devices and
must work robustly in diverse image domains that weren’t
seen in the training process (which can be very different in
perspective and appearance). After all, CNNs are trained on
a limited dataset, and there is no guarantee that the latent
representation learned from it is transferred properly to any
domain [13].

In this paper, we aim to leverage two state-of-the-art
pre-trained CNNs thought to produce accurate 2D object
detection in images, such as YOLO [5] and Mask-RCNN [7],
to detect vehicles in a 3D scene with the aim of generating
a safety path in a real autonomous driving application for
urban environments. We take as a starting point our previous
work [1], where a framework for 3D vehicle detection fusing
semantic image segmentation, through our ERFNet (Efficient
Residual Factorized ConvNet), and LIDAR point cloud [14]
was proposed. In this work we analyze two improvements
with respect to our baseline: 1) Use a YOLOv3 to get the 2D
box proposals on the image instead of using the vehicle class
as priors, 2) Substitute our ERFNet for a Mask-RCNN in
order to get a semantic segmentation of the 3D box proposals



(mask) and the 2D box proposals (R-CNN) with the same
network.

In our experiments, the performances of the two newly
proposed frameworks are extensively tested on the KITTI
object detection benchmark [4] as well as on sensor data
fully captured by our autonomous electric vehicle, which
has been manually annotated by us to enhance our exper-
imental test set and to provide quantitative results in a real
environment. Results show that our proposals are on par with
other references of the state of the art and present a good
generalization capability, a key point for real autonomous
navigation applications. Furthermore, our approach success-
fully integrates robust and well-known architectures that
were pretrained on generalistic datasets, removing the need
to train our framework in specific and limited datasets like
KITTI (which are easy to overfit) and avoiding the costly
efforts of annotating new training data.

II. RELATED WORKS

In this section we briefly review the most relevant works
of the state of the art about object detection based on LIDAR
point clouds, camera images, and their fusion.

A. LIDAR-based Detection

The majority of existing methods encode 3D point clouds
in voxel grid representations and rely on basic features
for classification. Some works, such as Vote3D [15], use
SVM classifiers on 3D clusters encoded with geometry
features. Other works, such as [9], [10], propose to improve
feature representation by using 3D convolutional networks
directly on the LIDAR point clouds. VeloFCN [16] projects
the LIDAR points to front view and applies a 2D fully
convolutional network to generate 3D detections. In [11], [3]
the same strategy is used, but projection is carried out on the
ground plane, generating a 2D BEV. PIXOR [17] exploits a
height-encoded bird’s-eye view representation of the LIDAR
and applies a 3D fully convolutional network.

Most algorithms discretize point clouds into a 3D grid.
Point density decreases with distance and classifiers must
deal with both dense and sparse points in the same scene.
In practice, classifiers usually work well in short range,
where dense points are available, and hardly work properly
in long-distance, where only sparse points are available. Our
framework provides semantic information to the point cloud
to improve 3D classification, specially at long-distance [1]

B. Image-based Detection

In the last years, many methods that exploit convolutional
neural networks have played an important role in producing
accurate 2D object detection, typically from a single image.
There are two different approaches depending on their stage
detection framework.

1) One-stage detectors: learn a network that directly pro-
duces object bounding boxes. Notable examples are YOLO
[5] and SSD [6]. They are computationally attractive and run
in real time on most hardware.

2) Two-stage detectors: utilize region proposal networks
in a first stage to learn the region of interest (RoI) where
potential objects are located. In a second stage, the CNN
is applied on the detected RoIs to classify each object and
refine its location.

Faster R-CNN [18] is one of the most popular methods
for vehicle detection. In the 3DOP method [19] the 3D box
proposals are fed to an R-CNN pipeline to detect vehicles
from stereo images. Mono3D method is presented in [8]. It
uses the same pipeline that 3DOP but in this case, it generates
3D proposals from monocular images. Mask-RCNN [7]
also takes this approach, but it addresses the boundary and
quantization effect of RoI pooling in the 2D image detection
stage. Besides, it adds an additional segmentation branch to
take advantage of dense pixel-wise supervision, providing
instance segmentation through a mask.

The main drawback of both of these image-based meth-
ods becomes apparent in the fusion with 3D information.
Obtaining a 3D depth estimation in images usually relies
on a well-calibrated camera model, which in practice is
never as accurate as LIDAR-based estimations. Therefore,
our framework incorporates LIDAR point clouds to improve
3D localization.

C. Multimodal Fusion

Multiple data fusion provides complementary information,
therefore increasing the decision-making accuracy in self-
driving systems [11]. Over the past few years, many pro-
posals have explored merging both cameras and LIDAR
to perform 3D reasoning. In [10], proposals are generated
from images and LIDAR is used to conduct the final 3D
localization. This approach does not exploit the capability
to perform joint reasoning over the two inputs. Another
approach [12] applies 2D convolutional networks on both
camera images and a LIDAR BEV representation and fuses
them at a course level of the features map with significant
resolution loss. [11] introduces a Multi-View object detection
network (MV3D) to fuse features from multiple sensors
in multiple views through RoI-pooling. Accurate geometric
information is lost in this coarse pooling scheme. UberATG
[2] proposes a 3D object detector that reasons in BEV and
fuses image features by learning to project them into BEV
space.

Our approach uses multimodal fusion but differs from
previous approaches in that our fusion method does not
require learning an end-to-end strategy but a high level
geometric one based on the proposals obtained from the two
sensors.

III. FRAMEWORK IMPROVEMENTS

In this section, we explore and describe two framework
options to improve the performance in the task of Multi-
Sensor 3D Vehicle Detection, carried out by taking our
previous framework [1] as a baseline.

In the former framework, 2D proposals on the image were
calculated using the blobs belonging to a certain class ob-
tained from the semantic segmentation through our ERFNet.



Fig. 1: Framework based architectures.

The problem is that contiguous instances of a class were
detected as only an object in the image. To solve this problem
we propose using a YOLO object detector as a 2D vehicle
proposal generator. On the other hand, using different CNNs
(with different feature extractors) for semantic segmentation
and for object detection can be considered suboptimal in
terms of framework design. This is why we propose the
second framework option (as an alternative), by replacing
our ERFNet for a Mask-RCNN in order to get the semantic
segmentation for the 3D box proposals and the 2D box
proposals using only one network.

A. ERFNet-YOLOv3-based Framework

This approach takes data from LIDAR and RGB images.
Fig.1 shows an overview diagram for this architecture.

1) 2D object detection from RGB image: Object de-
tection is carried out by processing the RGB image with
YOLOv3, which was pre-trained in the COCO dataset and
did not require any additional training or adaptation to this
new framework. A comparison with other detectors of the
literature shows that YOLOv3 is extremely fast and accurate
[5], requirements for a vehicle detector system suitable to
be used in autonomous driving. YOLO provides a set of
2D proposals which encode probabilities and bounding box
information for detected objects in the image.

2) Semantic segmentation: In parallel to our object de-
tection using YOLOv3, our ERFNet obtains the semantic
segmentation of the RGB image. This network is a deep
architecture able to provide accurate semantic segmentation
running in real-time. The core of our Net is a novel layer

based on residual connections and factorized convolutions
to retain remarkable accuracy while remaining efficient [14].
The ERFNet was trained on Cityscapes [20] with 19 classes
because our goal was to achieve robustness in any domain.

3) 3D object detection from LIDAR colored point cloud:
Given the LIDAR point cloud and the semantic information
a 3D colored point cloud is obtained, where different objects
in the 3D scene are classified by color (see Fig.1). To do that,
each point of the cloud is projected to the semantic image
using an algorithm based on [21], and colored according
to the color of the object class on which it is projected.
Due to points with the same color belonging to the same
class, classification is carried out by color filtering. However,
different objects belonging to the class are connected in some
cases (see cars in Fig.1) and additional processing is required
to separate them. A clustering based on Euclidean distance,
as proposed by [22], is carried out over the point cloud with
the same color to detect the different objects in the scene for
each class.

After that, a 3D bounding box that best suits the shape
of each cluster is assigned to each object. Length of the
boxes are discretized to 5 different values and height is fixed
to 1.6m, according to the mean clusters for length/height
obtained for the car class on KITTI. 3D bounding box fitting
is very sensitive to orientation, which is difficult to estimate
due to occlusions and sparsity of data. To improve bounding
box pose estimation (position and orientation), we project
orthogonally the 3D point cloud to the 2D ground plane (z=0)
and fit a 2D box to each object using the Hough transform to



get the main box directions, as we explained in our previous
publication [1].

4) Fusion from LIDAR and image proposals: 3D LI-
DAR box proposals and 2D image box proposals are merged
to validate common detection and to complement detection
carried out for one of the sensors only. To do that, 3D box
proposals are projected to the image plane. In this way, 2D
box proposals coming from the LIDAR point cloud are easily
matched with the 2D box proposals coming directly from
the semantic image. If a proposal overlaps (IoU) in the two
domains and deals some geometric constraints, it is validated
and it is the LIDAR proposal who goes to the output detected
vehicles image. On the other hand, if a proposal appears only
in one domain it is validated and goes to the output image
depending on the sensor (LIDAR or image) and the distance
where it was found. More information can be found in our
previous work [1].

Finally, validated 2D boxes are projected back to the
ground plane (BEV detection), and full 3D detection is
achieved by introducing height templates to the different
detected objects (see Fig.1).

B. Mask-RCNN-based Framework

This approach is similar to the previous one, but in this
case we substitute the YOLOv3 and ERFNet by a Mask-
RCNN (Region-based Convolutional Neural Network) [23]
in order to simplify the architecture. Fig.1 shows an overview
diagram of this architecture.

1) 2D object detection from RGB image: The object
detection task is implemented using the object detection
branch of a Mask-RCNN. In this way, a set of 2D proposals
which encode probabilities and bounding box information
for objects detected in RGB image is provided.

2) Semantic segmentation: For each image, the Mask-
RCNN implements a region proposal network which extracts
a RoI, predicting a segmentation mask in a pixel-to-pixel
manner. Results obtained in this segmentation process do not
match exactly those obtained by the previous ERFNet; the
performance and detected classes differ significantly between
both cases since they are different architectures and they
were trained in different datasets. In this case, only vehicles,
bicycles and pedestrian classes are detected, but the network
is able to distinguish the different instances for each class,
given a different color for each of them. Fig. 1 shows the
different vehicle instances, but unlike the previous approach,
there is no information about the road and other elements of
the environment.

3) Object detection from LIDAR colored point cloud: As
in the previous case, the 3D point cloud is projected to the 2D
semantic image obtained from Mask-RCNN instances. This
way, a point of the cloud projected into an instance is colored
according to its color. After that, classification is carried out
by color filtering taking into account that in this case each
color corresponds to a different object, even belonging to the
same class (instance). This way a clustering is not necessary
to get connected objects in the scene of the same class. Later,
a 3D bounding box is fitted according to size and orientation

of each object, in the same way as explained above. Finally,
a 3D box proposal is obtained.

4) Fusion from LIDAR and Image proposals: The same
method is applied as in the previous approach.

IV. EXPERIMENTAL RESULTS

A. KITTI Benchmark

We evaluate our 3D vehicle detection proposals on the
challenging KITTI object detection benchmark [4]. The
dataset provides 7,481 images for training with ground truth
annotations and 7,518 images for online testing without
ground truth. As the online testing only evaluates 2D de-
tection, we conduct our evaluation on the training set. To
evaluate localization, we use point cloud in the range of
[0,70]x[-40,40] meters.

Evaluation is carried out on the whole KITTI training set
for the ”car” class, taken into account that these images
have not been seen before by CNNs implemented in our
approaches. In other approaches in the literature, research
efforts are often invested in designing large architectures to
achieve accuracy boosts in KITTI by training and sometimes
overfitting on its train set, which is very similar to the test
set. This is problematic for a system that aims to be deployed
in the real world, where the test domain will be completely
different to the one that was planned in training. For these
reasons, and since our goal is to achieve robustness in any
domain, we restricted our framework design to avoid using
any KITTI data for training.

We validate our proposal in both 2D/3D space using
Average Precision (AP) with the following metrics. For 2D
detection on the images, Intersection over Union (IoU) is
used to distinguish between true positive and false positive
with a threshold of 0.7. For 3D object detection, 3D IoU
is applied with a threshold of 0.5. This metric shows the
highest demand because 3D overlapping is evaluated. For
BEV object detection, 2D IoU on BEV is used with the same
threshold. In this case the metric shows autonomous driving
demand, in which vertical localization is less important than
the horizontal. KITTI divides the labels into three difficulty
modes: easy, moderate and hard, according to the heights of
their bounding boxes, truncation levels and occlusion levels.
In the detection results tables, a RGB color code will be used
to highlight the three highest values.

B. Baseline for Comparison

As this work aims at 2D/3D vehicle detection, for the
3D and BEV evaluation we compare our approach to a
representative LIDAR-based method such as VeloFCN [16],
representative image-based methods such as 3DOP [19] and
Mono3D [8], as well as a reference of the multimodal
methods (LIDAR + image) such as is the MV3D [11]. For
2D detection evaluation, we add Vote3D [15], YOLO [5] and
Mask-RCNN [7].

C. Performance of 2D Vehicle Detection

2D detection performance for the car class and for an
IoU=0.7 on the KITTI test set, except for our framework



approaches, can be found in Table I. In our cases, the whole
training set is used due to it has not been used for training
our CNNs. As can be seen, image-based methods perform
better than LIDAR-based ones. The reason can be found in
that image-based methods directly optimize 2D boxes while
LIDAR-based ones optimize 3D boxes. Fusion proposals
(MV3D) optimize both 2D/3D boxes and in consequence
get intermediate results.

TABLE I: 2D Detection performance: Average Precision (AP) in
% for car class on KITTI test set, excepts for our proposal where
the whole training set was used. IoU=0.7

Method Data Easy Mod. Hard
Mono3D [8] Mono 92.33 88.66 78.96
3DOP [19] Stereo 93.04 88.64 79.10
YOLOv3 [5] Mono 84.30 84.13 76.34
Mask-RCNN [7] Mono 87.90 79.11 70.19
VeloFCN [16] LIDAR 71.06 53.59 46.92
Vote3D [15] LIDAR 56.80 47.99 42.57
MV3D [11] LIDAR+Mono 89.11 87.67 79.54
Our ERFNet [14] LIDAR+Mono 90.45 78.28 73.20
Our ERF+YOLOv3 LIDAR+Mono 93.75 83.79 76.32
Our Mask-RCNN LIDAR+Mono 94.07 86.58 77.70

Our approaches outperform LIDAR-based for all test
difficulty modes and are on par with the obtained by image-
based method and MV3D fusion method, being a little better
for the easy mode and a little worse for moderate mode
and hard mode. New proposals improve results regarding
the baseline in more than 3% for the easy mode, more than
5% for the moderate one and more than 3% for the hard
one. Results using Mask-RCNN in our framework are a little
better than those obtained by using ERF+YOLOv3. It is then
remarkable that results obtained using only YOLOv3 and
Mask-RCNN are worse than using these CNNs inside our
fusion framework.

Our proposals show comparable results with other image-
based and fusion-based methods of the state of the art that
use end-to-end learning in KITTI, but in our case, we use
CNNs as modules trained on the COCO dataset and the
Cityscapes dataset, quite different to KITTI, showing a high
capability to generalize domains. However, these results are
not enough for autonomous driving applications where 3D
vehicle detection is the key parameter.

D. Performance of 3D Vehicle Detection

3D IoU is the most precise metric to evaluate vehicle
detection in a 3D autonomous driving scenario. However, in
this context, vertical localization is less important than the
horizontal one. This is the reason why most of the state-of-
the-art methods predict the 2D height in a decoupled and
coarse way (sometimes a fixed value is assigned for all
detected objects of a class), provoking a negative impact in
the performance numbers.

Table II shows AP on the KITTI validation set using a 3D
IoU threshold of 0.5. The LIDAR-based method (VeloFCN)
performs better than image-based methods (Mono3D, 3DOP)
due to LIDAR sensors obtaining distance measurements
directly. For the fusion proposals (MV3D and ours), best

results for all test difficulty modes are obtained. MV3D
performs much better than our proposals, but our methods
are the only ones that have not been trained with KITTI
images. Besides, we use a fix height of 1.6 m for all cars,
because our real goal is to build a perception system for a
real vehicle and not get top rank in KITTI benchmark.

TABLE II: 3D Detection performance: Average Precision (AP) in
% of 3D boxes on KITTI validation set for IoU=0.5

Method Data Easy Mod. Hard
Mono3D [8] Mono 25.19 18.2 15.52
3DOP [19] Stereo 46.04 34.63 30.09

VeloFCN [16] LIDAR 67.92 57.57 52.56
MV3D [11] LIDAR+mono 96.02 89.05 88.38

Our ERFNet [14] LIDAR+mono 78.09 60.23 55.48
Our ERF+YOLOv3 LIDAR+mono 85.04 61.91 56.76
Our Mask-RCNN LIDAR+mono 80.24 62.43 55.93

New approaches regarding the base line improve mainly
the easy mode (from 2% to 7%) and are minor for the
moderate one (from 1.5% to 2%) and hard one ( from 1% to
2%). ERF+YOLOv3 performs better than the Mask-RCNN
for easy mode and hard mode but is a little worse for the
moderate one.

E. Performance of BEV Vehicle Detection

Table III shows AP of bird’s-eye view on the KITTI
validation set using a IoU of 0.5. Results are quite similar to
those obtained for 3D, because projection of the 3D bounding
boxes in the ground plane is evaluated. In this case, a 2D
IoU metric evaluates horizontal localization performance in
the 3D driving space, a key parameter in autonomous driving.
Objects’ height is not taken into account, being the reason
why numbers are a little higher than for the 3D case.

TABLE III: BEV detection performance: Average Precision (AP)
in % of bird’s eye view boxes on KITTI validation set for IoU=0.5

Method Data Easy Mod. Hard
Mono3D [8] Mono 30.5 22.39 19.16
3DOP [19] Stereo 55.04 41.25 34.55

VeloFCN [16] LIDAR 79.68 63.82 62.80
MV3D [11] LIDAR+mono 96.52 89.56 88.94

Our ERFNet [14] LIDAR+mono 79.77 65.76 63.14
Our ERF+YOLOv3 LIDAR+mono 89.85 75.16 66.49
Our Mask-RCNN LIDAR+mono 86.93 75.62 68.63

LIDAR-based methods perform better than those based
on vision. The best results are obtained by MV3D because
they use 2D/3D box regression from two different sensors
instead of only a 2D box regression, as in vision methods, or
a 2D/3D box regression from only one sensor, as in LIDAR
methods. Regarding our fusion proposals, they perform better
than LIDAR-based and vision-based methods but worse than
MV3D. Improvements regarding the baseline are significant,
being between 7% and 10% for the easy mode, about 10%
for the moderate mode and between 3% and 5% for the hard
mode. ERF+YOLOv3 performs better than Mask-RCC for
the easy mode, has similar results for the moderate case and
presents an opposite behaviour for the hard one.

Our final goal is to provide a good vehicle localization to
our autonomous navigation system, and BEV metric is the



Fig. 2: AP of BEV boxes on KITTI validation set as a function
of distance.

best fitted to this problem. KITTI evaluation is a way to show
that our proposals are competitive regarding other state-of-
the-art methods, but comparison should be taken with caution
because our CNNs have not been trained with KITTI images
and validation is carried out over the whole training set and
not a subset of it. Besides, KITTI gives a mean AP for all
vehicles, but AP changes with distance and not all detections
have the same importance from a safety point of view. Thus,
the detection of closer objects is more critical than that of
more distant objects.

Fig. 2 shows an AP graph for the ”car” class detected
within a 10-meter range along distance. It also shows the
number of ground truth/detected cars for each range. As can
be seen, detection values are high for short distances and
decrease with distance for the three modes. The detection
range is above 90% for easy and moderate modes up
to 30 meters, excluding cars that are very close and not
fully detected in the image or in the LIDAR point cloud.
These detection percentages, adding a tracking stage, can be
suitable for an autonomous vehicle application such as ours
in which the vehicle must travel at a maximum speed of 50
km/h in an urban environment.

F. Comparison of the New Framework Proposals
New proposals outperform results obtained with the base-

line in the three tests carried out: 2D detection on im-
ages, 3D detection and BEV detection on the 3D space.
For 2D detection, Mask-RCNN gets better numbers than
ERF+YOLOv3. For 3D and BEV detection numbers are
quite similar. If we take into account only the accuracy,
our experiments suggest that using Mask-RCNN is the best
one of the two approaches. However, if we consider the
processing times of both approaches and bear in mind the
computational constraints of a real vehicle, then we must
choose the YOLOv3-based option as the most suitable option
for our application. For 1024 x 720 images and using a 1070
NVIDIA GPU, YOLOv3 takes 50 ms and Mask-RCNN more
than 2 s. In consequence, the ERF+YOLOv3 approach is the
most appropriate for our real application.

G. Qualitative Results
Qualitative results on KITTI are provided in Fig.3. The

BEV and image pairs and detected 3D bounding boxes by our

ERF+YOLOv3 approach are shown. Our proposal detects the
car quite well, even when the car is distant, heavily occluded
or with different orientation. These results show the good
scalability and generalization domain of our proposal. While
LIDAR suffers from a high data sparsity for distant object
detection, high resolution of images provides very useful
information. Furthermore, we don’t need a training stage
with costly annotations because our proposal is based on
pre-trained CNNs.

H. Real Autonomous Driving Application

We have evaluated our ERFNet+YOLOv3 framework in
our autonomous electric car prototype, which is equipped
with a Velodyne LIDAR (VLP-16) placed on top of the
vehicle, which provides 16 channels of 360º horizontal
FOV and +- 15º vertical FOV, and a ZED stereo camera,
which provides 30 fps with a 1280x720 pixel resolution.
For evaluation purposes we have obtained a small dataset
with 200 frames extracted from 10 sequences recorded in
the Campus of the University of Alcala. BEV bounding box
annotations have been manually obtained over 70 meters for
1462 vehicles. Fig.4 shows an AP graph for vehicles detected
within a 10-meter range, similar to those shown in Fig.2 for
KITTI. As we can see, detection values are 100% until 20
m, over 96% until 30 m and decrease for longer distances.
These results, adding a tracking stage, can be enough for our
autonomous vehicle application (speed below 50 km/h) and
show the generalization potential of our proposal because
it has been run without any adaptation with respect to the
configuration used for KITTI.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented two new approaches to
detect vehicles in images and in a 3D and BEV scene,
integrating two state-of-the-art CNNs such as YOLOv3 and
Mask-RCNN in a previous framework, developed by the
authors, that combine 3D LIDAR point clouds and semantic
segmentation. Our methods take advantage of multimodal
fusion, geometrical constraints, and pretrained modules to
avoid an end-to-end learning. The new proposals have been
tested using the KITTI object detection benchmark, showing
some improvement with respect to the baseline and a good
capability of generalization to any domain. Performance
results are similar to other competitive state-of-the-art ap-
proaches in KITTI, but our architectures were pretrained on
generalistic datasets, removing the need to train to a specific
dataset, such as KITTI, and avoiding the costly efforts of
annotating new training data. Furthermore, we have tested
our proposal in a new driving environment as ours without
any adaptation obtaining results suitable for the navigation
of our autonomous car.

As future work we plan to test in depth the presented
perception system in our autonomous navigation architecture,
based on the Robot Operating System (ROS), over our
electric prototype.
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Fig. 3: Quantitative results on KITTI dataset: 2D boxes in images, 3D boxes in 3D space and 3D projected boxes in the BEV

Fig. 4: AP of BEV boxes on Campus validation set as a function
of distance.
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