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Abstract— The goal of this paper is to study some of the most
important WiFi signal variations, large and small scale variations
and how they affect to WiFi localization systems. Moreover, the
paper shows how to use Soft Computing techniques to deal
with these uncertainties in WiFi localization systems. This work
describes how to reduce uncertainty produced by small scale
variations in indoor environments using fuzzy techniques. Some
experimental results and conclusions are presented.

I. INTRODUCTION

Several applications, i.e. surveillance tasks, require knowing

the user location. This position can be determined by the user’s

device or by the environment. By knowing the user position

it is possible to interact with the user, guiding it through the

environment and implementing some tasks depending on the

area of interest.

During last years localization applications are growing using

different technologies. A great example is GPS (Global Posi-

tioning System) [1], which is the most used technology for this

purpose, car drivers usually use it to be guided through cities.

But this is only an example of the localization importance.

Actually, localization is applied at several areas. In fact,

there are projects that use localization systems in hospitals

which can locate doctors and equipment. Other systems are

used for medical assistance [2], inventory control at warehous-

es, robotics [3], etc.

As mentioned above, nowadays GPS is the most extended

technology for devices localization [1]. This technology can

locate devices with an error that varies from centimetres to 100

metres, but it does not work properly in an indoor environment,

or even in cities with high buildings.

So, it is necessary to find a complementary system for such

environments. There are some proposals for indoor localiza-

tion using infrared [4], computer vision [5], ultrasound [6],

laser [7] or radio frequency (RF) [8] based systems. Moreover,

there is an increasing interest in WiFi localization for these

environments using different algorithms.

One of the main advantages of this technology is its quickly

growing of coverage. There are WiFi Access Points (APs)

in most public buildings like hospitals, libraries, universities,

museums, etc. In addition, measuring the WiFi signal level

is free even for private WiFi networks. Consequently, WiFi

technology is a good choice for indoor global localization

systems.

WiFi localization systems use 802.11b/g network infrastruc-

ture to estimate a device position without using additional

hardware. This fact makes WiFi localization systems appro-

priate to be used in indoor environments where traditional

techniques do not work properly. To estimate a device position

the system measures the received signal level (SL) from each

AP by mean of a WiFi interface. SL depends on the distance

and the obstacles between APs and the receiver.

In work [9] the authors show a system that calculates the

distance to each AP using the received SL and then infers the

position by a triangulation algorithm. Unfortunately, RF signal

is affected by reflection, refraction and diffraction in indoor

environments. This effect, known as multipath effect, turns the

SL into a complex function of the distance.

To solve this problem, authors of [8] propose a WiFi

localization system based on a priori radio map, that stores the

received SL of each AP belonging to an interest region. This

system has two stages: training and estimation stages. In the

first one, a manual radio map is built. While in the estimation

stage a vector with received SL of each AP is created and

compared with the radio map to obtain the estimated position.

There are two main techniques to estimate the position:

deterministic and probabilistic. Usually, in the first one, the

environment is divided in cells and the position is obtained in

the estimation stage comparing the measures with the stored

pattern [8] [10]. In the other hand, probabilistic techniques

keep a probabilistic distribution over all positions [11]. The

last technique gets a better precision but with a high compu-

tational cost.

Deterministic way is a common choice for these systems.

The Nearest Neighbor algorithm is used to classify the device

position as it is shown in [8]. Usually, this algorithm is used

as baseline to compare the new methods.

With the aim of solving the WiFi SL measure problems in

indoor environments, we propose to use a WiFi localization

system based on fuzzy techniques to get a lower localization

error and to handle the signal measure uncertainty.

In this paper we use Fuzzy Classification to obtain the

estimated position. Fuzzy Logic (FL) is especially useful to

handle problems where the available information is vague,
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which is the typical situation in WiFi localization. There are

several advantages of using this kind of techniques instead

of classical methods. The most important are: the robustness

of FL which is able to deal with the uncertainty in the

environment and makes possible to infer the device position

without a high number of samples [12] [13] [14].

The rest of the paper is organized as follows: section 2

shows WiFi SL measure process and WiFi signal variations;

section 3 shows the developed fuzzy localization system; sec-

tion 4 describes the results obtained by our WiFi localization

system using fuzzy logic; and finally, section 5 shows some

conclusions and future works.

II. WIFI SIGNAL LEVEL MEASURE

In this section, the WiFi SL measuring process is described.

It is important to remark that WiFi technology works at a

2.4 GHz frequency, which is very close to the water resonant

frequency, therefore SL is affected by several variations. To

develop a WiFi localization system is important to consider

such variations which can affect to the system behaviour. Work

[15] studies the main variations that affect to WiFi signal.

Temporal variations: when the user is standing at a fixed

position, the signal strength measure varies over time. SL

variations can be upper to 10 dBm. These variations are

usually due to changes in the physical environment such

as people in movement.

Large-scale variations: signal strength varies over a long

distance due to attenuation of the RF signal. Large-scale

variations can be used by WiFi localization systems to

estimate the device position. In addition, propagation

models can make use of such variations to estimate the

distance between transmitter and receiver. Figure 1 shows

an example of APs signal level for different distances.

Small-scale variations: these variations happen when the

user moves over a small distance (in the range of wave-

length). This fact leads to changes in the average received

signal strength. For the 802.11b networks working at the

2.4 GHz range, the wavelength is 12.5 cm. These kinds of

variations are generated by multipath effect. Small-scale

variations introduce a lot of uncertainty in the system.

These variations make difficult to estimate the device

position due to they can be up to 10 dBm for positions

around the same location. Figure 2 shows small scale

variations for several positions around wavelength (these

positions will be explained later in section IV-C).

III. FUZZY LOCALIZATION SYSTEM

A Fuzzy localization system has been developed to deal with

the uncertainty derived from small scale variations. In classical

logic only two crisp values are admissible (0/1, false/true,

negative/positive, etc), what is a strong limitation when dealing

with real-world complex problems where there are many

important details which are usually vague. FL is a useful

tool to deal with these problems, because working with FL

everything is a matter of degree. The semantic expressivity of

FL makes easier the knowledge extraction and representation

Fig. 1. Signal Level at different distances

Fig. 2. SL Histogram for small scale variations

phase. In addition, it lets us combine under the same formalism

knowledge extracted from data and knowledge described by

an expert in natural language.

As shown in Figure 3, the developed system has three inputs

(SL measured from three different APs) and one output (the

position where the device is located). The three APs can be

selected automatically and it is not necessary to know their

position. The selection has been made looking for the APs,

in the samples group, with the best SL which are visible

from all the positions. The fuzzy inference system has been

implemented by means of the Mamdani’s method provided by

the Matlab Fuzzy Toolbox.

In addition, the SL input information has been represented

by Membership Functions (MFs) like the ones shown in

Figure 4. We have designed Strong Fuzzy Partitions (SFPs) for



Fig. 3. Mamdani Fuzzy System

Fig. 4. Designed membership function with SFPs and five linguistic terms

interpretability purpose. Moreover, each SFP has five linguistic

terms in order to obtain a good resolution to discriminate every

position from each other.

The limits of the MFs ared determined by the usual range

of the WiFi signal measure which normally varies from -99 to

-30 dBm. Then, the partitions are made up of five uniformly

distributed MFs with the attached linguistic terms: low (L),

medium-low (ML), medium (M), medium-high (MH) and high

(H).

Once the inputs have been designed they can be used to

define a group of linguistic rules. For simplicity, in this first

prototype, both variable and rule definitions are only based on

expert knowledge.

Defined rules can be used whenever the environment does

not suffer a great modification, i.e. when some access points

are switched off. In this case, the system should be adjusted,

but usually these things do not happen and the fuzzy system

is able to deal with slight modifications like people moving in

the environment or changes in the state of the doors.

IV. IMPLEMENTATION AND RESULTS

This section describes the test bed environments used in

this work, some implementation features and the experimental

results obtained on the designed tests.

IV-A. Test bed Environment

The environments to test the fuzzy localization system

were established on the Polytechnic School of University of

Alcalá (UAH) and on the European Centre for Soft Computing

(ECSC) premises.

The layout of UAH environment is shown in Figure 5.

It has a surface of 60 x 60 metres with 4 laboratories and

32 offices. There are 54 APs distributed over the whole

environment. For simplicity, the samples were achieved in the

fourth corridor, because the environment is symmetrical from

the main diagonal.

Fig. 5. UAH Environment

The layout of ECSC environment is shown in Figure 6. It

has a surface of 49 x 9 metres with 4 offices. There are 6 APs

distributed over the whole environment.

Fig. 6. ECSC Environment

IV-B. Implementation

The tests have been performed with a laptop computer using

an Orinoco PCMCIA Silver Wireless, Linux Kubuntu 8.04,

Wireless Tools v29 and Matlab 2008a.

SL measures are obtained by the WiFi interface installed in

the laptop. This interface scans the APs close to the device.

Samples are got at 4 Hz, which is the highest frequency that

the interface supports.

IV-C. Small scale measures

A group of 300 samples small scale variations measures

have been performed to test the fuzzy localization system.

Several measures of WiFi signal level are acquired at different

positions with distances around the wavelength (12.5 cms at



2.4GHz) between each one. They have been performed as

detailed below:

A grid of 12.5 cm x 12.5 cm divided in 1 cm side squares

has been created. This grid is shown in Figure 7. This

way, the positions where the device should be placed to

make the different measures are clearly identified.

Initially, the device is placed at position A0 (Figure 7)

and 300 samples are collected. This position is taken as

the reference position (λ).

Fig. 7. Small scale grid - Position A0

From position λ, new measures are carried out in three

different directions (Figure 8) to check the small scale

variation effects:

1. Horizontal: SL are measured on λ (A0), λ + 3cm

(A3), λ+6cm (A6), λ+9cm (A9), λ+12cm (A12)

positions. These positions are shown with circles in

Figure 8.

2. Vertical: SL are measured on λ (A0), λ + 3cm

(D0), λ+6cm (G0), λ+9cm (J0), λ+12cm (M0)

positions. These positions are shown with diamonds

in Figure 8.

3. Diagonally: SL are measured on λ (A0), λ +

3
√

2cm (D3), λ + 6
√

2cm (G6), λ + 9
√

2cm (J9),

λ + 12
√

2cm (M12) positions. These positions are

shown with squares in Figure 8.

Moreover, these measures have been taken at different

locations. These positions should be properly classified by the

fuzzy localization system without mistakes among small scale

positions.

IV-D. Results

This section shows the results achieved in this work. To test

the fuzzy localization system two data sets has been created,

one of them using all the points described in section IV-C and

the other one using only the centered position (G6).

For each environment two rule bases are designed, the first

one consider only the center of the grid and the second one

regards all the measures in the grid. They are described in

Fig. 8. Small scale positions

TABLE I

FUZZY SYSTEM RULES UAH (CENTRE)

Position AP1 AP2 AP3

L L MH

1 ML L MH

ML L H

L L H

ML ML H

ML ML MH

2 M L H

M ML H

M ML MH

M M M

3 ML MH M

ML M M

M MH M

Tables I and II for UAH environment and III and IV for ECSC

environment. Where L, ML, M, MH, H are the linguistic terms

for low, medium low, medium, medium high and high SL.

UAH Environment: the best classification rate was

99.65 % for rules obtained with all small scale positions

and 10 samples means and 82.57 % with center position

and 4 samples means. These results are shown in Table

V. Moreover, these results are compared with the results

obtained with Nearest Neighbour (NN) algorithm, which

are shown in Table VI. The fuzzy system obtains better

results than the NN system.

ECSC Environment: the best classification rate was

99.66 % for rules obtained with all small scale positions

and 10 and 4 samples means. These results are shown in

Table VII. The NN results are shown in Table VIII, this

Table shows that the fuzzy system overwhelms the NN

results.

It is important to highlight that acquisition frequency of

WiFi interface is 4Hz, so the results doing means of 4 samples

or without doing means are a little worse, but it is only needed



TABLE II

FUZZY SYSTEM RULES UAH (ALL)

Position AP1 AP2 AP3

1 ML L H

L L H

M ML MH

M ML H

M L MH

2 M L H

ML ML MH

ML ML H

ML L MH

M M M

3 ML MH M

ML M M

M MH M

TABLE III

FUZZY SYSTEM RULES ECSC (CENTRE)

Position AP1’ AP2’ AP3’

ML M ML

ML M L

ML ML ML

1’ ML ML L

L M ML

L M L

L ML ML

L ML L

2’ H M ML

3’ M MH L

M H L

TABLE IV

FUZZY SYSTEM RULES ECSC (ALL)

Position AP1’ AP2’ AP3’

ML M ML

ML M L

ML ML ML

1’ ML ML L

L M ML

L M L

L ML ML

L ML L

H M ML

2’ H M L

H MH ML

H MH L

M MH L

3’ M H L

MH MH L

MH H L

TABLE V

FUZZY CLASSIFICATION RESULTS (UAH)

Data Knowledge Number of samples mean Classification Rate

1 99.35 %

All Positions 4 99.58 %

10 99.65 %

1 81.76 %

Center Position 4 82.57 %

10 82.34 %

TABLE VI

NN CLASSIFICATION RESULTS (UAH)

Number of samples mean Classification Rate

1 63.08 %

4 66.49 %

10 64.19 %

to spend one second or less measuring at the same place. A

comparative of all the results can be seen in Figures 9 and

10. As it can be seen, in the worse case the classification rate

is around 82.5 % for rules obtained with a center position in

UAH environment and around 96.5 % with rules obtained with

all the small scale positions in both environments.

ECSC environment results are better than UAH environment

results because in the first one there are less APs. A high

number of APs introduces another effect called co-channel

interference which makes the environment even noisier. More-

over, at ECSC environment there are fewer walls what reduces

multipath effect. This fact makes ECSC results better than

UAH’s ones.

TABLE VII

FUZZY CLASSIFICATION RESULTS (ECSC)

Data Knowledge Number of samples mean Classification Rate

1 96.01 %

All Positions 4 99.66 %

10 99.66 %

1 95.92 %

Center Position 4 99.66 %

10 99.66 %

TABLE VIII

NN CLASSIFICATION RESULTS (ESCS)

Number of samples mean Classification Rate

1 82.46 %

4 85.94 %

10 86.38 %



Fig. 9. Comparison of fuzzy system results (UAH)

Fig. 10. Comparison of fuzzy system results (ECSC)

V. CONCLUSIONS AND FUTURE WORKS

In this work an fuzzy localization system has been pre-

sented. Our work demonstrates that using Soft Computing

techniques is a useful and robust way to solve the traditional

WiFi localization problems.

The uncertainty generated by small scale variations has

been minimized with the designed fuzzy localization system.

The position estimation error has been reduced to 0.34 %

considering ten samples. Furthermore, system can estimate the

device position with one sample obtaining a maximal error of

3.65 %. This allows decreasing the processing time because

it is not necessary to waste time acquiring more samples and

averaging them during the localization stage.

A high-level layer is being developed to select the zone

where the device stays for applying the designed fuzzy system.

Thus, device localization is possible in wide areas decreasing

the environment complexity to a few positions.
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