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Abstract— The framework of this paper is the robotics nav-
igation inside buildings using WiFi signal strength measure.
This navigation is achieved using a Partially Observable Markov
Decission Process (POMDP). In the localization phase we used
WiFi signal strength and Ultrasound measures as observations.
The localization system works in two stages: map construction
and localization stage. The map construction stage usually
requires a great effort, therefore in this paper we address the
problem of minimizing this calibration effort using an automatic
training method. We describe the method based on Simultaneous
Localization And Mapping (SLAM) techniques and in a robust
local navigation task. This automatic method is compared with
a manual method to obtain a deterministic map. Also we
demonstrate that using this one in a on-line training stage the
system is able to adapt the WiFi map to the variations of the WiFi
signal measure. Additionally, we analyze the optimal parameters
for this automatic training system. The system has been tested
in a real environment using two commercial robotic platforms.
Some experimental results and the conclusions are presented.

I. INTRODUCTION

The recent interest in location sensing for wireless network

applications and the rising demand on the deployment of

such systems has brought network researchers up against a

mainly and well-known problem in the field of the robotics,

the localization.

To find the pose (position and orientation) of a robot from

physical sensors is not a trivial problem and is often referred

to ”the most important problem to provide a mobile robot with

autonomous capabilities” [1]. Several systems for localization

have been proposed and successfully deployed for an indoor

environment. These systems are based on: infrared sensors

[2], computer vision [3], ultrasonic sensors [4], laser [5] or

radio frequency (RF) [6]. Within the last group we can find

localization systems that use WiFi signal strength measure.

WiFi localizations systems take advantage of the boom

in wireless networks over the last few years. The WiFi

networks have become a critical component of the networking

infrastructure and are available in most corporate environ-

ments (universities, airports, train stations, tribunals, hospitals,

etc) and in many commercial buildings (cafes, restaurants,

cinemas, shopping centres, etc). Therefore these localization

systems can determine the device location without any extra

hardware in the environment. It makes these systems attractive

for indoor environments where traditional techniques, such as

Global Positioning System (GPS) [7], fail.

In order to estimate the robot location, these systems

measure the signal strength of received packets in wireless

Ethernet interface. The signal strength depends on the distance

and obstacles between wireless nodes and the robot. Moreover,

the system needs more than one base stations or Access Points

(APs) to measure the distance from them to the device. Using

these measures they can apply a triangulation algorithm to

infer the estimated position [8].

Unfortunately, in indoor environments, the wireless channel

is very noisy and the RF signal can suffer from reflection, dif-

fraction and multipath effect, which makes the signal strength

a complex function of distance [6]. To solve this problem,

several WiFi location determination systems use a priori radio

map (WiFi signal strength map), which captures the signature

of each AP at certain points in the area of interest [9] [10] [11].

These systems work in two phases: training and estimation.

During the training phase, the radio map is built in a previous

setup normally achieved in manual way. In the estimation

phase, the vector of samples received from each access point

is compared to the wireless-map and the ”nearest” match is

returned as the estimated user location. The problem is that

this method involves an enormous calibration effort because

the observations are manually obtained.

For surveillance robots navigation over huge indoor envi-

ronments design, in which the objective is to guidance the

robot to a goal room and if some low level behaviours are

used to perform local navigation, a topological discretiza-

tion is appropriate to facilitate the planning and learning

tasks. A POMDP model provides solutions to localization,

planning and learning in this robotic context. These models

use probabilistic reasoning process to deal with uncertainties,

very important in the case of WiFi localization sensors, and

a topological representation of the environment to reduce

memory planing easybility and process time of the algorithms

In this paper we present an improved WiFi navigation

system based on POMDP. The localization stage of our

system uses a priori radio map. In this work we compare

the map automatically obtained, using a robot moving in the

environment in autonomous way and SLAM techniques, with

a deterministic map obtained in manual mode. We demonstrate

that the proposed automatic calibration method improves the

manual one and then manages the adaptability of the map,

very important in a WiFi system.

The rest of the paper is organized in the following sections:
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Section 2 provides a description of the POMDP navigation

system. Section 3 explains the implementation of the WiFi Si-

multaneous Localization And Mapping (WSLAM) algorithm.

Section 4 provides the description of the reducing calibration

effort method. Section 5 shows the implementation and some

experimental results, as well as a description of the used test

bed. Finally, the conclusions and future work are described in

Section 6.

II. INTRODUCTION TO A POMDP NAVIGATION SYSTEM

In this section we provide a resume of our POMDP system

which was explained by the authors in [12].

When a robot moves across an environment executing

several actions (at), in execution step t, and it has free of

uncertainty in the environment observation, we can modelize

this system as a Markov Decision Process (MDP). The MDP is

a mathematic model that permit characterize robotics systems

without noise in the environment observation. The MDP

considers that only the effect of the actions has uncertainty.

When a MDP achieves some execution steps and it goes

along a different states (s0, s1 . . . sn) executing some actions

(a0, a1 . . . an), the probability of being in a st+1 state in the

t + 1 execution step is obtained using equation 1.

p(st+1|s0, a0, s1, a1, . . . , st, at) = p(st+1|st, at) (1)

The actions uncertainty model represents the real errors or

failures in the execution of the actions. The transition function

T incorporates this information to the MDP. In the discrete

case, T is a matrix that represents the probability of reaching

the state st+1 when the robot is in the state st and it has

executed the action at.

There is a recompense function R for each state s and action

a. The robot reaches the maximun value of the recompense

function when it reaches the target state travelling through the

ideal trajectory and executing the ideal actions.

Although MDP considers that the environment observation

is free of uncertainty, in the real robotic systems, there are

some uncertainties associated to their sensors observations.

These are more significant when the observations are provided

by the noisy WiFi sensor [13].

The POMDPs are mathematic models that permit to char-

acterize these noisy systems. A POMDP is defined by the

same elements than in a MDP: S (states set), A (actions set),

T (transition function), R (recompense function); and then it

adds the following elements: O (observations set (o ∈ O)) and

ν (observation function).

A POMDP doesn’t know its real state because the un-

certainty of the observation. A POMDP maintains a belief

distribution called Bel(S) or Belief Distribution (Bel) over

the states to solve it. This distribution assigns to each state a

probability that indicates the possibility of being in the real

state. This is the main reason to divide the control stage of a

POMDP in two stages, as can be seen in Figure 1:

1) State estimator: the inputs of this block are the current

observations and its output is the Bel. This block

calculates the probability over all possible states.

2) Politics: the input of this block is the current Bel and

its output is the action to perform. This block obtains

the optimal action to perform in the next execution step

to maximize the recompense (R).

Fig. 1. Partially Observable Markov Decission Process (POMDP)

The state estimator block is known as localization system.

This updates the Belief Distribution when a new action or

observation is carried out. In the robotics context, these con-

ditions usually are simultaneous. When an action a is executed

and a new observation o is taken, the new probabilities became

as it is shown in equation 2.

Belt(s
′) = η · p(o|s′) ·

∑

s∈S

p(s′|s, a) · Belt−1(s), ∀s′ ∈ S

(2)

In the context of robot navigation, the states of the Markov

model are the localizations (or nodes) of the topological rep-

resentation of the environment. Actions are local navigations

behaviours that the robot executes to move from a state to

another, such as move forward (aF ), turn around (aT ), turn

to the left (aL) and turn to the right (aR). The observations

are perceptions of the environment that the robot can extract

from its sensors that in our case are obtained from the WiFi

(obsWIFIAP x
) and Ultrasound (obsUS) sensors. In this case,

the Markov model is partially observable because the robot

never may exactly know the state where the robot is. To

solve the POMDP model we have used the WiFi Simultaneous

Localization And Mapping (WSLAM) in order to obtain

the WiFi observation function and, an extension of the EM

algorithm to obtain the Ultrasound observation function.

Observations from the WiFi and the Ultrasound sensors

are complementary. The first one obtains an estimation of

the global localization and the second one obtains a good

estimation of the local environment. The fusion of these

observations will produce a good observability of states.

POMDP provides a natural way for using multisensorial fusion

in their observations models (p(
→
o |s)) by mean of Bayes

rule. Assuming that the observations are independent, the

observation model can be simplified as in the following way:

p(
→
o |s) = p(obsWiFi1, . . . , obsWiFix, obsUS |s) =

= p(obsWiFi1|s) · . . . · (obsWiFix|s) · p(obsUS |s)
(3)

In the next sections we provide a description of the

techniques that we have used to obtain a reduction in the

calibration stage effort and how it is posible to adapt the radio

5260

Authorized licensed use limited to: Univ de Alcala. Downloaded on July 20, 2009 at 10:38 from IEEE Xplore.  Restrictions apply.



map provided with this technique to the WiFi signal strenght

measure variations.

III. WIFI SIMULTANEOUS LOCALIZATION AND MAPPING

(WSLAM)

This section presents the implemented WSLAM algorithm

to automatically provide a WiFi radio map that represents the

observation function O. The environment is divided in certain

discrete positions or nodes s ∈ S, where S is the total number

of nodes. Nodes are coarse-grained regions of variable size

in accordance with the environment topology and its centres

are separated by more than 80 cm. This simplification obtains

a reduction in the computation time and it’s appropriate to

minimize the WiFi small scale effect [13]. This effect happens

due to the chaotic variations of the received WiFi signal when

the robot moves over a small distance (order of wavelength).

The method consists of two different phases:

1) In the first one the training data are obtained. These can

be obtained in a manual or automatic mode.

2) In the second phase the WSLAM algorithm is executed

over the loaded data.

Both steps should be executed only one time for each

environment as long as the environment doesn’t change. Once

the WiFi radio map is obtained can be used in the localization

stage of the POMDP.

During the training stage the robot travels through the envi-

ronment executing local autonomous motion actions (at), and

halting in the centre of the nodes (st), where t represents the

execution step. At each node the robot stores the observations

of the WiFi signal strength measures (obsWiFiAPx t
), received

from all x environment APs.

In order to minimize the WiFi measure error, each AP

observation is achieved using the mean value of 60 consecutive

samples. We have empirically demonstrated that this value is

the optimum for obtaining few errors in the localization phase

with a minimum number of samples. The observed values

mean are rounded from 0 to 99 because they correspond with

the 0 to -99dBm measure range in the WiFi interface. Equation

4 shows the observation and action training set during t
execution steps.

obsWiFi
t = {obsWiFi1, . . . , obsWiFit}

at = {a1, . . . , at}
training set = {obsWiFi

t, at}
(4)

Where the observation obsWiFiz is the tupla shown in

equation 5, and z is a value between 1 and t execution steps.

obsWiFiz = {(obsWiFiAP1, . . . , obsWiFiAPx)z} (5)

The stored observations at each node and the executed

actions through the different trials represent the training data

set and they constitute the inputs for the WSLAM algorithm

that will be executed in the second stage.

The WSLAM is a particularization of the Baum-Welch

algorithm, also known as EM (Expectation-Maximization),

using WiFi observations and a novel setup process. The EM

algorithm is a hill-climbing process that iteratively alternates

two steps:

• The E-step (expectation step) calculates the state evo-

lution, it estimates the robot localizations based on the

currently available map parameters.

• The M-step (maximization step) uses the estimated tra-

jectory, computed in the E-step, to recalculate the map

in order to obtain the maximum likelihood parameters.

When the map improves it is easier to estimate the

evolution of the states.

The E-step re-estimates, at each iteration, the robot trajec-

tory, using the Belief distribution over all states, the training

data set and the available map. The Bel is obtained through

two distributions: αz(s) and βz(s), as we show in equation 6.

Belz(sz|training set, O) = η · αz(sz) · βz(sz), ∀sz ∈ St

αz(sz) = p(sz|obsWiFi1, a1, . . . , obsWiFiz , O)
βz(sz) = p(sz|az, . . . , ot, at, O)

(6)

Where η is a normalization factor. The α distribution is

forwarded computed. It is the probability of reaching a state

when the robot has executed several actions and has moved

through some several states. The β distribution is backward

computed. It represents the probability of travelling through

some several states when the robot has started at certain state

and it has executed several actions.

The M-step re-adjusts the map parameters according to the

previous map and the states evolution estimated in the E-step.

This adjust is carried out using a frequency count as we show

in equation 7. Where the γz(s) distribution is computed as the

product of αz(s) and βz(s) distributions. It represents the best

state estimation.

p′(o|s) =

∑
z=1...t|ot=o

γz(s)

∑
z=1...t

γz(s)
∀s ∈ S (7)

In order to adjust the initial distribution we use equation 8

and the transition matrix, as it is shown in equation 9. The

transition matrix defines the probability of reaching a state s′

when the prior state is s and the robot executes an action a.

p(s0 = s) = γ0(s) (8)

p(s′|s, a) =

∑
z=1...t−1|at=a

γz(s, s
′)

∑
z=1...t−1|at=a

γz(s)
∀s, s′ ∈ S and ∀a ∈ A

(9)

One of the main problems in SLAM algorithms is the

parameters initialization. The WSLAM introduces an impor-

tant improvement for this purpose, because the initialization

of the WiFi observations map is carried out using a coarse

radio propagation model. The WiFi radio signal propagates

through the air following a radio propagation model. This

model is very difficult to obtain for indoor environments due

to the multipath suffering and the temporal variation of the
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WiFi signal. Although an exact and general model doesn’t

exist, an approximated model can be used to initialize the

WiFi observation map. After that, a reduced searching range

according to the model deviation respect the real propagation

can be employed. In our case we use a generic log distance

model as the shown in equation 10.

RSL = TSL + GTX + GRX + 20log(4π)− 10nW logd − Xa

(10)

Where the RSL is the received signal level, TSL is the

transmitted signal level, GTX and GRX are the transmitter

and receiver antennas gain respectively, λ is the wavelength

(12.5cm for the 2.4GHz of the WiFi signal), nW is a factor

that depends on the walls effect, Xa is a random variable and

d is the distance between the emitter and the receiver

IV. REDUCTION OF THE CALIBRATION EFFORT

The methods to obtain the WiFi training data set involve

an enormous calibration effort because at the moment obser-

vations in each node are manually done or using the robot

in teleoperated mode. To solve this problem, we propose an

automatic WiFi and Ultrasound training data set extraction

method based on a robust and autonomous local navigation

task that carries out the robot along the centre of the corridors

and it’s able to stop in the centre of the found nodes in its

route using odometry and ultrasound sensors [14].

Using this local navigation task and a modification of the

proposed POMDP, we can obtain the WiFi training data set

with a low effort. The modification of the POMDP that we

propose is to use only Ultrasound observations instead of

WiFi+Ultrasound ones, because Ultrasound observations are

very robust in the local context.

In our case using the robustness of our low level controller

and Ultrasound observations in the POMDP we can build

an autonomous learning system. The robot navigates in au-

tonomous mode with the initial state known (we set to one

the first known state in the Bel). The robot stores the actions

executed at each transition (at)and the WiFi and Ultrasound

observations (obsWiFi, obsUS) in the training data set. Then

the WSLAM algorithm is executed to obtain the WiFi radio

map with a low effort.

This method represents an off-line training stage previous

to the robot navigation through the environment. In this work

we have enhanced the system with a new on-line training

stage, in this case when the robot navigates in the environment

with different missions the executed actions and the taken

observations are stored. All this data in a trial form a frame.

When the number of frames is enough to obtain the radio map,

the WSLAM algorithm is executed to update it. This update

can be ran while the robot is navigating in a parallel process

without needed to stop the robot. We use an impact factor,

lower than in the off-line stage, to soften the map update. With

this on-line stage we obtain a flexible and adaptable system.

One of the main parameter to determine in this calibration

method is the optimal number of frames that it is necessary

to obtain a correct radio map. To determine this parameter

we have used the entropy and the divergence factor proposed

by the authors in [15]. The entropy determines what is the

uncertainty degree or scatter of the different states within the

Bel, using the expresion shown in equation 11.

H(Bel) = −
∑

Bel(s) �=0

Bel(s) · log(Bel(s)) (11)

The divergence factor determines what is the uncertainty

degree of the Bel using the equation 12, where dmax is the

difference between the first and the second maximum value in

the Bel, pmax is the maximum value in the Bel and m is the

number of states.

∼

D = 1 −
(dmax + pmax) · m − 1

2 · m − 1
(12)

The divergence factor takes one value when there is no

uncertainty in the Bel, that means that this state has the

maximum probability, and zero when there is the maximum

uncertainty over the states, in this case the probability of each

state is 1/m.

V. IMPLEMENTATION AND RESULTS

In this section we describe the test-bed used for our WiFi

navigation system, some characteristics of the system imple-

mentation and then some experimental results to validate the

proposed improvements of the navigation system with the real

robots.

A. Test-Bed

The Test-Bed environment was established on the 3rd floor

of the Polytechnic School building, concretely in the corridor

number 4 of the Electronic Department at the University of

Alcala. The layout of this zone is shown in Figure 2. It has

a surface of 60m x 60m, with about 50 different rooms,

including offices, labs, bathrooms, storerooms and meeting

rooms.

Fig. 2. Test-bed. Department of Electronics (Corridor 4)

Seven Buffalo Access Points (APs) (WBRE-54G) were

installed at the all environment. Five APs were connected to

omnidirectional antennas and two APs (AP3 and AP7) were

connected to antennas of 120 degrees of horizontal beam-

width. The APs act as wireless signal transmitters or base

stations.

For simplicity, the tests were achieved in the corridor 4. This

was discretized into 11 nodes placed at the positions indicated
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in Figure 2. For each node some radio measures from all the

APs in the two main orientations of the corridor were taken

to obtain the WiFi radio map, and to extract the results of the

WiFi POMDP navigation system.

B. Implementation

In order to obtain experimental results of this improved

WiFi navigation system we have used two robots as shown

in Figure 3. These robots are called BART (Basic Agent for

Robotics Tasks) and SIRA (Spanish acronym for Assistant Ro-

botic System). The two robots are based on the 2AT platform

of Activmedia Robotics. For SIRA a metallic structure was

added in order to carry a laptop and to increase the height of

the camera. They have the following configuration: Orinoco

PCMCIA Gold wireless card, Linux Red Hat 9.0 operating

system, wireless tools, a 16 ultrasound sensor ring and a

SONY pan-tilt-zoom camera.

Fig. 3. Real prototypes used in the results extraction

The architecture of the global WiFi POMDP navigation

system is shown in Figure 4. The main blocks are:

• The robot sensors provide two observations (WiFi and

Ultrasound) and they are the inputs of the training block

and localization system. The actions commanded by the

planifier are executed through the local navigation system

by the actuators of the robot (the four engines connected

two by two).

• The localization system uses the observations provided

by the robot and the priori map to obtain the estimated

position over the all states (Bel).

• The planning system has two inputs, the Bel over the all

states and the commanded state that it is introduced by

the final user. The commanded action is used as input of

the training system and the local navigation system.

• The training system is used to obtain the priori radio map

and the POMDP parameters, such as the transition and

observations matrices, from the training data system.

• The Man-Machine Interface (MMI) based on a friendly

graphical interface built in Java, in a typicall client-

server application. This interface works under Linux and

Windows through a TCP-IP connection to the robot server

(in our case Saphira).

• The local navigation system is in charged of executing

the actions commanded by the planning system.

C. Results

First we have compared the automatic training method with

the manual one. We trained it in a manual mode by mean

Fig. 4. WiFi POMDP navigation system

of positioning the robot along the several states and then the

robot took the WiFi signal samples to calculate the mean

value at each state. This needed 3 hours of an intensive

man-work. With the automatic training system, the user only

needed to launch the local navigation application with a slight

supervision during about 1 hour to ensure that the task was

carried out correctly by the robot. We repeted this automatic

method for 8 times more and the robot never failed. This

demonstrates that the calibration effort has been enormously

reduced.

We have obtained the optimum number of frames needed

for the radio map construction. We had the robot navigating

around the environment for two hours in an automatic way.

Then, we obtained the mean entropy of the training data set

using from 1 to 7 frames (figure 5(a)) and the localization

error percentage during the training stage (figure 5(b)). We

concluded that with a number of frames higher than 5, the

mean entropy value is low (0.12 · 10−3) and the localization

error percentage is lower than 0.5%, therefore 6 is the optimal

frames number for the training data set.

(a) Mean entropy (b) Error Percentage

Fig. 5. Optimal frames number in the training data set

Once we know what is the optimal number of frames, we

obtaine the map through the two methods, first we obtain the

probabilistic radio map with the WSLAM method and then we

obtain a deterministic map using the manual method. Figure 6

shows the both maps, the probabilistic one (figure 6(a)) and the

deterministic one (figure 6(b)). These maps represent, in gray

scale, the probability of obtaining a WiFi signal level measure
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TABLE I

LOCALIZATION ERROR

Method Localizations True False Error Percentage(%)

Manual 50 38 12 24

WSLAM 50 46 4 8

in a certain state of the environment (i.e. p(o|s)), where white

color represents a 0% probability and black color represents

a 100%.

We used both maps in the WiFi navigation system proposed

in this work. The robot was navigating through 50 states and

the statistics of localization error was obtained. As you can

see in Table I, with the WSLAM method the localization error

percentage during the navigation was lower than 10%, while

with the manual one the error was up to 20%.

(a) Probabilistic map (b) Deterministic map

Fig. 6. Maps obtained with WSLAM and manual method

Finally we tested the on-line training system. The robot

BART was training in the environment using 6 frames in order

to obtain the WiFi radio map. We used this priori radio map

in the robot SIRA to navigate, obtaining a major localization

error number than with BART robot. This demonstrates that

the map obtained with one robot is not usefull for another

robot with a different estructure. To improved the results of

this test, we used the on-line training method with SIRA, it

was training during differents missions and it was updating

the radio map. Finally we improve the results up to 90% of

true locations.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we have presented an enhancement WiFi

navigation system. This navigation system uses an automatic

training method to obtain WiFi radio map usefull in the

localization process of a POMDP.

We have obtained the optimal number of training frames to

be used with this automatic training system. This effectively

diminishes one of the most daunting practical barriers to wider

adoption of this type of localization measurement technique.

The WiFi map got through this technique is a probabilistic

representation of the WiFi signal evolution in some certain

discrete positions of the environment along the time and we

demonstrate that it is more usefull than a deterministic map.

The on-line training stage has demonstrated that the system

is more flexible to the WiFi signal strength measure variations.

On the other hand we have demonstrated the performance

of the system using two real robots at the Corridor 4 of the

Electronics Deparment. Additionally, we have tested it over all

the environment in simulation. In the near future, we have the

intention to apply our system in all the Electronics Department

environment in real mode.
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