
Deep Reinforcement Learning based control algorithms: Training and
validation using the ROS Framework in CARLA Simulator for

Self-Driving applications

Óscar Pérez-Gil1, Rafael Barea1, Elena López-Guillén1,
Luis M. Bergasa1, Carlos Gómez-Huélamo1, Rodrigo Gutiérrez1, Alejandro Dı́az1

Abstract— This paper presents a Deep Reinforcement Learn-
ing (DRL) framework adapted and trained for Autonomous
Vehicles (AVs) purposes. To do that, we propose a novel software
architecture for training and validating DRL based control
algorithms that exploits the concepts of standard communi-
cation in robotics using the Robot Operating System (ROS),
the Docker approach to provide the system with portability,
isolation and flexibility, and CARLA (CAR Learning to Act) as
our hyper-realistic open-source simulation platform. First, the
algorithm is introduced in the context of Self-Driving and DRL
tasks. Second, we highlight the steps to merge the proposed
algorithm with ROS, Docker and the CARLA simulator, as
well as how the training stage is carried out to generate
our own model, specifically designed for the AV paradigm.
Finally, regarding our proposed validation architecture, the
paper compares the trained model with other state-of-the-art
traditional control approaches, demonstrating the full strength
of our DL based control algorithm, as a preliminary stage before
implementing it in our real-world autonomous electric car.

I. INTRODUCTION
Nowadays, Autonomous Vehicles (AVs) are considered as

one of the greatest challenges in the automotive industry,
they are expected to play a key role [3] to solve the most
common traffic and transportation problems, such as traffic
jams or accidents. In the last decades, some of the most
famous Intelligent Vehicles (IVs) challenges, such as the
DARPA Urban Challenge or the Intelligent Vehicle Future
Challenge (IVFC), have proven that autonomous driving can
be a reality in the near future, demonstrating well-established
hardware and software frameworks for ITS purposes [25].

Considering a typical AV architecture, the control layer
consists of a set of processes that implements the vehicle
control and navigation functionality. A well-defined control
layer makes the vehicle robust regardless the varying envi-
ronment situations, such as the traffic participants, weather
conditions or traffic scenario, on the premise of guaranteeing
vehicle stability and covering the route provided by the other
layers of the vehicle.

In this context, Artificial Intelligence (AI) is increasingly
being involved in processes such as detection, Multi-Object

*This work has been funded in part from the Spanish MICINN/FEDER
through the Techs4AgeCar project (RTI2018-099263-B-C21) and from the
RoboCity2030-DIH-CM project (P2018/NMT- 4331), funded by Programas
de actividades I+D (CAM) and cofunded by EU Structural Funds.

1All authors are with the Electronics Department, Uni-
versity of Alcalá (UAH), Spain {rafael.barea,
elena.lopezg, luism.bergasa}@uah.es,
{o.perezg, carlos.gomezh, rodrigo.gutierrez,
alejando.diazd}@edu.uah.es

Tracking (MOT) and environment prediction. DRL based
algorithms are used to solve Markov Decision Processes
(MDPs), where the scope of the algorithm is to calculate
the optimal policy of an agent to choose actions in an
environment with the goal of maximize a reward func-
tion, obtaining quite successful results in fields like solving
computer games or simple decision-making system [18]. In
terms of autonomous driving, DRL approaches have been
developed to learn how to use the vehicle onboard sensors
[11].

The scope of this paper is to formulate, train and validate
the Deep Deterministic Policy Gradient (DDPG) [14] algo-
rithm for AV purposes. To accomplish this task, we propose
a novel software architecture for training and validating DRL
algorithms that exploits the concepts of portability, isola-
tion and flexibility in terms of software development using
Docker [16] containers, standard communications in robotics
using the Robot Operating Systems (ROS) and CARLA [7],
a novel open-source autonomous driving simulator, featured
by its hyper-realism, flexibility and real-time working. To the
best of our knowledge, our DDPG implementation is the first
Deep Learning based control pipeline that has been validated
in a hyper-realistic open-source simulator using the ROS and
Docker approaches. On top of that, though implementing and
testing the algorithm to our real-world vehicle is beyond the
scope of this paper (safety matters prevent these tests from
being performed in real environments without a previous
and exhaustive simulation stage). Our final goal is that the
proposed model is exported to our electric vehicle [1] using
a NVIDIA embedded system for that purpose. We hope
that our distributed system can serve as a solid baseline on
which future research can build on to advance the state-of-
the-art in validating Deep Learning based control pipelines
using hyper-realistic simulation, as a preliminary stage before
implementing the algorithms in real-world prototypes.

The remaining content of this work is organized as fol-
lows. The next sections presents a comparison between Clas-
sic, Imitation Learning and Deep Reinforcement Learning
based control algorithms in terms of autonomous driving.
Section 3 studies the DDPG algorithm, proposes a novel
software architecture in order to train and validate our model,
highlighting the steps to merge the DDPG algorithm with
ROS, Docker and the CARLA simulator, and formulates our
Markov Decision Process (MDP) proposal for ITS purposes.
Section 4 illustrates the proposed model performance obtain-

ing both qualitative and quantitative experimental results by
comparing the fine-tuned DDPG method against other state-
of-the-art control algorithms. Finally, Section 5 deals with
the future works and concludes the paper.

II. RELATED WORKS

As mentioned in the previous section, several approaches
for the control layer of an AV have been developed, which
are commonly classified into classic controller and AI based
controllers. The basics of control systems state that the
transfer functions decides the relationship between the output
and the input given the plant. Some of the most relevant
algorithms used in the control layer are:

A. Classic controllers

Classic autonomous driving systems usually use advanced
sensor for environment perception and complex control
algorithms for safety navigation in arbitrarily challenging
scenarios. Typically, these frameworks use a modular ar-
chitecture where individual modules process information
asynchronously. Regarding the control layer, some of most
used control methods are PID, predictive control [12], Fuzzy
Control [4], Adaptive control [27], Fractional-Order control
[30], Pure-Pursuit (PP) path tracking control and the Linear-
Quadratic Regulator (LQR) [9] algorithm. However, despite
their good performance, these types of controllers are often
environment dependent, so their corresponding hyperparam-
eters must be properly fine-tuned according to the path to be
followed in order to obtain the expected behaviour, which is
not a trivial task to do.

B. Imitation learning

This approach tries to learn the optimal policy by follow-
ing and imitating a expert system decisions. In that sense, an
expert system (typically a human) provides a set of driving
data [3], which is used to train the driving policy (agent)
through supervised learning. The main advantage of this
method is its simplicity, since it achieves very good results in
end-to-end applications. Nevertheless, its main drawback is
the difficulty of imitating every potential driving scene being
unable to learn behaviors that have not been provided. This
drawback causes this approach can be dangerous in some real
driving situations that have not been previously observed.

C. Deep Reinforcement Learning

Reinforcement learning (RL) algorithms have been sucess-
fully tested for solving Markov Decision Problems (MDPs)
and the combination of Deep Learning techniques and RL
algorithms have demonstrated its potential solving some of
the most challenging tasks of autonomous driving, such as
decision making and planning [28]. Deep Reinforcement
Learning (DRL) algorithms include: Deep Q-learning Net-
work (DQN) [15], Double-DQN, actor-critic (A2C, A3C)
[13], Deep Deterministic Policy Gradient (DDPG) [26] and
Twin Delayed DDPG (TD3) [29]. Our approach, based on
the DDPG algorithm, is explained in the following section.

Fig. 1. Proposed architecture for training and validating DRL algorithms.
On the left, the Docker image contains the Agent which is responsible of
managing the observations received from the simulator, by using a DRL
based network, and the CARLA ROS bridge to communicate with it. On
the right, the Environment uses CARLA simulator to generate control
commands. Bidirectional communications are managed by ROS.

III. DDPG-BASED ARCHITECTURE PROPOSAL

This section describes the Deep Deterministic Policy Gra-
dient (DDPG) algorithm used as a baseline of our model, Fig.
1 shows our novel software architecture in order to train and
validate different models in countless scenarios, illustrating
the importance of hyper-realistic simulation to build safe AV
technology based on these models.

A. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is a DRL
algorithm that concurrently learns a Q-function and a policy.
It uses off-policy data and the Bellman equation to learn
the Q-function, where the Q-function is in charge of the
policy. The algorithm pseudocode, adapted to AV purposes,
is illustrated in Algorithm 1.

The algorithm that learns and take the decisions is known
as the agent, which is interacting with the environment. The
agent is continuously choosing actions ai from an Action
space A = RN and a State space st+1, in such a way that
a reward r(st, at) is returned by the environment. The agent
behaviour is governed by a policy (π) which plays as a state
map in the action probabilistic distribution π : S → P (A)
in a stochastic environment E.

The two main components in the policy gradient are the
policy model and the value function. It makes sense to learn
the value function and the policy model simultaneously,
since the value function can assist the policy update by
reducing the gradient variance in vanilla policy gradients,
what is actually what the Actor-Critic method does. This
method consists of two models (Critic and Actor), which may
optionally share some parameters: While the Critic updates
the value function parameters in function of the action-value,
the Actor updates the policy parameters θ according to the
suggestions of the Critic. In addition, DDPG includes the
experience replay method that consists in keeping a buffer
of past transitions available to update the algorithm with
them. This technique not only boosts the learning process
and increases the efficiency of the exploration [17], but also

it has proven to be vital for the stability of the learning
process [6]. Updating the agent using past iterations allows
to evaluate a single iteration several times with different
policies, increasing the efficiency of the initial exploration.
Moreover, to deal with the oscillations or even divergence
in the policy value, we modify the DDPG features in order
to emulate this Actor-Critic structure. Our modified version
uses a soft update with τ << 1 parameter to slowly update
the policy parameters.

Algorithm 1 DDPG algorithm for AV purposes
Input: State vector S = ([wpt0 ...wptN], φt, dt)
Output: Action vector A = (throttle, steering)
Init randomly the Critic Q(s, a|θµ) and Actor µ(s|θµ) net-
works with weights θQ and θµ respectively.
Init the Critic and Actor objective networks Q′ and µ′ with
weights
θQ

′ ← θQ, θµ
′ ← θµ.

Init iterations buffer R.
for episode = 1, M do

Init random process N for action space exploration
Receive observation State s1
for t=1, T do

Select action at = µ(st|θµ) according to policy.
Execute the action at and compute the reward rt and
the new State st+1.
Store transition (st, at, rt, si+t) in R.
Sample a random minibatch of N transitions
(st, at, rt, st+1) in R.
Being yi = ri + γQ′(si−t, µ

′(si+t|θµ
′
)|θQ′

), update
Critic by minimizing loss:

L = (1
N)

∑
i(yi −Q(si, ai|θQ))2

Update the Actor policy using the gradient of sam-
pling policy: ∇θµJ
Update objective networks:

θQ
′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

end
end

B. Validation Architecture

Lately, hyper-realistic virtual testing is increasingly be-
coming in one of the most important concepts to build
safe AV technology. The use of photo-realistic simulation
(virtual development and validation testing) and an appro-
priate design of the driving scenarios are the current keys
to build safe and robust AV. Regarding Deep Learning
based algorithms (found in any layer of our architecture),
the complexity of urban environments requires that these
algorithms must be tested in countless environments and
traffic scenarios. This issue causes that the cost and devel-
opment time are exponentially increased using the physical
approach. Some well-known simulators in the field of AV

are NVIDIA DRIVE PX [2], Microsoft Airsim [24], V-REP
[22], and CARLA. The latter, is currently one of the most
powerful and promising simulators for developing and testing
AV technology, based on Unreal engine and is of great
importance in our approaches. Since this paper is framed
in an open-source project, aimed at developing techniques
for an automatic electric car new concept (AgeCar), able to
assist senior drivers with different automation levels [21],
we decided to use the open-source hyper-realistic CARLA
simulator.

CARLA provides quite interesting features to develop and
test self-driving architectures. However, regarding this work
focused on the control layer, we highlight the following:
1. A Powerful PythonAPI, that allows the user to control
all aspects related to the simulation, including weathers,
pedestrian behaviours, sensors and traffic generation, 2. Fast
simulation for planning and control, where rendering is
disabled to offer a fast execution of road behaviors and traffic
simulation for which graphics are not required, 3. Traffic
scenarios simulation based on Scenario Runner and 4. ROS
integration provided by the CARLA ROS Bridge.

This simulator is grounded on Unreal Engine (UE4) [23],
one of the most opened and advanced real-time 3D creation
tools nowadays and OpenDrive standard [8] is used to define
the roads and urban settings, allowing CARLA to have an
incredible realistic appearance. Regarding this, the simulator
plays a crucial role in this paper for several reasons. First of
all, it allows us to perform as many tests as required, avoiding
putting lives or goods at risk as well as decreasing the
development and cost time. It would be virtually impossible
to carry out a project of this nature (training a DRL algorithm
for AV purposes in arbitrarily complex scenarios) directly in
a real environment, as it would represent a risk to both the
ego-vehicle and its surrounding environment, specially at the
beginning, due to the randomness of the first actions taken by
the algorithm. Secondly, in order to validate the effectiveness
of a control algorithm, it is mandatory to compare against
the ideal route the vehicle should perform. In terms of the
control layer, CARLA provides the user the actual odometry
of the vehicle as well as the groundtruth of the route, what
makes easier to evaluate the performance of the proposed
system pipeline.

Considering this, we propose a novel software architecture
for training and validating DRL algorithms for AV purposes.
Fig. 1 illustrates the architecture, highlighting two different
parts: On the left, it is appreciated the Agent, which is
a Docker image based on Ubuntu18.04 that contains the
Actor-Critic system pipeline. On the right, the Environment
represents the simulators utils, that is, the CARLA simulator
that provides the world and the Scenario Runner that speci-
fies a specific map and traffic situation. The communication
between the Agent and the Environment is done via ROS top-
ics, thanks to the CARLA ROS bridge provided by CARLA
and fine-tuned for our purposes. The Docker approach help
us to conduct a CI/CD (Continuous Integration / Continuous
Delivery), providing flexibility and isolation, encapsulating
the algorithm and required dependencies for future real-

world purposes. In order to connect the Docker image with
the host, we share the host network when creating writeable
container layer over the specified image. As observed in
Fig. 1, there are three main data that are sent from the
Environment to the Agent: The ego vehicle status, which
content is made up by the current vehicle position, collision,
lane invasor status and current vehicle speed respectively,
the waypoints, that contains the trajectory points list, and
the manual override, which represents a bidirectional signal
that changes between manual and autonomous mode. On the
other hand, from the Agent to the Simulator, we send the
cmd vel, that refers to the DRL network output, being the
commanded velocity that have to play over the vehicle, and
the current state of the manual override signal.

C. MDP formulation

The final objective of the DDPG algorithm is to compute
an action to send to the simulator as a commanded velocity.
Considering that the problem of autonomous navigation can
be modelled as a Markov Decision Process (MDP), to be
able to generate these actions, the features of these processes
must be considered. A MDP is a discrete-time stochastic
control process that provides a mathematical framework for
modeling decision making in situations where outcomes are
partly random and partly under the control of a decision-
maker. It can be represented as a 4-tupple (S,A, Pa, Ra)
where the goal is to find a good policy (function π(s))
that the decision-maker will choose when is in a certain
state s. Regarding this context, it corresponds to agent that
observes the state (st) of the ego-vehicle (environment state)
and generates an action (at), leading the vehicle to move
to a new state (st+1) producing a reward (rt = R(st, at))
based on the new observation. The four components of our
formulated MDP tuple are explained below.

a) State space (S): Information which is received from the
Environment in each algorithm step. In our case, we model st
as a tuple st = (wt, dt) where wt represents the waypoints
vector associated to the current step, corresponding to the
next N waypoints from the vehicle position and dt represents
the driving features vector (Fig. 2) made up by the vehicle
speed estimation vt, the distance to the center of the lane dt
and the angle between the vehicle and the centre of the lane
φt, so dt = (vt, dt, φt).

Fig. 2. Driving features vector illustration

In order to obtain these waypoints, we use the A* algo-
rithm [10] that generates the global route at the beginning

of each episode, taking the next N waypoints from the
car position to form the state vector. Since we model our
algorithm to process local waypoints (referred to our ego-
vehicle), we transform their global coordinates to local ones
using a homogeneous transformation matrix.

Then, the S State vector is made up by a composition from
waypoints vector and driving features vector as follows:

S = ([wpt0 ...wptN], φt, dt) (1)

b) Action space (A): Information which is send to
the Environment to interact with the ego-vehicle in the
simulator. It is required to send some command to the
throttle, steering wheel and brake in a continuous way,
which ranges are [0,1], [0,1] and [-1,1] respectively. There-
fore, at each step the DRL agent must publish an action
(at) = (throttlet, steert, braket) with the commands in
the corresponding ranges. In this work, only the throttle and
steering wheel are considered, representing the output of the
DRL network.

c) State transition function (Pa): Probability that an
action a in state s at time t lead to state st+1 at time t+ 1.

Pa = Pr(st+1|st, at) (2)

d) Reward function Ra(st+1, st, at): Function that gen-
erates the immediate reward of updating st to st+1. Since
the goal in a MDP is to find a good ”policy” π(s) = at that
will choose an action given a state, we use eq. 3 to maximize
the expectation of cumulative future rewards.

E =

∞∑
t=0

γtR(st, st+1) (3)

D. Training Stage

Our proposal to build the DRL network is made up by two
parts, the Agent and the Critic network. The Actor predicts
an action based on the State and a Value that is obtained from
the Critic. The Critic calculates this Value based on the State,
the previous action obtained by the Actor and the reward
associated with that action, as shown in Fig. 1. The architec-
ture of Actor network consists of two Fully-Connected layers
(300 and 600 hidden units and ReLu activation function
respectively) that receives the State as input and an output
layer formed by 2 neurons and Tanh activation function,
returning the commanded velocity and the automation state
(manual or automatic). On the other hand, the Critic Network
consists of two Fully-Connected layers (300 and 600 hidden
units and ReLu and Linear activation functions respectively),
receiving the State, previous action and reward as inputs
and using a simple output obtains the Value from a Linear
activation function.

We designed a simple but accurate training workflow:
1) Launch the simulator and iterate over M episodes and

T steps.
2) At the beginning of the episode, call the A* based

global planner to obtain the complete route from two
random points on the map.

3) At each episode, take an observation corresponding to
the State S by concatenating the next Nwaypoints
(as a subset of the total route) in local coordinates
and the drivingfeaturesvector. The State S =
([wpt0 ...wptN], φt, dt) is introduced to the DRL net-
work, which predicts the actions as output A =
(throttle, steering). Then, the predicted actions are
sent to the simulator and the reward is calculated in
function of this actuation.

4) The lane invasor and collision sensor topics are
read in each step. If any of these sensors are active,
the episode ends by sending the manual override
topic, which give back the control to manual mode.
The vehicle must then be located in the centre of the
lane and the topic enabled again so that the control
starts learning again in another new episode. If these
topics are not activated, the training process iterates
over another new step.

5) The training stage finishes when the maximum number
of episodes is reached.

IV. EXPERIMENTAL RESULTS.

Once the DRL algorithm is trained, it is evaluated and
compared against other state-of-the-art control algorithms
using the facilities provided by CARLA, that is, the ac-
tual trajectory driven by the vehicle and ideal route by
interpolating the waypoints [9] provided by the A* based
global planner. The goal of the algorithms is to follow the
corresponding route as fast as possible avoiding collisions
and road departures in an arbitrarily complex dynamic urban
simulation environment. The metrics considered to evaluate
the performance of the trained models are: The Root Mean
Squared Error (RMSE) between the performed trajectory and
ideal trajectory, the Maximum Error when driving the routes
and the time spent by the vehicle to complete the navigation.
Considering these metrics, a total of 20 trajectories have
been randomly defined in the Town01 map of CARLA. Both
training stage and experimental results have been developed
using a desktop PC (Intel Core i7-9700k, 32GB RAM) with
CUDA-based NVIDIA GeForce RTX 2080 Ti 11GB VRAM.

Table I shows the ablation study, illustrating our dif-
ferent DDPG based models trained using different input
data sources, in order to select the best one to compare
against other state-of-the-art control algorithms. DDPG-Im-
Waypoints uses a binary image with segmented lane to
calculate N waypoints by proccessing the image. DDPG-
Flatten-Im flattens the binary image with the segmented
lane. DDPG-PreCNN uses a pre-trained-CNN to obtain the
waypoints from the on-board RGB image. DDPG-Waypoints
is our final model, explained in Section 3. For a deeper
explanation of our models we refer the readers to [19].
The ablation study shows that the Waypoints based proposal
achieves the best performance on each evaluated metric,
justifying its choice as baseline in the proposed architecture.

Based on the best model from the ablation study, we
perform a comparison with other well-known control algo-
rithms, not only classic control methods (LQR and Pure-

Fig. 3. Qualitative results on two different routes. Ground truth route
(yellow); LQR-Controller (white); DDPG-Waypoints (magenta); DDPG-
Flatten-Im (cyan); DDPG-Pre-CNN (green); DDPG-Im-Waypoints (pale
pink).

TABLE I
ABLATION STUDY TO BUILD THE STATE VECTOR (S).

Method RMSE (m) ME (m) Time (s)
DDPG-Im-Waypoints 0.295 2.3875 222.18

DDPG-Flatten-Im 0.134 1.522 63.97
DDPG-PreCNN 0.115 1.5125 65.12

DDPG-Waypoints(ours) 0.10 1.46 62.25

Pursuit) but also other AI based control algorithm like the
Deep Q-Network (DQN). The trajectories are again evaluated
over 20 routes in the Town01 map. Table II demonstrates
that the algorithm works in an optimal way, beating the
other AI based method and the Pure-Pursuit method by a
large margin, and achieving minimally differentiated results
with respect to one of the best classic controllers as is the
LQR algorithm, illustrating the performance of our proposed
model and the architecture for training and validating DRL
based algorithms.

Figure 3 shows two qualitative results obtained when
comparing the groundtruth (yellow line) calculated by in-
terpolating the corresponding waypoints against the LQR
method and the different DDPG proposals of the ablation
study shown in Table I. It is observed how our proposal
(DDPG based on waypoints) is able to complete the specified
route in a way that is similar to the LQR controller.

TABLE II
DDPG INTEGRATED PROPOSAL VS OTHER APPROACHES COMPARISON.

(TESTED OVER 20 DIFFERENT ROUTES IN TOWN01)

Method RMSE(m) MaxError(m) Time(s)
DQN [20] 0.198 1.625 87.1

Pure-Pursuit[5] 0.20 1.747 80.7
LQR[9] 0.095 1.305 65.60

DDPG (ours) 0.10 1.46 62.25

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a Deep Reinforcement
Learning (DRL) based control algorithm adapted to Au-
tonomous Vehicles (AVs) purposes as well as a novel soft-
ware architecture for training and validating DRL based
algorithms integrating the open-source simulator CARLA,
the Robot Operating System (ROS) and Docker. The pro-
posed architecture demonstrates its robustness, effectiveness
and manageability in both performing the training stage and
its proper validation, obtaining quite similar results than
LQR method, which one of the best classical controllers.
However, the major advantage of our AI based algorithm,
is that once a model is trained in a scenario, it can be
directly reproduced on any other scenario, while classic
controllers depends on a fine-tuning stage that is relatively
complex depending on the environment in which it is located.
We hope that our validation architecture will serve as a
solid baseline in the state-of-the art of AVs validation using
simulation environments testing. As future work, due to the
modularity and portability of this approach provided by ROS
and Docker, we plan to integrate the proposed algorithm in
a NVIDIA embedded system in our real-world prototype,
carrying out the fewest modifications required to make it
possible.

REFERENCES

[1] J Felipe Arango, Luis M Bergasa, Pedro A Revenga, Rafael Barea,
Elena López-Guillén, Carlos Gómez-Huélamo, Javier Araluce, and
Rodrigo Gutiérrez. Drive-by-wire development process based on ros
for an autonomous electric vehicle. Sensors, 20(21):6121, 2020.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew
Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[3] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Deep imitation
learning for autonomous driving in generic urban scenarios with
enhanced safety. arXiv preprint arXiv:1903.00640, 2019.

[4] Rerngwut Choomuang and Nitin Afzulpurkar. Hybrid kalman fil-
ter/fuzzy logic based position control of autonomous mobile robot.
International Journal of Advanced Robotic Systems, 2(3):20, 2005.

[5] R Craig Coulter. Implementation of the pure pursuit path tracking
algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA
Robotics INST, 1992.

[6] Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. The
importance of experience replay database composition in deep rein-
forcement learning. In Deep reinforcement learning workshop, NIPS,
2015.

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. Carla: An open urban driving simulator. arXiv
preprint arXiv:1711.03938, 2017.

[8] Marius Dupuis, Martin Strobl, and Hans Grezlikowski. Opendrive
2010 and beyond–status and future of the de facto standard for the
description of road networks. In Proc. of the Driving Simulation
Conference Europe, pages 231–242, 2010.

[9] Rodrigo Gutiérrez, Elena López-Guillén, Luis M Bergasa, Rafael
Barea, Óscar Pérez, Carlos Gómez-Huélamo, Felipe Arango, Javier
Del Egido, and Joaquı́n López-Fernández. A waypoint tracking
controller for autonomous road vehicles using ros framework. Sensors,
20(14):4062, 2020.

[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[11] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele
Reda, John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar
Shah. Learning to drive in a day. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8248–8254. IEEE, 2019.

[12] Roland Lenain, Benoit Thuilot, Christophe Cariou, and Philippe Mar-
tinet. Model predictive control for vehicle guidance in presence of
sliding: application to farm vehicles path tracking. In Proceedings of
the 2005 IEEE international conference on robotics and automation,
pages 885–890. IEEE, 2005.

[13] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl:
Controllable imitative reinforcement learning for vision-based self-
driving. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 584–599, 2018.

[14] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[15] V Matt and N Aran. Deep reinforcement learning approach to
autonomous driving, 2017.

[16] Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux journal, 2014(239):2, 2014.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533,
2015.

[19] Óscar Pérez-Gil, Rafael Barea, Elena López-Guillén, Luis M Bergasa,
Carlos Gómez-Huelamo, Rodrigo Gutiérrez, and Alejandro Dı́az. Deep
reinforcement learning based control for autonomous vehicles in carla.
Multimedia Tools and Applications, In revision, 2021.

[20] Óscar Pérez-Gil, Rafael Barea, Elena López-Guillén, Luis M Bergasa,
Pedro A Revenga, Rodrigo Gutiérrez, and Alejandro Dı́az. Dqn-based
deep reinforcement learning for autonomous driving. In Workshop of
Physical Agents, pages 60–76. Springer, 2020.

[21] Spain Robesafe group, University of Alcala. Techs4agecar project.
URL http://www.robesafe.uah.es/proyectos/tech4agecar/index.php,
2019.

[22] Coppelia Robotics. V-rep user manual. URL http://www. cop-
peliarobotics. com/helpFiles/. Ultimo acesso, 13(04), 2015.

[23] Andrew Sanders. An introduction to unreal engine 4. AK Peters/CRC
Press, 2016.

[24] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor.
Airsim: High-fidelity visual and physical simulation for autonomous
vehicles. In Field and service robotics, pages 621–635. Springer, 2018.

[25] Fei-Yue Wang. Ai and intelligent vehicles future challenge (ivfc) in
china: From cognitive intelligence to parallel intelligence. In 2017 ITU
Kaleidoscope: Challenges for a Data-Driven Society (ITU K), pages
1–2. IEEE, 2017.

[26] Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep reinforcement
learning for autonomous driving. arXiv preprint arXiv:1811.11329,
2018.

[27] Wei Wang, Kenzo Nonami, and Yuta Ohira. Model reference sliding
mode control of small helicopter xrb based on vision. International
Journal of Advanced Robotic Systems, 5(3):26, 2008.

[28] Ekim Yurtsever, Linda Capito, Keith Redmill, and Umit Ozguner. In-
tegrating deep reinforcement learning with model-based path planners
for automated driving. arXiv preprint arXiv:2002.00434, 2020.

[29] Fengjiao Zhang, Jie Li, and Zhi Li. A td3-based multi-agent deep
reinforcement learning method in mixed cooperation-competition en-
vironment. Neurocomputing, 411:206–215, 2020.

[30] DJ Zhuang, F Yu, and Y Lin. The vehicle directional control
based on fractional order pdˆ mˆ u controller. JOURNAL-SHANGHAI
JIAOTONG UNIVERSITY-CHINESE EDITION-, 41(2):0278, 2007.

