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Abstract Visual topological localization is a process typi-
cally required by varied mobile autonomous robots, but it is
a complex task if long operating periods are considered. This
is because of the appearance variations suffered in a place:
dynamic elements, illumination or weather. Due to these
problems, long-term visual place recognition across seasons
has become a challenge for the robotics community. For this
reason, we propose an innovative method for a robust and
efficient life-long localization using cameras. In this paper,
we describe our approach (ABLE), which includes three dif-
ferent versions depending on the type of images: monocular,
stereo and panoramic. This distinction makes our proposal
more adaptable and effective, because it allows to exploit the
extra information that can be provided by each type of cam-
era. Besides, we contribute a novel methodology for iden-
tifying places, which is based on a fast matching of global
binary descriptors extracted from sequences of images. The
presented results demonstrate the benefits of using ABLE,
which is compared to the most representative state-of-the-
art algorithms in long-term conditions.
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1 Introduction

Autonomous robots and intelligent vehicles commonly
need robust localization methods with the aim of correctly
detecting its position in the real world and performing
an accurate navigation based on this information. In
the last decades, different methodologies derived from
generic Simultaneous Localization and Mapping (SLAM)
algorithms have been extensively studied in order
to solve the important challenges of the localization
problem (Durrant-Whyte and Bailey, 2006; Bailey
and Durrant-Whyte, 2006). There are several sensing
technologies traditionally applied in these localization
systems, such as GPS-based or range-based, among others.
However, the robotics community has also considered
camera-based solutions as an interesting alternative in the
last years. For this reason, visual localization systems have
been broadly extended within the recent past due to the
improvements in camera features, price and size, added to
the progress in computer vision algorithms for techniques
such as visual SLAM (Fuentes-Pacheco et al, 2012;
Alcantarilla et al, 2013) or visual odometry (Scaramuzza
and Fraundorfer, 2011; Fraundorfer and Scaramuzza,
2012).

Place recognition is commonly a key stage in different
visual localization methods, because it provides valuable
information about the situational awareness of the traversed
environment. Besides, it is typically used for detecting
loop closures and identifying revisited places in order to
correct the accumulated localization error in vision-based
navigation systems. As stated in Williams et al (2009), the
algorithms for solving the loop closure problem in visual
localization are divided into three groups: map-to-map
(metric) (Clemente et al, 2007), image-to-map (topometric)
(Williams et al, 2008) and image-to-image (topological)
(Cummins and Newman, 2008).
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Topological methods for visual localization have been
popularized after the formulation of FAB-MAP (Cummins
and Newman, 2008), which allows to recognize places
by using only the space of visual appearance. However,
FAB-MAP requires a prior training phase and applies
a computationally expensive approach that requires
feature extraction followed by probabilistic inference,
which can make the proposal not suitable for real-time
applications. Additionally, visual localization is complex
in long operating periods due to the strong appearance
changes that a place suffers by cause of dynamic elements,
illumination, weather or seasons, as can be observed in
the examples presented in Fig. 1. For this reason, life-long
visual topological localization has been one of the most
challenging topics in robotics over the last years, where
proposed solutions not only need to solve the problems
associated with changing environments, but also to apply
efficient algorithms with low computational cost that
can work in real scenarios. According to the described
requirements, Fig. 1 depicts the general diagram of our
proposal called ABLE (Able for Binary-appearance
Loop-closure Evaluation).

We have already presented some preliminary studies re-
lated to our approach in different international conferences
in robotics and autonomous vehicles (Arroyo et al, 2014a,b,
2015). In this paper, we describe our final work, where the
complete proposal of ABLE is explained. In addition, we
include new contributions and results to validate the adapt-
ability and effectiveness of our solution:

– Different versions of ABLE are proposed depending
on the type of camera for providing a higher
adaptability and taking advantage of the additional
image information that can be obtained in each case:
monocular (ABLE-M), stereo (ABLE-S) or panoramic
(ABLE-P).

– Global binary features are applied in image description
jointly with a matching based on the Hamming distance
and an Approximate Nearest Neighbors (ANN) search,
that provides both low processing times and high preci-
sion rates.

– Sequences of images are used instead of single images in
all the cases with the aim of carrying out a better recog-
nition of places in long-term scenarios, as introduced in
some state-of-the-art works such as Milford and Wyeth
(2012).

– An illumination invariant transformation is previously
performed in order to minimize the problems related to
changing lighting conditions and shadows in a visual
place recognition context, inspired by innovative
proposals such as Upcroft et al (2014); McManus et al
(2014).

Fig. 1 General diagram of our life-long visual topological localization
system. This representation shows monocular images (ABLE-M), but
along this paper we also describe more detailed diagrams about our
stereo (ABLE-S) and panoramic (ABLE-P) versions.

Apart from some of the previously mentioned
approaches such as FAB-MAP, there are other remarkable
proposals for visual topological localization in the state of
the art, which are discussed along Section 2. In Section 3,
we introduce and explain the concept of the binary
descriptors applied by our algorithm for the description and
matching of places. In Section 4, our final method and its
different versions are extensively described. In Section 5,
we define an objective evaluation methodology for visual
place recognition and loop closure detection, where the
tests are carried out in several public datasets with different
characteristics recorded in varied long-term situations. In
Section 6, a wide set of new results are presented and
compared to the main state-of-the-art algorithms with
the aim of validating our complete proposal. Finally, the
main conclusions about this work and future research are
discussed in Section 7.

2 Related Work

Although FAB-MAP can be considered as the milestone in
works related to visual topological localization, the initial
researches in these kinds of techniques were started some
years before (Ulrich and Nourbakhsh, 2000). Furthermore,
a great number of novel approaches have been presented fol-
lowing the research line started by FAB-MAP, as studied in
surveys such as Garcia-Fidalgo and Ortiz (2015) or Lowry
et al (2016). In fact, the authors of FAB-MAP also tested
their algorithm over 1000 km in more recent papers (Cum-
mins and Newman, 2010a,b), which is probably one of the
first robust approaches to life-long visual topological local-
ization in the literature. In addition, a 3D implementation of
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FAB-MAP (Paul and Newman, 2010) was also contributed
to incorporate geometric information, but in this case it was
only tested in short-term localization.

One of the most relevant proposals recently
contributed for visual localization in long-term scenarios
is SeqSLAM (Milford and Wyeth, 2012), that introduced
the idea of recognizing places as sequences instead of
single images, in contrast to previous proposals such as
FAB-MAP. SeqSLAM was satisfactorily evaluated in
challenging life-long visual localization situations, where a
same route was traversed in a sunny summer day and a
stormy winter night. However, in Sünderhauf et al (2013)
some drawbacks of SeqSLAM were revealed, such as the
field of view dependence and the influence of parameters
configuration. As will be explained along this paper, these
problems have been ameliorated by ABLE and other recent
approaches that specifically study the difficulties of a
changing viewpoint (Pepperell et al, 2014; Lowry and
Milford, 2015).

Nowadays, the recognition of previously visited places
along the different seasons of the year is the most challeng-
ing topic in life-long visual localization due to the diffi-
culties associated with this task: changes in vegetation, il-
lumination, weather, dynamic elements, etc. For this rea-
son, several proposals have been presented within the recent
past for facing these problems related to seasonal changes.
In Neubert et al (2015), a novel algorithm for place recog-
nition based on appearance change prediction was tested
in the Nordland dataset (Sünderhauf et al, 2013), where a
same route of more than 750 km is traversed by a train four
times (one in each season). This public dataset is one of the
used in our tests, and it has been also employed for eval-
uation in other works, such as Mohan et al (2015), where
co-occurrence matrices are computed with the aim of im-
proving the precision for matching places in long-term sce-
narios. In fact, the effectiveness of co-occurrence for place
recognition in dynamic scenes had been previously demon-
strated by Johns and Yang (2014).

Additionally, other novel techniques have been
applied for visual localization tasks in long-term mapping
scenarios. Models based on bags-of-words for place
recognition have been successfully applied in robotics,
such as the designed in Gálvez-López and Tardós (2012).
This has been recently employed for improving the
performance in loop closure detection for correcting the
drift in monocular SLAM systems (Mur-Artal et al, 2015).
Other algorithms focused on seasonal changes are based on
visual experiences (Dymczyk et al, 2015; Linegar et al,
2015), which are defined as appearance representations
of an environment under certain conditions to obtain a
visual memory. Besides, new tendencies propose to use
pre-trained Convolutional Neural Networks (CNNs) for an
accurate place recognition along the time (Sünderhauf et al,

2015). Nevertheless, supervised deep learning techniques
require a large amount of manually annotated data for an
specific problem at hand and they use to be computationally
expensive, as studied in methods focused on topological
place learning (Erkent and Bozma, 2015) or loop closure
detection for visual SLAM based on CNNs (Gao and
Zhang, 2017).

However, embedded robotic systems can reduce mem-
ory resources and computational costs using less complex
solutions, such as the computation of simplified image rep-
resentations. In this line, automatic image scaling can be an
interesting idea for achieving more efficiency in place recog-
nition for changing environments, as discussed in Pepperell
et al (2015). Moreover, some works based on compact scene
descriptors have obtained remarkable results in cross-season
place recognition, such as Masatoshi et al (2015). Another
technique typically used in the last years is the application
of global image descriptors, in order to achieve an efficient
long-term performance and try to obtain a real-time visual
localization. Solutions similar to the proposed approach by
BRIEF-Gist (Sünderhauf and Protzel, 2011) are the most
representative of this tendency. Recently, a method based on
global image signatures has also been published for visual
loop closure detection (Negre-Carrasco et al, 2016), which
demonstrates the proliferation of these techniques. In our
case, ABLE applies a methodology based on a global image
description using binary features, whose main characteris-
tics will be explained in depth in Section 3.

Finally, although a great part of the algorithms in the
state of the art are designed for monocular cameras, there
are some specific approaches that are focused on stereo and
panoramic images. On the one hand, stereo information al-
lows to acquire a more complete description of the geom-
etry of an environment, which is exploited in works such
as Cadena et al (2010, 2012), where a bag-of-words model
is combined with the application of stereo pairs to check a
valid spatial transformation in place matching. In our ap-
proach, the method defined by ABLE-S computes disparity
with a similar purpose. On the other hand, some state-of-
the-art algorithms trust in panoramic images for localization
across the different seasons of the year (Valgren and Lilien-
thal, 2010). Additionally, other works also use panoramic
views for a more robust loop closure detection (Murillo et al,
2013; Korrapati et al, 2013; Korrapati and Mezouar, 2017).
The main advantage of panoramas is that they allow a vi-
sual perception of the environment in all the possible orien-
tations, which can be used for detecting places revisited in
other direction. For this reason, panoramic images are also
employed by ABLE-P to take advantage of the extra visual
information provided by them in visual topological localiza-
tion, as will be justified along some of the following sections
of the paper.
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3 Binary Descriptors for Visual Localization

The application of binary features for describing places is
one of the main characteristics of our life-long visual local-
ization proposal. Before starting the detailed explanation of
ABLE, it is necessary to introduce the main properties of
this type of descriptors and how they work, with the aim
of understanding the main benefits of using them in our ap-
proach.

Binary descriptors are typically constructed from a set
of pairwise comparisons from a sampling pattern which is
normally centered in a point of interest of the image. The
sampling pattern differs depending on the specific binary
descriptor and it can be adapted for obtaining invariance to
scale and rotation. When the descriptor is computed, each
bit in the binary feature is the result of precisely one com-
parison.

Apart from the previous considerations, it must be ex-
plained how these binary features are formulated and built.
If we define a smoothed image patch (p) centered in the
point of interest x = (x,y), a binary test (τ) is characterized
as:

τ (p; f (i), f ( j)) =

{
1 f (i)< f ( j)
0 f (i)>= f ( j)

, i 6= j. (1)

In Eq. 1, f (i) is a function that returns an image feature
response for the point of interest, which is compared to other
f ( j) for a certain pixel or cell in p. According to this, f (i)
can simply be the smoothed image intensity (I) at one pixel
location xi = (xi,yi), as proposed by binary descriptors such
as BRIEF (Calonder et al, 2012), which is probably the most
popular approach:

f (i) = I(xi). (2)

However, f (i) can also be the concatenation of other
different binary comparisons, such as averaged image in-
tensities (Iavg) and image gradients (Gx, Gy) on a specific
cell (ci) in p, as proposed by other binary features such as
LDB (Yang and Cheng, 2014):

f (i) =
{

Iavg(ci),Gx(ci),Gy(ci)
}
. (3)

Furthermore, we defined a new binary descriptor called
D-LDB (Arroyo et al, 2014a), which also computes fea-
tures based on geometric characteristics of the environment
in the binary description process. This novel strategy is de-
signed to reduce the effect of different place recognition
problems such as perceptual aliasing and to obtain better re-
sults in long-term situations. The initial proposal of LDB
is improved by our D-LDB descriptor, where several binary
comparisons are also applied for averaged disparity infor-
mation (Davg):

f (i) =
{

Iavg(ci),Gx(ci),Gy(ci),Davg(ci)
}
. (4)

As a last step in the procedure for constructing the bi-
nary feature, the resulting descriptor (d) is processed as a se-
quence of n binary tests, where n is also the final dimension
of the resultant descriptor, which can be empirically adjusted
depending on the system requirements or other constraints:

d(p) = ∑
1≤i≤n

2i−1
τ (p; f (i), f ( j)) . (5)

The definitions previously contributed about the
construction of binary features give an idea of their
advantages for describing images in an efficient way.
Firstly, these descriptors consist of a simple concatenation
of bits, which involves a minor memory consumption in
general terms, especially if it is compared to descriptors
based on vectors of features, such as SIFT (Lowe, 2004) or
SURF (Bay et al, 2008). In addition, binary features can be
matched using a basic Hamming distance (Muja and Lowe,
2012), which is much more efficient than the traditional
way of matching descriptors with the L2-norm. This
efficiency provided by the Hamming distance (distH ) is due
to the simplicity of the calculation needed to compute it,
which consists on an elementary XOR operation (⊕) and a
basic sum of bits:

distH = bitsum(d(pi)⊕d(p j)). (6)

Due to the mentioned benefits, binary features have
been used for describing images in visual localization
in some state-of-the-art approaches. In this line, some
experiments presented in (Milford, 2012) demonstrated that
a handful of bits can be enough for correctly identifying
places in a robust way. As a representative example, in
works such as Gálvez-López and Tardós (2012), BRIEF is
computed as a local binary descriptor for place recognition,
where several points of interest are previously detected and
the associated local features are extracted from image
sequences.

Besides, there are other local binary descriptors typically
applied in these kinds of works, such as BRISK (Leuteneg-
ger et al, 2011) or ORB (Rublee et al, 2011), which add
invariance to rotation and scale to the initial BRIEF for-
mulation, or FREAK (Alahi et al, 2012), which is a key-
point descriptor inspired by the human visual system and
based on a retinal sampling pattern. All these local binary
descriptors are only focused on the intensity information
from images, which can be insufficient to carry out a ro-
bust life-long visual localization. For this reason, we use
LDB in ABLE, because it also includes gradient compar-
isons that give a higher descriptiveness power. More specif-
ically, LDB is used in the ABLE-M and ABLE-P versions,
but in ABLE-S we compute our D-LDB descriptor in or-
der to take advantage of the valuable information provided
by the disparity obtained from stereo images, as shown in
Fig. 2(a).
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(a) Features used by the different versions of ABLE. Intensity and gradient in-
formation are computed by ABLE-M and ABLE-P. Besides, disparity is also in-
cluded in ABLE-S.

(b) Qualitative classification of description meth-
ods typically used in visual localization applications.
Vector-based vs Binary / Local vs Global.

Fig. 2 A visual representation about the global binary description performed by ABLE and the differences with respect to the state of the art.

Additionally, it must be noted that ABLE does not apply
a local description model, LDB and D-LDB are computed
as global binary descriptors in both cases. This approach
is computationally more efficient than local methods.
Moreover, some state-of-the-art algorithms for place
recognition have obtained remarkable results using global
description techniques, such as BRIEF-Gist (Sünderhauf
and Protzel, 2011), which calculates a global BRIEF
descriptor based on the Gist of scenes (Oliva and Torralba,
2006). Other similar proposals provide an acceptable
performance too, such as LBP-Gist (Campos et al,
2013) (based on LBP features (Ojala et al, 1996)) or the
Gabor-Gist algorithm (Liu and Zhang, 2012). Finally, there
are also global descriptors that consist of float-based or
vector-based representations of features, such as WI-SIFT
and WI-SURF (Badino et al, 2012) or HOG (Dalal and
Triggs, 2005), but similarly to the mentioned for the case of
local descriptors, they have a less efficient performance
compared to a global binary description, as we depict in
Fig. 2(b).

4 ABLE

ABLE is a mature research project whose final goal is per-
forming a life-long visual topological localization in a robust
manner and trying to hold the maximum efficiency along the
time. The progressive evolution achieved during the devel-
opment of our proposal can be seen in our recent publica-
tions (Arroyo et al, 2014a,b, 2015). Hereafter, we will ex-

plain the full method including the last contributions, which
will be validated with new tests.

In this final proposal, an illumination invariant
transformation is applied in the three ABLE versions, with
the aim of improving the results in long-term situations,
where lighting conditions are extremely variable. Besides,
sequences are now computed instead of single images in
all the versions, because it allows to enhance the visual
situational awareness of places. Apart from this, the
matching of binary features has been enhanced for all the
cases using an ANN search, which is more efficient for
similarity computation. Additionally, the panoramic image
matching is improved in ABLE-P with the application of
an optimized cross-correlation to associate panoramas.
Furthermore, the calculation of disparity is revised in
ABLE-S in order to obtain better results when the global
D-LDB descriptor is computed.

4.1 Monocular, Stereo or Panoramic Cameras?

As briefly introduced along Section 2, the visual topolog-
ical localization methods in the literature employ different
types of cameras for perceiving the environment: monoc-
ular, stereo or panoramic. Each approach has its pros and
cons, but the use of one or another camera usually depends
on the constraints of the specific application or problem. For
this reason, we have developed a solution which can take ad-
vantage of the valuable information provided by the images
of the different of cameras, with the aim of adapting our al-
gorithm to the best conditions for each case: ABLE-M for
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monocular images, ABLE-S for stereo images and ABLE-P
for panoramic images. The main characteristics and differ-
ences among the three ABLE versions are detailed in Ta-
ble 1.

Table 1 Differences among the properties of each ABLE version.
Qualitative assessments are represented by ??? for the best effective-
ness and the lowest memory consumption and computational costs.

ABLE-M ABLE-S ABLE-P

Camera Monocular Stereo Panoramic
Descriptor () Global LDB Global D-LDB Global LDB
Matching Simple corr. Simple corr. Cross corr.
Loop closure Unidirectional Unidirectional Bidirectional
Effectiveness ? ?? ???
Memory ??? ?? ?
Computation ??? ?? ?

The first notable difference is related to the image
description methodology used in each case. Although
the three versions use a global binary description,
ABLE-M and ABLE-P apply a LDB descriptor,
while ABLE-S computes D-LDB, with the aim of
adding the helpful disparity information provided by
stereo cameras to the description process. Disparity
calculation was typically performed in the D-LDB
descriptor using a stereo matching based on a standard
Semi-Global Block Matching (SGBM) (Hirschmuller, 2008),
but in this final approach we also implement a stereo
matcher that applies ELAS (Geiger et al, 2010) to
obtain more precise disparity maps, which improve the
effectiveness of ABLE-S in place recognition, as we will
demonstrate in the tests presented in Section 6.2.

In addition, there are differences in the way of
processing the similarity between places depending on
the ABLE version. More specifically, in ABLE-P each
panoramic image is divided into subpanoramas, which
are matched by using a cross-correlation technique,
achieving more accurate similarity distances between
a pair of panoramas. The main advantage of using this
approach is that bidirectional loop closures can be
detected over the panoramic images. This situation
appears when a place is revisited in an opposite direction.
In these cases, methods as BRIEF-Gist that computes
a simple correlation of subpanoramas can not identify
the bidirectional loop closures, because they do not take
advantage of the association of the different views taking
into account the visual perception in several directions
provided by the panoramic images, which is solved using
our cross-correlation of subpanoramas, as graphically
illustrated in Fig. 3. These observations about the benefits
of the approach proposed in ABLE-P for place recognition
using panoramic images are reinforced with the results
presented in Section 6.3.

Fig. 3 Differences between a simple correlation and a cross-
correlation to associate panoramas. The two panoramic images to be
matched in these examples correspond to a place revisited in an op-
posite direction (a bidirectional loop closure). It can be seen how the
best match between subpanoramas, obtained in the cross-correlation
applied by ABLE-P, has a much lower distance and is much more sim-
ilar than using a simple correlation.

Finally, there are other parameters related to the per-
formance of each ABLE version that are also qualitatively
described in Table 1. Obviously, the effectiveness of each
version in visual topological localization has a great depen-
dence on the amount of information provided by each type
of camera: ABLE-P obtains the best precision because it ex-
ploits the visual data acquired in all the possible directions,
ABLE-S also has a remarkable effectiveness because geo-
metrical information given by stereo cameras is used, but
ABLE-M is not as precise as the other two versions because
it only employs monocular cameras, which provide a worse
visual awareness of the environment. However, ABLE-M
has a better efficiency in memory and computational costs
due to the processing of a lower amount of data with respect
to ABLE-S or ABLE-P. This can be an advantage in sys-
tems that require a localization for long operating periods,
because in these cases a moderate consumption of resources
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is wished. All these qualitative assessments will be quanti-
tative demonstrated in the experiments explained along Sec-
tion 6.

4.2 Illumination Invariant Transformation of Images

One of the main problems in life-long visual topological
localization algorithms is the identification of places when
there are important illumination changes on scene. This
question has acquired a great interest in some works that
try to solve these issues in several difficult situations:
zones with shadows (Corke et al, 2013), dynamic lighting
environments (Carlevaris-Bianco and Eustice, 2014) or
night conditions (Nelson et al, 2015).

We also consider these lighting problems in our final so-
lution. For this reason, ABLE transforms images into an il-
lumination invariant color space, with the aim of refining
the description process in these troublesome situations, as it
was introduced in other previous approaches such as Upcroft
et al (2014); McManus et al (2014), where place recognition
is enhanced using this kind of transformation. According to
this, our implementation includes an initial stage to obtain il-
lumination invariance, which reduces the difficulties associ-
ated with changing lighting conditions, as exposed in Eq. 7:

I = log(G)−α · log(B)− (1−α) · log(R). (7)

In the previous formulation, R, G, B represent the color
channels of the computed image and I is the obtained il-
lumination invariant image. As presented in Eq. 8, α is a
parameter that is conditioned by the peak spectral responses
of each color channel (λR, λG, λB), which are typically avail-
able in camera specifications:

1
λG

=
α

λB
+

(1−α)

λR
. (8)

Consequently, α is a parameter which can be simply de-
termined, as explained in Eq. 9:

α =
( λB

λG
− λB

λR
)

(1− λB
λR
)
. (9)

For example, the PointGrey Flea2 camera used in
datasets such as the KITTI Odometry (Geiger et al, 2012)
has λR = 610nm, λG = 535nm, λB = 470nm, so in this case
α = 0.47. The calculation is analogue for other datasets.

As deduced from all the previous equations, illumination
invariant transformation is not an arduous or computation-
ally expensive process, but its application in the visual place
recognition algorithm contributes an extra robustness to our
method when lighting changes appear, as we shown in our
previous work (Arroyo et al, 2015).

4.3 Sequences instead of Single Images

The major part of the traditional state-of-the-art algorithms
proposed for visual topological localization are based on the
typical assumption that places are defined by a single image.
Actually, some of the most popular methods applied in vi-
sual loop closure detection follow this philosophy, such as
WI-SURF, BRIEF-Gist or FAB-MAP.

Nevertheless, more recent algorithms such as SeqSLAM
changed this assumption and considered the idea of identi-
fying places as sequences of images, with the aim of en-
hancing the situational awareness in long-term conditions.
For this reason, our current proposal also follows a similar
methodology, because it is more accurate than using single
images.

In this case, ABLE extracts binary codes as descriptors
of each individual image, but they are concatenated (++ ) to
build the final binary sequence (d), which corresponds to
a sequence of images. This is formulated in Eq. 10, where
k− i is equal to dlength, which is the length of the sequence
considered by the algorithm:

d=dIi ++dIi+1 ++dIi+2 ++ ...++dIk−2 ++dIk−1 ++dIk .(10)

According to this, dlength is an adaptable parameter that
mainly depends on the camera frame rate, as will be ex-
plained in the experiments carried out along Section 6.

Although some of our previous works (Arroyo et al,
2014a,b) do not take into account this concept, our final
approach applies sequences instead of single images in all
the versions of ABLE introduced for each type of camera.
Due to this, the effectiveness of our method has been
improved in life-long scenarios for the three versions,
because sequences of images provide more robustness in
localization across seasons, as we will show in the results
presented in Section 6.1.

4.4 Extraction of Binary Codes

The binary codes that form the final binary sequence, previ-
ously introduced in Eq. 10, are extracted from each image
using a global LDB descriptor (D-LDB in the case of the
stereo images processed by ABLE-S).

The first step before starting the extraction of binary
codes is to downsample the acquired images to 64x64
pixels. This size is also applied in the patch (p) considered
in the binary description. The reduction of the image size is
performed because high resolution images are not required
to carry out a robust visual topological localization, as it
was evidenced in works such as Milford (2012). Besides,
this strategy followed by ABLE allows to reduce memory
and computational costs without decreasing precision.
Additionally, downsampling the initial images implicates
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smoothing and interpolation over neighboring regions that
attenuate the negative influence of rotation and scale in
place recognition, as stated in Sünderhauf and Protzel
(2011).

After the computation of each image patch, the global
binary descriptor is extracted by processing the center of the
resized image patch as a keypoint without dominant rotation
or scale. The resultant binary code is adjusted to a dimen-
sion (n) of 32 bytes, which is supported by previous works
such as Arroyo et al (2014b). This value of n is fixed using
the random bit selection algorithm proposed in Yang and
Cheng (2014).

LDB and its derivatives are chosen as the core of
our global binary description method because these
features provide several advantages with respect to other
descriptors. First of all, LDB is not only based on intensity
comparisons, like other popular approaches such as BRIEF,
as shown in Fig. 2(a). This technique gives more robustness
to the description process thanks to the extra gradient
information. Apart from this, one of the main benefits
provided by LDB is that it computes the features using
a multi-resolution scheme, where different grids (2x2,
3x3, 4x4...) are applied to capture information at different
granularities, as explained in Yang and Cheng (2014). The
application of this multi-resolution approach alleviates the
dependence on the field of view suffered in visual place
recognition by proposals such as SeqSLAM, as it was
exhibited in Sünderhauf et al (2013) and will be confirmed
by some of the tests presented in this paper in Section 6.1
(see Fig. 5).

4.5 Matching of Binary Sequences

The similarity or distance between the previously processed
binary sequences is efficiently calculated by means of the
Hamming distance. The obtained values can be included in
a distance matrix (M) for analyzing them in loop closure
detection or for evaluation purposes, as explained in Eq. 11:

Mi, j = M j,i = bitsum(di⊕d j). (11)

In addition, POPCNT is a machine SSE4.2 instruction
which can be used for a faster matching of the binary se-
quences, since it allows to count the total number of bits that
are set to one in a more efficient way, as exposed in Muja
and Lowe (2012). We take advantage of this instruction for
increasing the speed of the simple correlation performed by
ABLE-M and ABLE-S in the calculation of similarity, as
shown in Eq. 12:

Mi, j = M j,i = POPCNT(di⊕d j). (12)

Besides, ABLE-P applies the cross-correlation graphi-
cally described in Fig. 3, which allows to detect bidirectional

loop closures in panoramic images. This is formulated in
Eq. 13 and Eq. 14, where similarity is computed for each
pair of sub-panoramas (m,n) corresponding respectively to
the panoramic images (i, j). The distances between all the
sub-panoramas are saved in a preliminary cross-correlation
matrix (C), where a minimum is calculated to obtain the final
value stored in M:

Ck,l =Cl,k = POPCNT(di,m⊕d j,n), (13)

Mi, j = M j,i = min(C). (14)

As a last contribution in our matching method, it must
be noted that we apply an ANN (Approximate Nearest
Neighbors) search based on the functionalities given by the
FLANN library (Muja and Lowe, 2012, 2014). The index
used in this search consists on a multi-probe LSH (Local
Sensitive Hashing).

This hashing technique is used due to the characteris-
tics of our binary codes, which are keys compatible with
this method and give a fast performance for our Hamming
matcher. The main idea behind the multi-probe LSH index
used in our ANN search is focused on systematically testing
multiple binary codes for the image queries in a hash table,
whose hash keys may not necessarily be completely identi-
cal to the hash value of the query vector. If we consider an
image query (q), the applied hash function (g(q)) is denoted
by the different hash slots (h) which are involved on it:

g(q)= {h1(q),h2(q),h3(q), ...,hk−2(q),hk−1(q),hk(q)}.(15)

Taking into account the previous definition, multi-probe
LSH searches for a sequence of a hash perturbation vector
(δi), formulated as follows:

δi = {δi1 ,δi2 ,δi3 , ...,δik−2 ,δik−1 ,δik}. (16)

Attending to Eq. 15 and 16, the algorithm sequentially
probes the different hash buckets {g(q) + δi}. Finally, a
score (si(q)) is computed to sort the perturbation vectors
with the aim of accessing the buckets in order of increasing
scores and easily obtaining the searched hash codes. The
score is calculated as shown in Eq. 17, where x j(δi j) is the
distance of q from the boundary of the slot h j(q)+δ j:

si(q) =
k

∑
j=1

x2
j(δi j). (17)

As demonstrated in Lv et al (2007), multi-probe LSH
achieves the same search quality with a similar time con-
sumption if it is compared to the conventional LSH. How-
ever, the difference resides in the number of hash tables,
which is reduced in an order of magnitude by multi-probe
LSH, and for this reason we chose this method as core of
our ANN search.
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5 Evaluation

The evaluation of our life-long visual topological
localization method is mainly based on analyzing the
performance of the different ABLE versions in datasets
where place recognition and loop closure detection can be
tested for monocular, stereo and panoramic images. We
also compare our approach against the main state-of-the-art
algorithms in long-term conditions, with the aim of
validating the effectiveness of ABLE in an objective way
and using a fair evaluation methodology.

5.1 Methodology

The designed methodology for testing ABLE performance is
principally based on precision-recall curves, which are cal-
culated from the distance matrices (M) obtained in each test.
Before starting evaluation, the distance values contained in
M must be normalized by following Eq. 18:

Mi, j =
Mi, j

max(M)
. (18)

After the previous step, M is thresholded for compar-
ing it against the ground-truth matrix (G) associated with a
specific dataset. In this respect, true positives (t p) are con-
templated if a positive of the thresholded M matches with a
positive of G in a temporal vicinity according to the frame
rate. False positives ( f p) are considered in the inverse situ-
ation, and false negatives ( f n) if a negative is found in the
thresholded M when a positive should appear. According to
these considerations, the values of precision and recall can
be calculated as exposed in Eq. 19 and Eq. 20:

precision =
t p

t p+ f p
, (19)

recall =
t p

t p+ f n
. (20)

The final precision-recall curve is processed by varying
the threshold value (θ ) in a uniform distribution between 0
and 1 and computing the associated values of precision and
recall in each iteration. In our tests, 100 values of θ are taken
in order to obtain well-defined curves.

Apart from evaluation purposes, the distance values reg-
istered in M can be used in real application for correcting
SLAM or visual odometry errors based on loop closure de-
tection (Caramazana et al, 2016). A threshold (θ ) must be
applied to discern if the similarity is sufficient to consider a
loop closure between two places, as stated in Eq. 21:

loop closure =
{

true if Mi, j < θ

f alse otherwise
(21)

It must be noted that adaptive thresholds can be also an
interesting option for adjusting them according to the evo-
lution of the environment conditions, as studied in some ap-
proaches such as Lee and Pollefeys (2014).

5.2 Datasets

The validation of the different ABLE versions is carried
out over several publicly available datasets. Concretely,
three datasets are used in our tests, where experiments are
focused on a specific ABLE variant in each case depending
on the type of camera available: ABLE-M in the Nordland
dataset (Sünderhauf et al, 2013), ABLE-S in the KITTI
Odometry dataset (Geiger et al, 2012) and ABLE-P in the
Oxford New College dataset (Smith et al, 2009). The
characteristics of each dataset are summarized in Table 2,
which presents information about the total length in
kilometers for the complete trip, the type of camera used
in recordings, image samples shown along the paper, the
number of registered images or frames jointly with their
properties and a final textual description about each dataset.

In this paper, ABLE is clearly validated in long-term
conditions, especially if we consider that a distance near to
3000 km is traversed over all the tests performed in this
case for life-long visual topological localization. Further-
more, several challenging situations appear in the different
datasets that are used in the experiments: seasonal changes,
illumination problems, perceptual aliasing, dynamic objects
on scene or unidirectional and bidirectional loop closures. In
addition, it must be noted that other datasets focused on life-
long localization in monocular images were considered for
previous experiments, which can be revised in Arroyo et al
(2015), such as the St Lucia dataset (Glover et al, 2010), the
Alderley dataset (Milford and Wyeth, 2012) or the CMU-
CVG Visual Localization dataset (Badino et al, 2012). How-
ever, we consider that in the present paper it is more rel-
evant to provide new results not only focused on several
datasets exclusively based on monocular visual localization,
but also on the stereo and panoramic cases. Hence, one dif-
ferent dataset is chosen for each type of camera.

5.3 Experiments

The provided tests are focused on comparing the different
ABLE variants against the main available state-of-the-art
algorithms: WI-SURF, BRIEF-Gist, FAB-MAP and
SeqSLAM. For evaluating WI-SURF and BRIEF-Gist,
we developed implementations based on the SURF and
BRIEF descriptors provided by the OpenCV libraries in
version 3.01. OpenFABMAP (Glover et al, 2012) is the
toolbox chosen for testing FAB-MAP, which is applied
in a standard configuration and properly trained. The
experiments for SeqSLAM are performed with the source
code provided by OpenSeqSLAM (Sünderhauf et al, 2013).
Besides, the parameters applied by the different ABLE
versions in the tested datasets are summarized in Table 3.

1 OpenCV is available from: http://opencv.org/
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Table 2 Main characteristics of the datasets used in the experiments presented in this paper.

Name Distance Main camera Samples No. images Description

Nordland 2912 km
Monocular

(1920x1080 px)
(25 fps)

See Fig. 1
3576688
in 4 seqs.

A train trip across Norway is registered four times, once in each
season. Video sequences are synchronized and field of view is
always the same. Ground-truth is available from GPS readings.

KITTI
Odometry 39.2 km

Stereo
(1226x370 px)

(10 fps)
See Fig. 2

44182
in 22 seqs.

22 sequences recorded across different car routes in Karlsruhe
(Germany). Perceptual aliasing is challenging in this dataset. A
ground-truth for loop closures is defined in Arroyo et al (2014a).

Oxford
New College 2.2 km

Panoramic
(2048x618 px)

(5 fps)
See Fig. 3

8127
in 1 seqs.

A dataset captured by a robot at the University of Oxford (UK).
It contains bidirectional loop closures. Stereo images are also
available. A ground-truth matrix is provided in the dataset.

Table 3 Standard parameters applied in the experiments depending on the dataset and the type of camera used in each case.

ABLE-M ABLE-S ABLE-P

Main dataset Nordland KITTI Odometry Oxford New College
Descriptor (d) LDB D-LDB LDB
Patch (p) 64x64 64x64 64x64 (each panorama)
Descriptor size (n) 32 bytes 32 bytes 32 bytes (each panorama)
Sequence length (dlength) 300 images 120 images 60 images
Alpha (α) [λR,λG,λR] 0.46 [620nm,540nm,470nm] 0.47 [610nm,535nm,470nm] 0.40 [610nm,540nm,460nm]
Threshold for loop closure detection (θ ) 0.2 0.2 0.2

6 Results

The wide set of results presented along this work is divided
into three categories for each type of camera. Moreover, the
computational costs are also discussed. These new tests in
life-long visual topological localization will corroborate the
satisfactory performance and efficiency of our method com-
pared to the state of the art.

6.1 Results for Monocular Cameras

The first results introduced for monocular evaluation are
depicted in Fig. 4. A comparison about the accuracy
of ABLE-M with respect to the main state-of-the-art
approaches is provided for the different seasonal changes
contained in the Nordland dataset. Here, it is confirmed how
the methods based on single images instead of sequences
have a much lower precision in long-term conditions.
For this reason, WI-SURF, BRIEF-Gist and FAB-MAP
considerably reduce their performance in these cases,
especially if their effectiveness is compared to the obtained
by SeqSLAM and ABLE-M in the six tests among all the
seasons. The differences between the precision of ABLE-M
and SeqSLAM are not so significant, but it can be seen
that our method has a slightly higher performance in the
major part of the cases. Besides, it is also remarkable that
the winter sequence is the most troublesome. The accuracy
of the algorithms is reduced due to the extreme changes

that the appearance of a place suffers when snow covers the
scene and illumination is also substantially variable.

The Nordland dataset is chosen for monocular tests
because it is the longest (≈ 3000 km) and most challenging
dataset currently available to the best of our knowledge.
However, it has a characteristic that can be advantageous
for the precision of some place recognition algorithms:
images are recorded with a static camera mounted on a
train, which always offers the same point of view. This
property makes this dataset propitious for the adequate
performance of methods such as SeqSLAM, which has a
great sensitivity to changes on the field of view. This was
proven in Sünderhauf et al (2013), where artificial changes
in the field of view of images are introduced in some
tests described in that paper. We decide to process new
experiments supporting this assumption, with the aim of
conducting an evaluation as fair as possible of our method.
The associated results are presented in Fig. 5, where
the following changes on the field of view are tested: a
translation of a 10%, a rotation of a 10% and a combination
of both. We perform these evaluations between the
sequences of winter and spring, because this is the worst
case for all the algorithms, as shown in Fig. 4(a).

According to Fig. 5, the changes on the field of view
(especially rotations) negatively affect to SeqSLAM and
ABLE-M, mainly if their curves are compared to the
obtained in Fig. 4(a). However, it is also evident that the
performance of SeqSLAM decreases much more than the
achieved by our approach in this case. The best behavior
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(a) Winter vs Spring. (b) Winter vs Summer. (c) Winter vs Fall.

(d) Spring vs Summer. (e) Spring vs Fall. (f) Summer vs Fall.

Fig. 4 Precision-recall curves for comparing the performance of ABLE-M against the main state-of-the-art methods in the complete Nordland
dataset. The four video sequences corresponding to each season are evaluated between them for all the algorithms. An illustrative frame from the
two video sequences matched in each test is shown above the precision-recall graphics, with the aim of visually understanding the complexity of
place recognition in each case.

of ABLE-M in these conditions is associated with two of
the properties about its description method, introduced in
Section 4.4. On the one hand, the multi-resolution scheme
applied by the global LDB features used in ABLE-M
mitigates the dependence on the field of view, with respect
to the approach considered by SeqSLAM, based on simple
image difference vectors. On the other hand, the negative
effects produced by scale and rotation are also slightly
alleviated with the initial image downsampling computed
by ABLE-M, due to the benefits provided by smoothing
and interpolation over neighboring zones. Finally, it must
be noted that the approaches based on single images instead

of sequences (WI-SURF, BRIEF-Gist, FAB-MAP) are
not represented in Fig. 5, because their low accuracy in
long-term conditions was sufficiently evidenced in Fig. 4.

Before ending this section about monocular results, it
must be noted that the length of the sequence of images ap-
plied by ABLE-M in the Nordland dataset tests is adjusted
to dlength = 300, which is a value contrasted in experiments
performed in our previous work (Arroyo et al, 2015). We use
an analogue value for the length of the sequences employed
by SeqSLAM in order to carry out an objective comparison.
This parameter is proportionally adaptable to the frame rate
for other datasets, as deduced from Table 3.
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(a) Winter vs Spring (with translation). (b) Winter vs Spring (with rotation). (c) Winter vs Spring (with rotation and transla-
tion).

Fig. 5 Precision-recall curves for comparing the performance of ABLE-M against SeqSLAM when translation and rotation effects are introduced
in the Nordland dataset (between the sequences of winter and spring). These new tests demonstrate that the proposal presented by ABLE out-
performs other algorithms based on sequences of images such as SeqSLAM, especially when the field of view is changing. It must be also noted
that both methods decrease its precision with respect to the case of an invariant field of view, but this is much more accentuated in the SeqSLAM
results than in the obtained by our final approach.

6.2 Results for Stereo Cameras

The experiments presented for stereo cameras are focused
on the KITTI Odometry dataset, which is selected for these
tests because it is a consolidated benchmark commonly
used in autonomous driving and robotics. In this case,
this dataset is not as long as the Nordland dataset chosen
for monocular tests, but it contains several challenging
situations for place recognition in long-term conditions,
such as perceptual aliasing between scenes, dynamic
objects in places and a considerable amount of loop
closures in the different recorded sequences (defined in the
ground-truth presented in Arroyo et al (2014a)).

The first test carried out in the sequence 06 of the
KITTI Odometry dataset is related to the performance of
our D-LDB features applied in the global description
approach proposed by ABLE-S. We check out the precision
of other descriptors as core of our method compared to
the application of D-LDB on it, as shown in Fig. 8. The
descriptors used in this comparison were described in
Section 3. They can be grouped into two main categories:
vector-based (SIFT, SURF, HOG) and binary (BRIEF,
BRISK, ORB, FREAK, LDB, D-LDB).

As deduced from the precision-recall curves presented
in Fig. 8, we decided to use LDB and D-LDB as core of our
description approach, because they achieve a higher accu-
racy for solving localization problems, especially if they are

compared to other state-of-the-art descriptors. In these re-
sults, it is also remarked that our D-LDB features are more
effective than LDB for stereo place recognition. This is due
to the addition of disparity information in the global descrip-
tion process provided by D-LDB. In this way, spatial infor-
mation about scene can be better captured, with the aim of
solving common life-long localization difficulties, such as
perceptual aliasing.

Fig. 8 Precision-recall curves for comparing the performance of
ABLE-S using different features as core for global description in the
sequence 06 of the KITTI Odometry dataset. D-LDB precision is also
evaluated using the different stereo matching methods implemented for
disparity calculation.
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(a) Sequence 00. (b) Sequence 05. (c) Sequence 13.

Fig. 6 Precision-recall curves for comparing the performance of ABLE-S against the main state-of-the-art methods in the most representative
sequences of the KITTI Odometry dataset. ABLE-S is tested using the different implementations of D-LBD depending on the stereo matching
method: SGBM or ELAS.

(a) Sequence 00. (b) Sequence 05. (c) Sequence 13.

Fig. 7 Loop closures detected by ABLE-S over the metric maps obtained from the most representative sequences contained in the KITTI Odometry
dataset. Image indexes are shown in the zones where loops start and finish to be detected, with the aim of allowing a comparison to the ground-truth
presented in Arroyo et al (2014a).

In the evaluations depicted in Fig. 6, the performance of
ABLE-S is compared against the main state-of-the-art algo-
rithms for visual topological localization. In this case, we
use the three sequences from the KITTI Odometry dataset
that contain a higher number of loop closures included in
the traversed route, which are the sequences 00, 05 and 13.

The methods based on single images (BRIEF-Gist,
WI-SURF, FAB-MAP) obtain better results in Fig. 6 than
in the monocular tests showed in Fig. 4, which is due to
the minor distance traveled in the sequences of the KITTI
Odometry dataset with respect to the Nordland dataset.
This is because the influence of using sequences instead
of single images is much more evident when a very large
amount of kilometers is processed, such as in the case of the
Nordland dataset. Apart from this, ABLE also outperforms
the SeqSLAM results in all the cases. More specifically,

the stereo version (ABLE-S) is more precise than the
monocular version (ABLE-M), because of the application
of disparity. As said in Section 4.1, a more sophisticated
stereo matcher based on ELAS is implemented in our final
approach for calculating disparity, which slightly improves
the effectiveness of ABLE-S with respect to the precision
obtained using the traditional SGBM stereo matcher. These
tests demonstrate the importance of the chosen algorithm
for disparity computation in D-LDB description, because
the usefulness of the spatial information captured by the
features has a great dependence on the quality of the
applied stereo matching method.

As a last contribution to the stereo tests, Fig. 7 presents
the loop closures detected by ABLE-S over the maps of the
KITTI Odometry sequences analyzed in Fig. 6. These re-
sults support one of the practical applications of our method,
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where loop closures can help to identify and correct errors in
visual localization tasks. In Fig. 7, loops are depicted when
the matched scenes exceed a certain similarity value in the
distance matrices, as deduced from Eq. 21 and the explana-
tions about loop closure thresholding given in Section 5. It
can be seen how all the loop closures are correctly identified
in the maps.

6.3 Results for Panoramic Cameras

The Oxford New College dataset is selected for the last ex-
periments carried out in this paper, which are focused on
ABLE-P. This dataset is not very long with respect to the
used in the previous tests, but it has been chosen because
it allows us to compare ABLE-P against the other two ver-
sions (ABLE-M and ABLE-S). This is possible because the
dataset is not only recorded with panoramic cameras, but
also with stereo.

In Fig. 9, results about the effectiveness of each final
ABLE version are contrasted against the obtained by the
main state-of-the-art proposals in the Oxford New College
dataset. Again, ABLE clearly outperforms the precision
yielded by algorithms such as WI-SURF, BRIEF-Gist,
FAB-MAP or SeqSLAM. However, the most important
conclusions are focused on the comparison between the
three ABLE versions. First of all, the difference between
the precision-recall curves obtained by ABLE-M and
ABLE-S is appreciable. Similarly to the results presented
in Section 6.2, in this case the application of stereo
information is also decisive to improve the performance
achieved by ABLE-M, due to the exploitation of the
disparity integrated in D-LDB, which in these tests
is definitively calculated using ELAS because of its
demonstrated better accuracy. Even so, the most significant
results are the provided by ABLE-P. The main reason of
its improved performance with respect to the rest of the
methods is that ABLE-P is the only algorithm that can
detect the bidirectional loop closures appeared along the
route, which are one of the most challenging characteristics
of the Oxford New College dataset. This is due to the
usage of cross-correlation for matching the subpanoramas
contained in the panoramic images, which allows to
clearly identify the bidirectional loop closures in these
cases, as justified in some of the explanations given along
Section 4.1 and in Fig. 3.

With the aim of demonstrating how ABLE-P detects
the bidirectional loop closures contained in the Oxford
New College dataset, Fig. 10 shows a representative part
of the distance matrices (M) obtained by the different
ABLE versions and the two best state-of-the-art methods
in this case (BRIEF-Gist and SeqSLAM), jointly with
the ground-truth matrix (G). In the different matrices,
unidirectional loop closures appear emphasized as

right-side diagonals ( ↘ ) and the bidirectional ones as
left-side diagonals ( ↙ ). According to this, it can be
seen that ABLE-P is the only method that represents the
bidirectional loop closures in M (see the inferior zone
depicted in Fig. 10(f) to check it out). Additionally, it is also
appreciable that the distance matrices obtained by ABLE
have less noise in the similarity measurements, because
perceptual aliasing is reduced thanks to the explained
contributions of our proposal.

Finally, the loops identified in Fig. 10(f) by ABLE-P are
marked over the corresponding part of the map of the Oxford
New College dataset in Fig. 11. M is thresholded by follow-
ing Eq. 21 to clearly distinguish the similarities associated
with a loop closure (see Fig. 11(a)). Progressive representa-
tions of the map are shown each time that one of the loops
is completed in the route. This valuable information can be
applied in localization tasks to correct the accumulated drift
commonly appeared in odometry-based systems along the
time.

Fig. 9 Precision-recall curves for comparing the performance of the
three ABLE versions (ABLE-M, ABLE-S, ABLE-P) against some of
the main state-of-the-art methods in the Oxford New College dataset.

Although the results presented in this paper compare
the three versions of ABLE in the Oxford New College
dataset, it must be noted that we have also carried out some
additional tests for evaluating the specific performance of
ABLE-P in other datasets based on panoramic images.
More specifically, in our previous work (Arroyo et al,
2014b), we conducted some experiments over the Ford
Campus dataset (Pandey et al, 2011), where our method
also demonstrated its satisfactory performance using
panoramas in an environment different to the provided in
the Oxford New College dataset.
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(a) M Ground-truth (G). (b) M using BRIEF-Gist. (c) M using SeqSLAM.

(d) M using ABLE-M. (e) M using ABLE-S. (f) M using ABLE-P.

Fig. 10 Distance matrices for comparing loop closure detection between ABLE versions and state-of-the-art methods in the Oxford New College
dataset. We only show a part of M for a representative subset between images 120 and 1910, because of the limitations of paper format.

(a) Thresholded M using ABLE-P. (b) Map after 1st lap (img. index = 449). (c) Map after 1st loop (img. index = 752).

(d) Map after 2nd loop (img. index =
1066).

(e) Map after 3rd loop (img. index =
1219).

(f) Map after 4th loop (img. index =
1920).

Fig. 11 Unidirectional and bidirectional loops progressively detected by ABLE-P over a part of the map in the Oxford New College dataset. We
only show a part of the thresholded M for a representative subset between images 120 and 1910, because of the limitations of paper format.
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6.4 Results about the efficiency of ABLE

Apart from the advantages related to the effectiveness of
ABLE in visual topological localization across seasons, the
efficiency yielded by our method is also important. For this
reason, in Fig. 12 we provide a graph where the evolution
of the processing times consumed by ABLE-M to match a
determined number of images is compared to the achieved
by some of the state-of-the-art algorithms. These times have
been obtained in tests over images of the Nordland dataset
using a standard computer with an Intel Core i7 2,40 GHz
processor and a 8 GB RAM.

Fig. 12 Comparison between the average processing times of
ABLE-M and some of the main state-of-the-art methods for image
matching along the time.

In Fig. 12, the evaluation considers a large-scale
matching of places until an amount of a million of images.
Due to the graph scale requirements, the average processing
times are only shown until a maximum of 20 seconds. The
curves obtained by SeqSLAM and WI-SURF exceed this
time limitation before arriving to the million of images,
because these methods have a much higher memory and
computational costs in image matching with respect to the
other methods, which are based on binary descriptors that
can be much faster matched by means of the Hamming
distance. In the case of the approaches that apply a binary
matching, BRIEF-Gist has a progressive increment of the
average processing times, because it is based on a linear
search. However, ABLE-M applies an ANN search using a
multi-probe LSH index, which decreases the accumulated
computational cost of matching the binary sequences with
the previously processed to a sublinear time in a large-scale
context. For instance, when 100000 images are matched,
the average processing time for BRIEF-Gist is 1.98 s,
and ABLE-M obtains 0.93 s. Nevertheless, in the case of
1000000 images, BRIEF-Gist achieves about 19 s, while
ABLE-M only needs 1.87 s, which clearly evidences the

high influence in the efficiency of our sublinear search.
ANN is used in the three ABLE versions, so the average
processing times presented by ABLE-M will be also
sublinear for the cases of ABLE-S and ABLE-P. Even so,
there are slight differences in the individual processing
times depending on the extra information that must be
computed by each method. In order to understand these
differences, we show Table 4, where the average times
per individual image description and matching in each
version are included. The description process has a higher
computational cost in ABLE-S because of the extra effort
that requires the calculation of the disparity. However,
the matching costs are the bottleneck of our system. In
this sense, the individual costs of a matching between
two images are more critical in ABLE-P, because the
cross-correlation of panoramas adds an extra computation,
as deduced from the times presented in Table 4.

Table 4 Comparison between the average processing times in millisec-
onds (ms) of each ABLE version for describing and matching an indi-
vidual image in the Oxford New College dataset. We also present times
for some of the main state-of-the-art works in order to compare them
against our proposals.

WI-SURF BRIEF-Gist SeqSLAM

Description 0.23 ms 0.04 ms 0.48 ms
Matching 1.74 ·10−3 ms 2.35 ·10−5 ms 3.63 ·10−3 ms

ABLE-M ABLE-S ABLE-P

Description 0.11 ms 7.11 ms 0.54 ms
Matching 2.29 ·10−5 ms 4.51 ·10−5 ms 5.71 ·10−4 ms

7 Conclusions and Future Works

Along this paper, our proposal for life-long visual
topological localization (ABLE2) has been extensively
justified, jointly with the description of its main
contributions, which are validated by a wide set of
experiments. The different final versions (ABLE-M,
ABLE-S, ABLE-P) constitute a relevant innovation in
visual place recognition and loop closure detection
fields, which are completely adaptable to several types
of cameras and can take advantage of the information
acquired by monocular, stereo and panoramic images in
each case. Besides, the three versions present in this paper
several new characteristics and ideas that have enhanced
the performance of our final system with respect to the
preliminary versions reported in some of our previous

2 More information, extra material, videos and open code (Arroyo
et al, 2016b) about ABLE are available from the website of the project:
http://www.robesafe.com/personal/roberto.arroyo/openable.html
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works (Arroyo et al, 2014a,b, 2015). These novelties
are the representation of places as sequences of images
instead of single images, the illumination invariance, the
matching based on an ANN search jointly with LSH or
the improvements in the disparity calculation of D-LDB,
among others.

Due to the described contributions, ABLE achieves a
satisfactory precision in long-term conditions. This is
corroborated by the exhibited practical applications and
exhaustive results, especially if our method is compared to
the main state-of-the-art algorithms, such as WI-SURF,
BRIEF-Gist, FAB-MAP or SeqSLAM. The efficiency of
our approach is also significant, mainly because of the
application of global binary features, which supply an
image description methodology with a low computational
cost and a fast matching capacity.

In future works, our research line will be extensible to
new concepts that could improve even more the accuracy of
these techniques in long-term situations, such as localiza-
tion across seasons. New alternatives recently followed in
visual place recognition could be applied, such as the usage
of CNNs (Sünderhauf et al, 2015; Arroyo et al, 2016a) or
semantic information (Drouilly et al, 2015; Mousavian et al,
2015). In this sense, large amounts of data will be essen-
tial to test these approaches, where very recent large-scale
datasets (Carlevaris-Bianco et al, 2016) could be interest-
ing to perform new experiments. In addition, more datasets
based on fish-eye and panoramic images could be also eval-
uated in future research, such as the IPDS (Korrapati et al,
2013) and Rawseeds (Ceriani et al, 2009) datasets.

Apart from this, the application of our topological lo-
calization proposal in new robotics trends is another area
of future interest. More specifically, geometric change de-
tection is a recent topic where these methods could help to
improve the current performance (Alcantarilla et al, 2016).
In any case, the future of the research line studied along this
paper is promising in several robotics fields.
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