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Abstract— Life-long visual localization is one of the most
challenging topics in robotics over the last few years. The
difficulty of this task is in the strong appearance changes that a
place suffers due to dynamic elements, illumination, weather or
seasons. In this paper, we propose a novel method (ABLE-M)
to cope with the main problems of carrying out a robust visual
topological localization along time. The novelty of our approach
resides in the description of sequences of monocular images as
binary codes, which are extracted from a global LDB descriptor
and efficiently matched using FLANN for fast nearest neighbor
search. Besides, an illumination invariant technique is applied.
The usage of the proposed binary description and matching
method provides a reduction of memory and computational
costs, which is necessary for long-term performance. Our
proposal is evaluated in different life-long navigation scenarios,
where ABLE-M outperforms some of the main state-of-the-art
algorithms, such as WI-SURF, BRIEF-Gist, FAB-MAP or
SeqSLAM. Tests are presented for four public datasets where
a same route is traversed at different times of day or night,
along the months or across all four seasons.

I. INTRODUCTION

Navigation of autonomous vehicles in long-term periods
has experienced a great interest by the robotics community
in recent times. Due to this, solving the life-long visual
localization problem for identifying where a robot is over
time has become one of the main challenging areas of
research. Unfortunately, this is not an easy task, because
places have strongly different appearances at different times
of day, along the months and especially along the seasons.

In the last years, vision has successfully demonstrated
that it can be a complementary or alternative option for
localization with respect to other sensing techniques such as
range-based or GPS-based. According to this, FAB-MAP [1]
can be considered as the milestone in visual topological
localization methods for detecting loop closures. This algo-
rithm allows to recognize previously visited places by only
taking into account the space of appearance and individually
matching the images. In subsequent work, FAB-MAP was
tested over 1000 km [2], being one of the first approaches
to life-long visual localization in the literature.

More recently, SeqSLAM [3] introduced the idea of
matching places by considering sequences instead of single
images like previous proposals such as FAB-MAP. The usage
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Fig. 1. General diagram of our life-long visual topological localization
system using an efficient matching of binary sequences from images.

of sequences denoted a higher robustness to extreme per-
ceptual changes. SeqSLAM was validated under challenging
life-long visual localization conditions which were mainly
based on comparing the images of a same route in a sunny
summer day and a stormy winter night. However, in [4] some
weaknesses of SeqSLAM were reported, such as the field of
view dependence and the influence of parameters configura-
tion. For these reasons, the community continues searching
for new methods which can satisfy the high requirements
needed to achieve a robust life-long visual localization.

During the last year, some new methods using binary
codes extracted from images and fast matching techniques
have successfully contributed to the state of the art of visual
topological localization, such as the different variants of
ABLE [5], [6]. One of the main advantages of applying
binary descriptors in life-long visual localization is the reduc-
tion of computational and memory costs without a significant
loss of description power. The main goal of the present work
is to design an improved approach in this line which can
satisfactorily and efficiently operate in a life-long context.

Attending to the previous considerations, we propose a
novel method named ABLE-M for achieving a life-long
visual localization using an efficient matching of binary
sequences from images, as detailed in the general diagram
of our approach presented in Fig. 1.
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The main contribution of this paper is the implementation
of a robust visual topological localization system focused
on helping robots and intelligent vehicles to perform a life-
long navigation, which represents an innovative approach
regarding the state of the art (see Section II). The novelty of
our method is in the description of sequences of monocular
images as binary codes, which are extracted from a global
LDB [7] descriptor and efficiently matched using the Ham-
ming distance jointly with approximated nearest neighbor
search using the FLANN library [8]. Besides, an illumination
invariant technique is also applied (see Section III). In addi-
tion, we contribute a wide set of experiments (see Section IV)
and results (see Section V) that validate our approach in some
of the most challenging publicly available datasets for life-
long visual localization: the St Lucia dataset [9], the Alderley
dataset [3], the CMU-CVG Visual Localization dataset [10]
and the Nordland dataset [4]. Finally, we present the main
conclusions and the future research lines (see Section VI).

II. STATE OF THE ART

A. Life-long Visual Topological Localization

Apart from the previously referenced algorithms such as
FAB-MAP or SeqSLAM, several proposals have appeared in
the last years with the aim of achieving an effective life-long
visual localization. Some of these recent works have studied
the main problems that produce drastic changes in image
appearance: environmental conditions such as illumination
or weather [11], dynamic elements in a scene [12] or camera
configuration [13].

One of the main tasks for being able to perform a life-
long localization is to reduce the information storage and
computational costs. Recently, some methods have been pro-
posed based on a long-term memory methodology, such as
RTAB-Map [14]. Another option lately used for decreasing
memory costs is to reduce the weight of the stored descrip-
tors and the computational costs of matching by applying a
global binary description of images [5] [6]. Besides, in [15]
a great diminution of processing costs for loop closure
detection is achieved by using very simple binarized image
representations tested in a map of 20 million key locations.

Nowadays, one of the most fashionable and challenging
topics in life-long visual topological localization is to rec-
ognize previously visited places along the different seasons.
The method presented in [16] is probably one of the first
approaches to visual topological localization over seasonal
conditions and it is mainly based in the detection, extraction
and matching of SURF descriptors [17]. In [10], places
are compared in different months of the year by using a
global SURF descriptor called WI-SURF, which is combined
with 3D laser information. Another very recent proposal is
focused on the prediction of changes on places based on
superpixel vocabularies [18], which has been tested for a
3000 km dataset across all four seasons [4]. Besides, changes
in scene along the different hours of day and night have also
been studied with a great interest in SeqSLAM tests and in
other recent approaches based on co-occurrence maps [19].

B. Binary Descriptors and Matching of Images

Binary descriptors have recently been popularized in com-
puter vision due to their simplicity and favorable conditions,
such as the low memory requirements needed to store them
or the possibility of carrying out a very fast matching by
using the Hamming distance, as exposed in [8]. Furthermore,
in works such as [6], it is demonstrated that they can be
competitive with respect to vector-based descriptors such as
WI-SURF in a global place recognition framework.

Some state-of-the-art methods have satisfactorily applied
global binary descriptors for visual topological localiza-
tion in short-term scenarios, such as Gabor-Gist [20] or
BRIEF-Gist [21], which is based on the BRIEF descrip-
tor [22]. One of the most recent approaches in this line
is ABLE, which has achieved remarkable results in its
two current versions: panoramic (ABLE-P) [5] and stereo
(ABLE-S) [6]. Besides, in [5] several studies demonstrated
that LDB [7] can be considered the most effective binary
descriptor for visual topological localization with respect to
the main state-of-the-art binary descriptors. For these rea-
sons, in the present paper we follow some of these concepts
about binary description and matching, but now improved
for applying them in a life-long localization context.

III. OUR APPROACH: ABLE-M

A. Single Images or Sequences?

Traditionally, visual topological localization has been per-
formed by considering places as single images. In fact,
there are several remarkable approaches which trust in this
philosophy, such as WI-SURF, BRIEF-Gist or FAB-MAP.
However, other more recent proposals such as SeqSLAM
changed this concept and introduced the idea of recognizing
places as sequences of images.

In the present paper, we also follow the idea of using
sequences of images instead of single images for identifying
places. This approach allows to achieve better results in life-
long visual topological localization, as can be seen in Fig. 2,
where some previous results obtained in the Nordland dataset
between the sequences of winter and fall are presented.

Fig. 2. An example of performance comparison of our proposal (ABLE-M)
depending on the image sequence length (dlength) in the challenging
Nordland dataset (winter vs fall).
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Attending to the precision-recall curves advanced in Fig. 2,
the influence of the sequence length (dlength) is decisive for
improving the performance of visual topological localization
in life-long conditions. Furthermore, there is a limit near
to a length of 300 where results are not greatly enhanced.
For this reason, in the rest of the experiments and results
which will be presented in Sections IV and V, we will apply
dlength = 300.

With the aim of referring to our approach and following
the nomenclature started in our previous works [5] [6],
we name the method presented in this paper as ABLE-M
(Able for Binary-appearance Loop-closure Evaluation -
Monocular).

B. Illumination Invariance

Some techniques can be applied before extracting the
binary sequences from images to reduce the problems associ-
ated with illumination changes, especially along the different
hours of day. As demonstrated in recent works such as [23]
or [24], images can be previously transformed to an illu-
minant invariant color space with the aim of improving the
performance of place recognition in changing illumination
conditions, as presented in Eq. 1:

I = log(G)− α · log(B)− (1− α) · log(R) (1)

where R, G, B are the color channels of the processed image
and I is the resultant illumination invariant image. As shown
in Eq. 2, α is a parameter which depends on the peak spectral
responses of each color channel (λR, λG, λB), which are
commonly available in camera specifications.

1

λG
=

α

λB
+

(1− α)
λR

(2)

Therefore, α can be easily calculated by considering the
peak spectral responses, as exposed in Eq. 3. In addition,
Fig. 3 shows the influence of applying the illumination
invariant transformation.

α =
(λB

λG
− λB

λR
)

(1− λB

λR
)

(3)

Fig. 3. An example of illumination invariance application in the St Lucia
dataset between two places at different hours. The images on right are the
illumination invariant transformation of the left images. It can be seen how
this approach reduces the effects produced by sunlight and shadows.

The advantages of illumination invariance will be more
detailed and demonstrated with several results for visual
place recognition and loop closure detection at different
hours of day in Section V-A.

C. Extracting Binary Sequences

According to works such as [25], high resolution images
are not needed to perform an effective visual topological
localization along time and only a handful of bits is suffi-
cient. We agree with this concept because it can decrease
computational cost without a robustness reduction. For this
reason, as demonstrated in [5], we previously downsample
the processed images to 64x64 pixels, which is also the patch
used for the subsequent binary description of each image.

We use a global LDB descriptor for extracting the binary
codes of each image because LDB improves the performance
of binary description for place recognition by adding gradient
information jointly with intensity comparisons, which is
more robust than the approaches presented by descriptors
such as BRIEF, where only intensity is processed. Besides,
we compute the global binary descriptor by taking the center
of the downsampled images as a keypoint without dominant
rotation or scale. The resultant binary codes computed for
each image (dI) are adjusted to a length of 32 bytes, as
justified in [5].

Finally, the binary codes extracted from each image are
concatenated (++ ) to form the final binary sequence (d)
corresponding to a sequence of images, as exposed in Eq. 4,
where k − i is equal to the dlength chosen.

d = dIi++dIi+1++dIi+2++ ...++dIk−2
++dIk−1

++dIk
(4)

D. Efficient Matching of Binary Sequences

Binary descriptors can be efficiently matched by comput-
ing the Hamming distance, which is faster than the traditional
way of matching descriptors with the L2-norm. As exposed
in Eq. 5, similarity between binary sequences is computed
for loop closure detection by using the Hamming distance,
which is based on a simple XOR operation (⊕) and a sum
of bits. The similarity values can be stored on a distance
matrix (M ) for evaluation purposes.

Mi,j =Mj,i = bitsum(di ⊕ dj) (5)

Approximated nearest neighbor search using the FLANN
library can be employed for reducing the computational cost
of matching over time. We use a hashing method for fast
matching of binary features [8], which is conveniently imple-
mented in the last versions of the OpenCV libraries [26]. The
index applied in search is based on a multi-probe LSH (Local
Sensitive Hashing), which is described in detail in [27].

IV. EXPERIMENTS IN LIFE-LONG VISUAL LOCALIZATION

A. Datasets and Ground-truths

With the aim of carrying out a robust evaluation of
ABLE-M performance in life-long scenarios and comparing
it against some of the main state-of-the-art methods, we
use four publicly available datasets with different conditions,
which are more detailed in Table I.
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TABLE I
DESCRIPTION OF THE MAIN CHARACTERISTICS OF THE DATASETS EMPLOYED IN THE EXPERIMENTS.

Dataset Lenght No. Images General comments Image samples of revisited places Map route

St Lucia
[9] 10x12 km

10x21814
(640x480 px)

(15 fps)

This dataset is collected in the Brisbane
suburb of St Lucia, in Australia. A route
of about 20-25 minutes is traversed by
a car ten times at different day hours.
GPS positions are logged during each
journey.

Alderley
[3] 2x8 km

2x17000
(640x256 px)

(25 fps)

Two car rides recorded in a same route
in the Brisbane suburb of Alderley, in
Australia. One of them takes place in a
sunny summer day and the other one in
a stormy winter night. Correspondences
are manually labeled.

CMU-CVG
Visual Loc.

[10]
5x8 km

5x13357
(1024x768 px)

(15 fps)

A same route is traversed five times
in Pittsburgh, PA, USA. The sequences
are recorded with two cameras in differ-
ent months under varying environmental
and climatological conditions. GPS and
LiDAR information are registered.

Nordland
[4] 4x728 km

4x894172
(1920x1080 px)

(25 fps)

A ten hour train ride in northern Norway
is recorded four times, once in every
season. Video sequences are synchro-
nized and the camera position and field
of view are always the same. GPS read-
ings are available.

The datasets presented in Table I allow us to test our
proposal for the problematic visual changes that a place suf-
fers along different periods of time: along the day (St Lucia
dataset), along the day and night (Alderley dataset), along the
months (CMU-CVG Visual Localization dataset) and along
the seasons (Nordland dataset). For each dataset, Table I
shows the number of recorded sequences and its length in
kilometers, the number of images or frames which compose
the dataset and their characteristics, a brief description of
the dataset jointly with general comments about it, some
image samples of revisited places in different environmental
conditions and the map route followed in all the sequences
of each dataset. The routes showed for each dataset map are
represented by processing the available GPS measurements,
which can be also used for generating the ground-truths used
for evaluation.

B. Evaluation

The results presented for our visual topological local-
ization approach are processed by following the objective
evaluation methodology detailed in [6], which is mainly
based on precision-recall curves obtained from the computed
distance matrices.

It must be noted that distance matrices are used for
evaluating the global performance of our proposal. In real
application, for purposes such as correcting SLAM or visual
odometry errors, some kind of threshold (θ) must be applied
to determine if the similarity between a pair of sequences
of images corresponds to a loop closure or not, as exposed
in Eq 6. In this line, empirical thresholds can be used or
also adaptive thresholds, as has been studied in some recent
state-of-the-art works such as [28].

loop closure =

{
true if Mi,j < θ
false otherwise (6)

V. RESULTS IN LIFE-LONG VISUAL LOCALIZATION

A. Along the day: St Lucia dataset

This dataset allows us to evaluate the improvements pro-
vided by our illumination invariant proposal in a visual
topological localization along the day. This is because the
St Lucia dataset contains several video sequences recorded
for a same route where varied illumination changes and shad-
owing effects appear when a place is traversed at different
times of day.

Apart from the qualitative results previously showed for
illumination invariance in Fig. 3, we present now precision-
recall curves where the advantages of applying the illumina-
tion invariant transformation in ABLE-M are evidenced by
comparing two sequences of the St Lucia dataset recorded
at two different hours of a same day, as depicted in Fig. 4.

Fig. 4. Precision-recall curves comparing the performance of ABLE-M
with and without using the illumination invariant technique between the
sequences of the St Lucia dataset corresponding to the car rides recorded
on 10/09/2009 at 8:45 am and at 2:10 pm.
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In Fig. 4, it is demonstrated that the usage of illumination
invariance improves the general performance of ABLE-M in
visual localization when a route is traversed along the day.
The description of the sequences of images is more robust
in this case due to the reduction of the effects produced by
sunlight and shadows when illumination invariance is applied
by our algorithm.

B. Along the day and night: Alderley dataset

The Alderley dataset contains two video sequences which
are very challenging for life-long visual localization: one
of them in a sunny summer day and the other one in a
stormy winter night. Obviously, in these conditions is much
more difficult to match places and ABLE-M achieves worse
results than for the tests carried out in the St Lucia dataset, as
corroborated if the precision-recall curves presented in Fig. 5
are compared to the previously depicted in Fig. 4.

Fig. 5. Precision-recall curves comparing the performance of ABLE-M
with and without using the illumination invariant technique between the
day and night sequences of the Alderley dataset.

The application of the illumination invariant technique
does not improve the results at night because the source
illuminant cannot be modeled as a black-body radiator and
the obtained appearance does not completely match the
illumination invariance captured during the day. In addition,
in the specific circumstances of the Alderley dataset, rain-
drops and humidity in camera also negatively affect to the
effectiveness of this method, as can be observed in Fig. 6.

Fig. 6. An example of illumination invariance application in the Alderley
dataset between two places in a sunny summer day and in a stormy winter
night. The images on right are the illumination invariant transformation of
the left images.

Similar problems due to night illumination conditions were
reported in [24], where their approach combined with an
illumination invariant transformation also has worse results
for a same route traversed between 8:00 pm and 7:00 am. In
these conditions, it can be very difficult to perform a robust
visual localization, as demonstrated along this section.

C. Along the months: CMU-CVG Visual Localization dataset

The tests carried out in this dataset reveal the effectiveness
of our method for visual topological localization along longer
periods of time, where seasonal changes in places and other
challenging environmental conditions such as the described
in Fig. 7 must be taken into account.

Fig. 7. Three representative examples of difficult situations for place
recognition in the CMU-CVG Visual Localization dataset. From top to
bottom, each pair of images represents: a) Seasonal changes produced by
illumination, vegetation or snow. b) Problems of urban visual localization
such as constructions or dynamic elements. c) Changes on the field of view.

We test ABLE-M in this dataset compared to the fol-
lowing methods: WI-SURF, BRIEF-Gist, FAB-MAP and
SeqSLAM. For testing WI-SURF and BRIEF-Gist, we have
implemented them using the SURF and BRIEF descriptors
provided by OpenCV. FAB-MAP is evaluated using the
OpenFABMAP implementation presented in [29], which is
applied in a standard configuration and conveniently trained.
The evaluation of SeqSLAM is carried out by employing the
source code provided by OpenSeqSLAM [4].

The results presented in this section correspond to two
sequences recorded with more of three months of difference.
Only the left camera images of the dataset are employed in
the test. As can be seen in Fig. 8, WI-SURF, BRIEF-Gist
and FAB-MAP do not achieve great results in this life-long
visual localization context because these methods follow the
philosophy of considering places as single images, which
does not have an effective performance for the environmental
conditions produced by the strong changes that a place
suffers along the months. The algorithms based on sequences
of images achieve much better results, as evidenced by the
precision-recall curves obtained by SeqSLAM and ABLE-M.
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In this case, SeqSLAM has a slightly worse precision than
ABLE-M, which is probably due to the changes on the field
of view that this dataset has between the different sequences.
This is because the performance of the image description
method applied by of SeqSLAM has a certain dependence on
the field of view, as demonstrated in [4]. However, ABLE-M
does not have this problem due to the characteristics of the
LDB descriptor, which applies a multi-resolution description
that alleviates this dependence on the field of view.

Fig. 8. Precision-recall curves comparing the performance of ABLE-M
against some of the main state-of-the-art algorithms between the sequences
of the CMU-CVG Visual Localization dataset corresponding to the car rides
registered on 01/09/2010 and 21/12/2010.

D. Along the seasons: Nordland dataset

The Nordland dataset is probably the longest (≈ 3000 km)
and one of the most challenging datasets that can be currently
used for life-long visual topological localization evaluation.
It contains four videos with very strong seasonal appearance
changes in places for a same train ride, apart from other
problematic situations, such as the depicted in Fig. 9.

Fig. 9. Three representative examples of difficult situations for place
recognition in the Nordland dataset. From top to bottom, each pair of
images represents: a) Perceptual aliasing between different places with
similar appearances. b) Sunlight conditions at the same hour depending on
the season. c) Not much appearance information in places such as tunnels.

In Section V-C, we showed comparative results between
ABLE-M and some of the main state-of-the-art methods for
the CMU-CVG Visual Localization dataset in two sequences
recorded on 01/09/2010 (summer) and 21/12/2010 (winter).
For this reason, we present now a comparative between the
two videos of the Nordland dataset corresponding to the
remaining seasons (spring and fall). As depicted in Fig. 10,
these results corroborate again the better effectiveness of
the approaches based on sequences of images. Besides, the
difference between the results of SeqSLAM and ABLE-M is
reduced with respect to the obtained in Section V-C. This is
due to the influence of the static field of view in the Nordland
dataset, which is beneficial for SeqSLAM.

In addition, Figs. 11 and 12 show precision-recall curves
and examples of distance matrices obtained by ABLE-M for
the six possible combinations between the different video
sequences of the Nordland dataset. As expected, when the
winter sequence is evaluated, the effectiveness of our method
decreases due to the extreme changes that this season causes
in places appearance because of environmental conditions
such as snow, illumination, vegetation changes, etc.

Fig. 10. Precision-recall curves comparing the performance of ABLE-M
against some of the main state-of-the-art algorithms in the Nordland dataset
(spring vs fall).

Fig. 11. Precision-recall curves comparing the performance of ABLE-M
between the Nordland sequences corresponding to each season.
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(a) Winter vs spring. (b) Winter vs summer. (c) Winter vs fall.

(d) Spring vs summer. (e) Spring vs fall. (f) Summer vs fall.

Fig. 12. An example of the distance matrices obtained by ABLE-M between the Nordland sequences corresponding to each season, jointly with image
samples of the loop closures detected. It must be noted that the distance matrices correspond to the representative frames between m=200000 and n=201000,
because due to the limitations of paper format we can not conveniently show the matrices for the full dataset. As can be seen, the winter sequence is the
most problematic because of the strong appearance changes suffered by the places in this season, such as snow or low illumination. For this reason, the
loop closure diagonal which appears in the distance matrices is not so clear when the winter sequence is evaluated against the other ones.

E. Discussion
In previous results sections we corroborated in four dif-

ferent datasets how ABLE-M can cope with the main prob-
lems of carrying out a robust visual topological localization
along time. Furthermore, our proposal also obtains remark-
able results compared to state-of-the-art algorithms such as
WI-SURF, BRIEF-Gist, FAB-MAP or SeqSLAM.

As main comments about the performance of ABLE-M,
in Sections V-C and V-D is evidenced that it achieves great
results for place recognition and loop closure detection along
the months and seasons, which nowadays is one of the main
goals of the robotics community in this research line. In spite
of the difficult conditions for recognizing places between day
and night that reduce the effectiveness of our method with
respect to other life-long situations, it can be observed how in
the precision-recall curves shown in Section V-B we obtain
acceptable results, which are comparable to the presented by
SeqSLAM in [3] for the Alderley dataset. In fact, the usage
of illumination invariance clearly improves ABLE-M results
for visual localization at different sun hours, as exposed in
Section V-A.

However, the advantages of our proposal are not only
in its effectiveness, but also in the efficiency provided by
ABLE-M. As explained in Section III, the usage of binary
sequences reduces the memory resources and the processing
time needed for carrying out a robust place description and
matching compared to other alternatives such as vector-
based descriptors or the method based on image difference
vectors applied by SeqSLAM. Additionally, in our case the
application of FLANN using a multi-probe LSH instead of a
linear search also decreases the accumulated computational
cost of matching the sequences of images with the previously
processed to a sublinear time, as deduced from Table II. In
tests, we use a standard Intel Core i7 2,40 GHz PC.

TABLE II
COMPARISON OF AVERAGE PROCESSING TIMES FOR IMAGE MATCHING.

No. images
to match SeqSLAM ABLE-M

(without FLANN)
ABLE-M

(with FLANN)
1000 0.177 s 0.023 s 0.0093 s

10000 1.81 s 0.25 s 0.17 s
100000 18.23 s 2.53 s 0.42 s

6334



VI. CONCLUSIONS

The approach presented in this paper (ABLE-M) has
proved that it can successfully accomplish a life-long vi-
sual localization based on an efficient matching of binary
sequences from monocular images. The performance of our
method has been satisfactorily tested in extensive evaluations
carried out in four challenging datasets where different situ-
ations are analyzed, such as recognizing places at different
times of day or night, along the months or across all four
seasons. Furthermore, our proposal has confirmed that is able
to perform a robust life-long visual topological localization
compared to some of the main state-of-the-art methods, such
as WI-SURF, BRIEF-Gist, FAB-MAP or SeqSLAM.

One of the main contributions of this work resides in the
implementation of an image description method based on
binary strings extracted from sequences of images instead of
single images, which is a concept that decisively improves
the effectiveness of ABLE-M in life-long visual localization,
as supported by the results presented along this paper. Be-
sides, our work also contributes other interesting and useful
ideas, such as the application of an illumination invariant
transformation of images before performing the binary de-
scription or the efficient matching of binary sequences based
on the Hamming distance and the usage of FLANN for fast
nearest neighbor search.

As an extra contribution to the computer vision and
robotics communities, an open version of the code imple-
mented for our proposal will be downloadable after publi-
cation for free use. This open source toolbox for life-long
visual topological localization will be referred with the name
OpenABLE1.
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