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Abstract. This paper describes a monocular vision-based Adaptive Cruise Con-
trol (ACC) System in the framework of Intelligent Transportation Systems
(ITS) technologies. The challenge is to use a single camera as input, in order to
achieve a low cost final system that meets the requirements needed to under-
take serial production.

1 Introduction

A monocular imaging device (a single FireWire digital camera) is deployed to pro-
vide “indirect range” measurements using the laws of perspective. Some previous
developments use available sensing methods such as radar [1], stereo vision [2], or a
combination of both [3]. Only a few works deal with the problem of monocular vehi-
cle detection using symmetry and color features [4], or pattern recognition techniques
[5]. In the current work, the searching space is reduced in an intelligent manner in
order to increase the performance of the detection module. Accordingly, road lane
markings are detected and used as the guidelines that drive the vehicle searching
process. The area contained by the limits of the lanes is scanned in order to find vehi-
cle candidates that are passed on to the vehicle recognition module. This helps reduce
the rate of false positive detections. In case that no lane markings are detected, a basic
area of interest is used instead covering the front part ahead of the ego-vehicle. The
description of the lane marking and vehicle detection systems is provided below,
together with some graphical results,

2 System Description

Lane Tracking

The system is divided in three modular subsystems with specific functions. The
first subsystem is responsible for lane detection and tracking, as well as lane crossing
monitoring. Images obtained from the camera are processed and clothoid curves are




fitted to the detected markings. The algorithm scans up to 25 lines in the area of in-
terest, from 2 meters in front of the camera position to below the horizon. The devel-
oped algorithm implements a non-uniform spacing search that reduces certain unsta-
bilities in the fitted curve. The final state vector is composed of 6 variables [7] for
each line on the road: coy, €, Covs Civs Xo» Po, Where ¢o, and ¢y, represent the clothoid
horizontal curvature parameters, ¢,, and ¢, stand for the clothoid vertical curvature
parameters, while x, and P, are the lateral error and orientation error, respectively,
with regard to the centre of the lane. The clothoid curves are then estimated based on
lane marking measurements using a Kalman filter for each line. These lines conform
the area of interest. Figure 1 depicts a sequence of images in which the result of the
lane tracking algorithm is overprinted on the road images.

Fig. 1. Lane tracking example in a sequence of images. The green lines represent the estimated
lines of the road. The example also depicts the error between the left wheel of the car the the
left lane (left), the error between the right wheel of the car and the right lane (right), the radious
of curvature of the road estimated at a lookahead distance of 50m (R), and the maximum rec-
ommended velocity to bend the curve (V) according to the radious of curvature.

Car Detection and Recognition

The area of the image contained between the lines that represent the lane is
scanned in order to look for candidate vehicles along the lane as depicted in figure 2.
Car detection is performed in the areas limited by lane markings. Based on character-
ics of shape, size and position, among others, candidates are selected. Each one of
the candidates is then divided into five different subareas, that are then processed
independently. For each subarea of the candidate, a support vector machine (SVM)
[6] has been trained, using the tool ‘TsetBuilder’ we have developed. The areas are
validated independently, and another SVM determines whether the outputs of the first
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SVMs represent those of a valid cadidate. Candidates are tracked using a Kalman
filter. Figure 3 shows the result of the detection and tracking algoritm.

Fig. 2. Sequential vehicle candidates searching along the detected lane
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Fig. 3. Vehicle tracking example in a sequence of images.

The distance between the ego-vehicle and the preceding vehicle along the lane be-
comes the input to the Adaptive Cruise Control System.
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