
Indoor Robot Navigation using a POMDP based on 

WiFi and Ultrasound observations 

M. Ocaña, L. M. Bergasa, M. A. Sotelo and R. Flores 

Department of Electronics 

University of Alcala 

Alcalá de Henares, 28805 Madrid, Spain 

{mocana,bergasa,sotelo,flores}@depeca.uah.es

Abstract - . This paper presents a robot navigation system 

for indoor environments using a Partially Observable Markov 

Decision Process (POMDP) based on WiFi signal strength and 

ultrasound observations. The paper represents the first one in 

using WiFi sensor readings as an observation in a POMDP. We 

present an algorithm based on an EM-SLAM that we called 

WSLAM (Wifi Simultaneous Localization And Mapping) that 

is able to learn the observation and transition matrix in 

autonomous mode. With this algorithm we obtain a minimum 

calibration effort. We demonstrate that this system is useful to 

navigate in indoor environments with a real robot. Some 

experimental results are shown. Finally, the conclusions and 

future works are presented. 

Index Terms – indoor navigation, Markov Process, POMDP, 

WiFi observation, autonomous learning system WSLAM. 

I. INTRODUCTION

 The boom in wireless networks over the last few years 

has given rise to a large number of available mobile tools 

and their emerging applications are becoming more and 

more sophisticated by year. Wireless networks have become 

a critical component of the networking infrastructure and 

are available in most corporate environments (universities, 

airports, train stations, tribunals, hospitals, etc) and in many 

commercial buildings (cafes, restaurants, cinemas, shopping 

centres, etc). Then, new homes are slowly starting to add 

WiFi services in order to enable mobility to perform many 

routine tasks, in the known as intelligent houses. There are 

even emerging some projects about WiFi enabled cities as 

Paris, Barcelona, etc. 

 The recent interest in location sensing for network 

applications and the growing demand for the deployment of 

such systems has brought network researchers up against a 

fundamental and well-known problem in the field of the 

robotics as is the localization. Determining the pose 

(position and orientation) of a robot from physical sensors is 

not a trivial problem and is often referred to as “the most 

important problem to providing a mobile robot with 

autonomous capabilities” [1].  Several systems for 

localization have been proposed and successfully deployed 

for an indoor environment. Examples include infrared-based 

systems [2], various computer vision systems [3], ultrasonic 

sensors and actuator systems [4], physical contact based 

actuator systems [5] and radio frequency (RF) based 

systems [6]. 

 Many mobile robot platforms use wireless networking 

to communicate with off-line computing recourses, human-

machine interfaces or others robots. Since the advent of 

inexpensive wireless networking, many mobile robots have 

been equipped with 802.11b wireless Ethernet. In many 

applications, a sensor from which position can be inferred 

directly without the computational overhead of image 

processing or the material expense of a laser is of great use. 

Many robotics applications would benefit from being able to 

use wireless Ethernet for both sensing position and 

communication without to add new sensors in the 

environment. 

 WiFi location determination systems use the popular 

802.11b network infrastructure to determine the user 

location without using any extra hardware. This makes these 

systems attractive in indoor environments where traditional 

techniques, such as Global Positioning System (GPS) [7] 

fail. In order to estimate the user location, wireless Ethernet 

devices measure signal strength of received packets. This 

signal strength is a function of the distance and obstacles 

between wireless nodes and the robot. Moreover, the system 

needs one or more reference points (Access Points) to 

measure the distance from. Unfortunately, in indoor 

environments, the wireless channel is very noisy and the 

radio frequency (RF) signal can suffer from reflection, 

diffraction and multipath effect, which makes the signal 

strength a complex function of distance. To overcome this 

problem, WiFi location determination systems uses a priori 

radio map (wireless-map), which captures the signature of 

each access point at certain points in the area of interest.  

These systems work in two phases: training phase and 

estimation phase. During the training phase, the system 

constructs the wireless-map. In the estimation phase, the 

vector of samples received from each access point is 

compared to the wireless-map and the “nearest” match is 

returned as the estimated user location. 

 WiFi location estimation techniques are divided into 

deterministic and probabilistic techniques. In the first one 

the physical area making up the environment is first divided 

into cells. Location is performed in the estimation phase 

selecting the most likely cell in order to determine which 

cell the new measurement fits best [8]. On the other hand, 

probabilistic techniques construct a probability distribution 

over the targets location for the physical area making up the 

environment. This last technique provides more precision 

with computational overhead. Some recent and 

representative works have appeared in this line. In [9] the 

authors utilize a Bayesian belief network to derive a 

posterior probability distribution over the target’s location. 
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In [10] a probabilistic approach using recursive Bayesian 

filters based on sequential Monte Carlo sampling is 

proposed. In both cases a laptop has been used for the 

localization tests and the best accuracy obtained is about 1.5 

meters. 

 Typically the Bayesian approach is applied in the case 

when we have a grid-based representation of the 

environment. Another alternative for modelling the 

environment is with a topological map. In this case the 

localization is based on the fact that the robot automatically 

identifies nodes in the map from geometric environmental 

information. 

 For a global navigation system design, in which the 

objective is the guidance to a goal room and some low level 

behaviour perform local navigation, a topological 

discretization is appropriate to facilitate the planning and 

learning tasks. POMDP models provide solutions to 

localization, planning and learning in the robotic context. 

These models use probabilistic reasoning to deal with 

uncertainties, very important in the case of WiFi localization 

sensors, and a topological representation of the environment 

to reduce memory and process time of the algorithms. 

 In this paper, we present a probabilistic navigating 

system for a robotic platform in indoor environments using 

a POMDP based on WiFi signal strength and ultrasound 

measures. Firstly, we present an introduction to POMDP 

navigation systems and then we propose our POMDP based 

on WiFi and ultrasound observations. We experimentally 

demonstrate that the system performs well in real 

application. Also we present an algorithm based on an EM-

SLAM that we called WSLAM. The WSLAM algorithm is 

able to learn the observation and transition matrix in 

autonomous mode minimizing the calibration effort. Finally 

we extract conclusions about it. 

II. INTRODUCTION TO POMDP NAVIGATION SYSTEMS THEORY

 While in a Markov Decision Process (MDP) the 

environment observation is free of uncertainty, in the real 

robotic systems, there are some uncertainties associated to 

their sensors observations. The MDP considers that only the 

effect of the actions has uncertainty. 

 When a MDP realizes an execution steps series and it 

goes along a different states (s0, s1, ...,sn) executing an 

actions series (a0, a1, ...,an), the probability of being in a st+1

state in the t+1 execution step is obtained as equation (1). 

( ) ( )tt1+ttt00001+t a,s|sp=a,s,...,a,s,a,s|sp        (1) 

 This expression indicates that the current state (st+1)

depends only on the before state (st) and the before action 

(at) is known as Markov Property.

 When a noisy sensor such as the WiFi signal strength is 

used, then observation with uncertainty are obtained from 

the sensors. This case is called as a partial observability. 

 The POMDPs are mathematic models that permit to 

characterize this type of systems. A POMDP is defined by 

the same elements than in a MDP: S (states set), A (actions 

set), T (transition function), R (recompense function); and 

also the next elements: O is the observations set (o O) and 

 is the observation function [11]. 

 A POMDP doesn’t know its real state because the 

observation has uncertainty. A POMDP maintains a belief 

distribution called Bel(S) or Belief Distribution (Bel) over 

the states to solve it. This distribution assigns to each state s

a probability that indicates the possibility of being the real 

state. This is the main reason to divide the control stage of a 

POMDP in two blocks, as can be seen in Figure 1: 

 1) State estimator: the input of this block is the current 

observations and its output is the Bel. This block obtains the 

probability over all possible states. 

2) Politics: the input of this block is the current Bel and 

its output is the action to perform. This block obtains the 

optimal action to perform in the next execution step to 

maximizing the recompense (R).

Environment 

Observation Action 

State 

estimator 

Politics 

Robot 

Bel 

Fig. 1 POMDP structure 

 The Belief Distribution must be updated whenever a 

new action or observation is carried out. When an action a

is executed and a new observation o is taken, the new 

probabilities became: 

( ) ( ) ( )

Ss
1t

t S's,sBel×a,s|'sp×'s|op×=)'s(Bel    (2) 

 In the context of robot navigation, the states of the 

Markov model are the localizations (or nodes) of the 

topological representation of the environment. Actions are 

local navigations behaviours that the robot executes to move 

from a state to another, and observations are perceptions of 

the environment that the robot can extract from its sensors. 

In this case, the Markov model is partially observable 

because the robot may never know exactly which state it is 

in. To solve the POMDP model EM algorithm is used. 

III. DESIGN OF OUR POMDP NAVIGATION SYSTEM

 In this section we describe the design of our navigation 

system using a POMDP based on WiFi and ultrasound 

observations, this design include: the environment 

representation, the states set, the observations type selection, 

the possible actions of the robot and the transition and 

observation matrix. 

A. Environment representation

 In a topological representation of the environment, the 

discretization degree is the more important parameter to 

select because the process time depends directly from it. 

 In the topological map the nodes should be useful for 

the robot patrol application. In this case the robot must be 

able to navigate in an autonomous mode inside the 

corridors. The robot must be able to stop in front of all the 

office doors in order to come in the rooms. This last 
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maneuver will be carried out in a teleoperated mode. As it’s 

shown in Figure 2 for an environment example, the 

corridors are discretized into coarse-grained regions (nodes) 

of variable size. The limits of these nodes correspond to any 

changes in lateral features of the corridor (door, opening or 

piece of wall).With this background we have selected two 

types of nodes: office nodes (nodes that are in front of the 

offices rooms) and extreme nodes (nodes that are at the end 

of the corridor). The extreme sensor could to have a 

connection with a corridor in the left or in the right or with 

an ending room. 

 Figure 2 shows an example of the environment 

discretization and its topological representation. The 

extreme nodes are represented as a square and office nodes 

are represented as a circle. 

Fig. 2 Example of environment discretization and 

its topological representation 

B. States set 

 With this topology, states of the Markov model are 

directly related to the nodes of the topological graph. Two 

states are assigned to each corridor node, one for each of the 

two main orientations (forward, backward) that the robot 

can adopt during corridor following. We denote as forward

direction to the direction from the 0 node to the 14 one and 

backward in the opposite direction. 

C. Actions set 

 The actions set has been selected to produce transitions 

from one state to another correspond to local navigation 

behaviors of the robot. We assume imperfect actions, so the 

effect of an action can be different of the expected one (this 

will be modeled by the transition model T). 

 The action set is very simple in our application owing 

to the configuration of the states and the local navigation 

system. Table I shows the action set. 

TABLE I 

ACTIONS SET

Action Symbol Function States where it’s 

possible to execute 

Follow

corridor 

aF To continue through the 

corridor to the next state 

Office nodes 

No

operation 

aNO Used as a directive in the 

goal state 

Office and extreme 

nodes

Turn 

around 

aT To change the navigation 

direction 

Extreme nodes 

Turn right aR To turn 90º to the right Extreme nodes 

Turn left aL To turn 90º to the left Extreme nodes 

D. The observations 

 We select two kinds of observations in our model, the 

first one is the WiFi signal received measure observation 

(obswifi) and the second one is the ultrasound observation 

(obsus).

 The obswifi used is obtained as the mean value of 60 

samples of the signal strength, received in the WiFi robot 

interface, from all APs. This filtered is carried out in order 

to minimize the high noise of the WiFi signal measures. The 

number of samples has been obtained in a experimental way 

for optimal localization. The obswifi is then divided in N

different observations (obswifiAP1, obswifiAP2, ..., obswifiAPN)

one observation for each access point. 

 The mean signal is then rounded to integer value in 

order to obtain a discrete space of values. The possible 

values that can be obtained from the WiFi interface range 

from 0 to -99dBm, but we have changed the sign of the 

measure to obtain a useful observation to index in the 

observation matrix. 

 The obsus used is obtained from the ultrasound sensors. 

Four different observations are established: door in the left, 

door in the right, door in both sides and wall in both sides. 

In this manner the possible values are discrete and useful to 

index the observation. Figure 3 shows the combinations for 

the obsus and the codified values associated.

(a) obsus=0 (b) obsus=1 

(c) obsus=2 (d) obsus=3 

Fig. 3 Possible combinations for obsus: (a) door in left side, (b) door in 

right side, (c) door in both sides and (d) no doors detected 

E. Sensor fusion 

 Observations from the WiFi and the ultrasound sensors 

are complementary. The first one obtains an estimation of 

the global localization and the second one obtains a good 

estimation of the local environment. The fusion of these 

observations will produce a good observability of states. 

 POMDP provide a natural way for using multisensorial 

fusion in their observations models ( s|op ) by mean of 

Bayes rule. Because these are independent observations, the 

observation model can be simplified in the following way: 

s|obsusps|obswifip...s|obswifip

s|obsus,obswifi,...,obswifips|op

APN1AP

APN1AP
   (3) 

 At the equation (3) o  is a vector composed by two 

types of observations: WiFi and ultrasound. 

F. Actions uncertainty model 

 The actions uncertainty model represents the real errors 

or failures in the execution of the actions. The transition 

function T incorporates this information to the POMDP. 
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 In our case, T is a matrix that represents the probability 

of reaching the state st+1 when the robot is in the state st and 

it has executed the action at.

 The matrix dimensions are n_est x n_est, where n_est is 

the total states number on the topological map. 

 If the action has no uncertainty, the robot executes an F

action (“Forward”), the robot advances to the next state, this 

is the ideal case. In a real situation can appear some errors 

that introduce uncertainty in the actions. Some of them can 

be: 

 1) If a person is in the hollow of the door and he is 

blocking the depression of the door, the local navigator shall 

detect a depression with a width less than a door and then, 

the local navigator shouldn’t validate it as a door. The error 

in this case is called FF (“Forward-Forward”), advance two 

states instead of one. This case can be repeated in two or 

more doors, then the error will be called FFF (for two doors 

blocked) FFFF (for three doors blocked) and so on. 

 2) If somebody leaves and object in a corridor with the 

same width that a door, the local navigator shall validate the 

object as a door. This error is called NO (“No-Operation”), 

the robot doesn’t reach the next door. 

G. Observations uncertainty model 

 The observations uncertainty model represents the real 

errors or failures of the sensor systems (ultrasound ring and 

WiFi interface). The observation function  incorporates 

this information to the POMDP. 

 In this work,  is a matrix for each observation (seven 

for the WiFi observations and one for the ultrasound one). 

The matrix dimensions are n_est x obs_values, where 

obs_values is the possible observation values on the current 

state.

 The ultrasound observation uncertainty is bound to the 

same cases than in the actions uncertainty. 

 For the WiFi observations, the error sources are more 

complex. In indoor environments the WiFi signal is affected 

by different factors: 

 1) Reflections, refractions, and diffractions: that in 

indoor environments are knows as multipath fading. 

 2) Water resonant frequency: the WiFi technology is 

working in 2.4GHz, and this is the water resonant 

frequency, therefore, all persons in the environment can 

modify the signal strength received. 

 3) Free band frequency: we also remark that this 

frequency is in the free band frequency where several 

applications are working, such as: Bluetooth technology 

very common in wireless keyboards and mice. 

 Due to these factors the signal strength measure can be 

largely modified respect to the ideal value and this variation 

changes as function of the time. A deep study of these 

factors has been carried out by the authors in [12]. 

H. Training method for obtaining the transition and 

observation matrixes 

 In a lot of real systems using POMDPs, the values of 

the transition and observation matrixes are obtained with a 

simple deduction or with a priori expertise known 

[13][14][15]. 

 In our case we use the ability of our low level controller 

to build an autonomous learning system. The robot 

navigates in autonomous mode with the ultrasound 

information only and with the initial state known storing the 

actions in the training action set, at each transition the robot 

obtains the WiFi and ultrasound observations, these 

information represent the training observations set. After 

that in an off-line stage we execute the SLAM based on 

Baum-Welch algorithm (EM algorithm) using the training 

sets in order to yield the transition and observation matrixes. 

We have called this technique WSLAM (Wifi-SLAM). 

 This process constitutes a learning phase in which the 

robot learns the transition and observation matrixes. Once 

this phase has finished a tracking phase is executed to track 

the robot using the before matrixes. 

I. Politics 

 There are different algorithms to solve the selection of 

the ideal action to execute in each state. In a POMDP the 

problem is more complex than in a MDP because we don’t 

know the current state. In a POMDP we only maintain a 

belief distribution. 

 In [13][14] they solve the underlying MPD and then 

apply some different methods to select the optimal action. 

 In this work we use the Most Likely State (MLS) 

method to select the optimal action because the global 

observation, that provides the WiFi sensor, normally obtains 

a belief distribution with a maximum in the real state. This 

method selects the optimal action associated to the most 

probable state of the belief distribution (4). 

( ) ))s(Belmaxarg(*=Bel=a SMLS            (4) 

IV. EXPERIMENTAL RESULTS

 First of all we describe the test-bed used for our 

navigation system and then we present some experimental 

results for the training and tracking phases to validate the 

proposed navigation system with the real robot. 

A. Test bed 

 The test-bed was established on the 3rd floor of the 

Polytechnic School building, in the Electronic Department, 

at the University of Alcala. The layout of this zone is shown 

in Figure 4. It has dimensions of 60 m by 60 m with about 

44 different rooms, including offices, labs, bathrooms, 

storerooms and meeting rooms.  

Fig. 4 Test bed environment. 3rd Floor of the Electronic Department 

Target of our Navigation 

System
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 With a circle we remark our target test-bed. We 

suppose that the all results obtained in this area could be 

applied to the all environment, because the building and the 

WiFi Access Points (APs) are symmetrically distributed. 

 Seven Buffalo APs (WBRE-54G) were installed at the 

locations indicated in Figure 4, five APs were connected to 

omnidirectional antennas and 2 APs (AP3 and AP7) were 

connected to antennas of 120 degrees of horizontal beam-

width. The APs acts as the wireless signal transmitters or 

base stations. 

 As mobile robot we have used a Pioneer 2AT of 

Activmedia robotics (Figure 5) with the following 

configuration: an embedded computer with a Pentium III 

850MHz, a 16 ultrasound sensor ring, one Orinoco 

PCMCIA Gold wireless card with an omnidirectional 

Buffalo antenna placed above the robot. The operating 

system is Linux Red Hat 9.0, we modified the wireless tools 

of Jean Tourrilhes [16] and the patch of Moustafa A. 

Youssef for the Orinoco driver [17]. 

Fig. 5 Real robot used to test the navigation system developed 

B. Training phase 

 In order to obtain the parameters of the POMDP 

(observation and transition matrixes) we have trained the 

system in an automatic way during nine training sets. We 

have compared the results of applying the SLAM-EM 

algorithm using Ultrasound observation, WiFi observation 

and WiFi+Ultrasound observations. 

 For the Ultrasound observation experiment, the results 

obtained aren’t good. If we give the initial state to the 

system the algorithm converge with a 85% of true locations 

but the algorithm is not able to recover from a lost of state; 

if we don’t give the initial state to the algorithm, this only 

estimates a 20% of the true locations. 

 For the WiFi observation experiment (WSLAM) if we 

give the initial state to the system, the algorithm converges 

with a 100% of true locations and the algorithm is able to 

recover from a lost of state; if we don’t give the initial state, 

the algorithm estimates a 95% of the true locations. 

 If we use the algorithm with WiFi and Ultrasound 

observations, the ratings experiment a slightly improvement 

compared with the results using only WiFi observations. 

This difference could increase in case of there were a lot of 

people walking in the environment. 

 Figure 6 shows part of the results of these experiments 

without giving an initial state to the algorithm. 
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Fig. 6 Results of the training phase

C. Tracking phase 

 We have tracked the robot’s route in several 

experiments. The results obtained up to date are described in 

the following. 

 First we have programmed a destination without give 

the initial state. The experiments that we have done are: 

 1) We have initialized the Bel as a uniform distribution 

and then we have tracked the route of the robot with the 

ultrasound observation, with the WiFi observation and with 

the both. In the first case the robot never achieves the target, 

in the second and the third case the robot achieve the target 

with a 95% of success. 

 2) We have initialized the Bel with weighted values in 

the places where the probability to initiate the robot is 

highest. With the ultrasound observation, the robot achieved 

the target in a 20% of the cases. With both observations the 

results were about 95% of success. 

 To check that the system is robust as function of time, 

we programmed several chained targets. The robot was 

navigating during 3 hours and we obtained a few 

localization errors as can be seen in Table II. 

TABLE II 

RESULTS FOR SEVERAL CHAINED TARGETS

  Number Percentage 

Direct path 26 65% Successful

Indirect path 12 30% 

Incorrect

target 

1 2,5% Failures 

Loops 1 2,5% 

 “Direct path” means that the target is reached following 

the ideal trajectory while “Indirect path” means that the 

target is reached after recovering maneuver. 

 The most remarkable feature of the system is not its 

successful performance itself that its ability to recover from 

observation failure situations as can be seen in Table II. 

 It’s important to note that with the WiFi global 

observation added to the POMDP the algorithm converges 

in a few execution steps, around of 1 or 2 steps, while with 

the ultrasound observation only, the algorithm converges in 

a very higher number of execution steps (more than 30 

steps).

WiFi antenna 
PTZ camera 

Ultrasound 

ring 

Embedded 

computer 
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 As an example of the real application that we used for 

the tracking phase, we have represented in our control 

interface (Saphira) a color circles for the offices nodes and 

color squares for the extreme nodes. When the belief 

distribution is larger than 0.9 in the estimated state, then the 

color of the circle/square is green; when the Bel has a value 

between 0.3 and 0.9 the color is yellow, and when the Bel is 

lower than 0.3 the color is red. With this color is easy to 

track the robot. Figure 7 shows a sample of the control 

program. 

Fig. 7 Sample of the control program

V. CONCLUSIONS AND FUTURE WORKS

 In this paper, we have presented a navigation system 

for indoor environment using a POMDP based on WiFi and 

ultrasound observations. According to the authors 

knowledge this is the first work that uses this kind of 

observation in a POMDP. 

 We present an autonomous algorithm to obtain the 

parameters of the POMDP. In this way we obtain the WiFi 

and ultrasound environment map with a minimum effort. 

 The probabilistic approach of the WiFi observation 

matrix models perfectly the noise of this sensor, because the 

WiFi observation is affected for several factors. 

 Adding these global observations to a POMDP we 

demonstrate that the localization algorithm converges faster 

than if we only use an ultrasound sensor. 

 With our system we have obtained a global navigation 

system that is useful in real robotic applications. 

 In the future, we propose to apply the system to obtain 

the WiFi map for a different mobile platform such a PDA 

carried by a man. 

 We will try to enhance the algorithm to be faster than 

actual, and then we will propose taking WiFi observation 

only in the interesting states, such as extreme nodes, 

obtaining a faster and stronger algorithm. 
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