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Abstract - This paper presents a new method for real-time
ego-motion calculation applied to the location/orientation of a
cheap wide-angle stereo camera in a 3D environment. The
objective is to apply it to a mobile robot navigation system. To
achieve that, the goal is to solve the Simultaneous Localization
and Mapping (SLAM) problem. Our approach consists in the 3D
sequential mapping of natural land-marks by means of a stereo
camera, which also provides means to obtain the camera
location/orientation. The dynamic behavior is modeled using a
top-down Bayesian method. The results show a comparison
between our system and a monocular visual SLAM system using
a hand-waved camera. Several improvements related to no priori
environment knowledge requirements, lower processing time
(real-time constrained) and higher robustness is presented.

Index Terms - SLAM, wide-angle vision, stereo vision, real-
time.

I. INTRODUCTION

Real-time Simultaneous Localization and Mapping
(SLAM) is a key component in robotics. In last years several
approaches have been used [1][2][3][4]. Successful
implementation of SLAM in robotics have generally been
achieved with laser or sonar range sensors and built maps for
controlled robots moving in 2D and using accurately modeled
dynamics. Recent researches have demonstrated that camera-
based SLAM is very useful in domains where the goal is to
recover 3D camera position in real-time moving rapidly in
normal human environments, based on mapping of sparse
visual features, potentially with minimal information about
motion dynamics [5]. In [6] and [7] several 3D visual SLAM
methods based on a stereo camera and SIFT features are
presented. The first one uses in one hand a Particle Filter (PF)
to estimate the robot pose and in the other an EKF to estimate
each landmark state. Although no additional information apart
from the visual one is used, the main disadvantage of the
method resides on the high processing time, making it not
suitable for real-time applications. The second work uses
SIFT features as well, however the motion model is based on
odometry information, which, depending on the terrain could
have a high drift error. Processing time is too high as well. In
[8], a landmark-based 3D environment model is built as well.
In this case scale-invariant features are also used. The feature
positions prediction is based on the vehicle odometry
information, therefore this approach is not suitable for hand-

waved camera systems as well as any other one that relies
only on visual information.

The most important researches in visual SLAM have been
achieved by Andrew J. Davison from the University of
Oxford. He started using an active stereo vision system in
order to recover 2D position of a robot [9] but then he has
focused his work on real-time 3D SLAM using monocular
vision [5]. The baseline for this work is the solution described
in [5]. Their approach is to implement a vision based SLAM
method using the Extended Kalman Filter (EKF) [10]. One of
the major issues when trying to solve the SLAM problem is
related to the map building process. Due to the error on
measurements, it is common the appearance of a drift during
the map building. This leads to a bad correspondence of the
map when visiting "old" places. Therefore, in order to allow a
long-term well-located camera it is needed to include the
complete map into the state vector. In this case, the map will
be composed of a number of natural landmarks (identified by
their corresponding features), which will grow at the same
time the camera moves over the scene and visits new places.
These marks will not be only the "output" of the process, but
also the mean to self-locate the camera within the
environment. Having the standard perspective camera model,
it is possible to obtain two coordinates of the features relative
positions, but it is not possible to directly know the depth of
these positions. That leads to the following 3 limitations:

1) When a new feature, which identifies the mark, is to be
initialized, it cannot be done in one single step. The new
feature has to be modeled as a semi-infinite line that
represents all the possible depths. Then, by mean of a PF
algorithm, at each time step measurement, the belief of the
feature depth trends to concentrate on the final value.

2) At the beginning there is no prior knowledge of the
camera position/orientation, therefore it is not possible to
obtain the final depth required for the first captured features.
This leads to the need of having a number of known features
that will have to be located manually.

3) Lenses normally used in computer vision have a narrow
field of view (40 to 50 degrees). Then, all the features
measured lie very close together and the sets of features to be
visible through large motion is small. As consequence, in such
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situations small rotations and translations are ambiguous and
camera movement range must be low.

This paper presents a solution to the limitations of the
monocular visual SLAM using a cheap wide angle stereo
camera instead of a standard single one. The use of wide-
angle cameras improves SLAM results, with increased
movement range, accuracy and ability to track agile motion, as
can be seen in [11]. Additionally, our system is able to
completely locate any feature in one single step, avoiding the
two issues mentioned above. Besides that, having two cameras
we obtain some redundant information on each feature
position, allowing then a more robust location.

II. EXTENDED KALMAN FILTER APPLICATION

In order to apply the EKF, a state vector X and its
covariance matrix P need to be defined. The purpose of the
algorithm is to continuously estimate the position and
orientation of the camera, via the linearization of the next state
function, f(X), at each time step. Because of the impulse
motion model used for the camera movement, which will be
explained later, it is needed to add two more variables to the
camera state vectorX,: the linear and angular speed:

XV = (Xrob qrob Vrob t))(1)

In equation (1), Xrob is the 3D position vector of the camera
relative to the global frame, qrob represents the rotation vector,
Vrob is the linear speed and M6 is the angular speed. A special
clarification needs the rotation vector qrob For representing a
rotation, it is enough to use a three components vector.
However, using a four components vector quaternion, it is
easier to compose sequenced rotations. This vector defines a
rotation angle 6 around the unit vector (uX uy U )T in the
following way:

qo cos 2

qrob =L L?USiJ (2)

qy u sin 0

The corresponding rotation matrix R can be obtained as a
function of qrob as it is explained in [5].

On the other hand, as the whole map has to be included
into the filter, all the features global position state vectorsy
have to be included into the total state vectorX. So, the state
vector x (Xv yI y .)T and its corresponding
covariance matrix P are defined. With these two parameters,
the EKF implementation can be described as follows,
assuming k the step index.

1) Prediction step:

X(k + 1|k)= f(X(k|k))= f(k|k) (3)

P(k + 1|k)= (klk) P(klk) ((k|k) +Q(k) (4)

2) Update step:

X(k+l|k+1)=X(k+l|k)+W(k+l).q(k+l)0,, (5)
P(k+1|k+1)=P(k+1|k)-W(k+1).S(k+1).(W(k+1))T (6)

On this implementation, Q and S are the process noise and
measurement uncertainty covariances, respectively. Also, 7/tot
is the innovation vector, it means, the difference between the
current measurement vector and the predicted measurement
one: (77tot = ztot - htot ). For clarity reasons, the step index k will
be omitted in the rest of the paper.

III. MOTION MODEL

The first stage to build the motion model is to predict the
next state vector and covariance matrix. In this case the object
to model is a stereo camera, which can be carried by a person.
It means that it can be freely but smoothly moved. As we do
not have any influence on the camera movement, the motion
model assumes constant speed (both linear and angular)
during each time step. There will only be random speed
changes, which will lead to the so-called impulse model. In
our work the motion model is adapted to the movement of a
mobile robot. Therefore, some restrictions will be applied.
These restrictions will be to reduce the uncertainty on the "y"
linear movement direction as well as the uncertainty on
rotations around the "z" and "x" axes.

In order to predict the next state of the camera the
function, fv (Xrob +Vrob *At qrobxq[S-At] Vrob o) is
defined. The function q[o- At] represents the transformation
of a 3 components vector into a quaternion. Assuming that the
map does not change during the whole process, the absolute
feature positions y should be the same from one step to the
next one. Therefore, the global prediction function f will be
composed as follows: f=(f Y y2y ). To calculate Q,
a noise vector n=(V Q)T is defined. This vector represents
the random speed changes mentioned before. Assuming that
linear and angular speeds are independent, the covariance
matrix of n will be diagonal. Then, Q can be calculated via the
corresponding jacobian function: Q= (af/an)Pn (af/an)T.

IV. MEASUREMENT MODEL

Visual measurements are obtained from the "visible"
features positions. As difference as [5] in our system we
define each individual measurement prediction vector
hi=(h,. h,y hi, )T as the corresponding 3D feature position
relative to the camera frame.

To choose the features to measure, some selection criteria
have to be defined. These criteria will be based on the feature
"visibility", that is whether its appearance is close enough to
the original one (when the feature was initialized). To evaluate
that, three tests are applied to each feature (see Fig. 1):

1. First, check that the feature image projection lies
within the field of view for each of the cameras.
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2. Then, check that the angle / between the current
point of view and the original point of view is small
enough.

3. The last check is to test that the distance from the
point of view to the feature is not so different to the
original one.

A. Measurement Prediction
Prior to perform the actual measurement, for establishing

the region to look for the actual feature position of each of the
selected features, each hi has to be obtained. It can be
calculated as the result of a coordinate frame change (from the
global reference y to the camera reference hi)

hi = R (Y Xob) (7)

B. Measurement Search
To obtain zi, first we have to calculate the projection

coordinates of hi on both left and right images: UL: (UL VL ),
UR (UR, VR) - Taking into account the use of wide-angle
camera optics, it is not a good approximation to apply directly
the pin-hole model to obtain such coordinates. It is
recommendable to use a direct and inverse radial and
tangential distortion models. Therefore, to obtain the final
image projection coordinates, first the simple "pin-hole"
model is applied and then, the result is "distorted" by means
of the distortion models.

As an example, if we apply the direct pin-hole projection
model to the left image, as it is described in [12], we obtain
the "undistorted" projection coordinates. To make it easier, we
take the common camera frame coincident with the left
camera reference frame. ULS =CC1L FC1L (hi. /hi, )
VLS =CC2L -FC2L (hy /hz ). The parameters FC1 and FC2
correspond to the camera focal lengths, while CC1 and CC2
are the principal point coordinates, i.e. the camera intrinsic
parameters. The corresponding jacobians aULS /ah, and
aURS /ahi can be easily calculated from (1 1) and the
equivalent equation in the right camera, respectively.
Applying the same distortion models, the jacobians
aUL/aULS and aUR/aURS can be also calculated (see VII).
As a remark, to apply the procedure for the right camera, first
we have to calculate hi relative to the right camera reference
frame hiR:

hiR Rint 1(hi-Tit) (8)

In equation (8), Rint and Tnt are the extrinsic parameters
between left and right cameras. The jacobian ahiR /lh, needs to
be calculated as well. Once the transformation is done, the
right camera projection coordinates can be obtained following
the same procedure as for the left camera.

Besides the calculation of this projection coordinates, here
we need to calculate the projection of all the pixels within the
patch following the procedure explained in VIII.

Feature

Fig. 1 Original and current feature measurement vectors.

1) Search Area calculation
In order to look for the actual feature projections, we must

define the search area around the predicted projections to limit
the search. This will be calculated based on the uncertainty of
the feature 3D position, what is called innovation
covarianceSi. It essentially depends on three parameters: The
camera state uncertainty p,,, the feature position uncertainty
p and the measurement noise R, (see [9]). As we have two
different image projections, Si needs to be transformed into
the projection covariance Pu and PR .

PU U= a S('SU'UhLah
p ( a )

UR ah a h
(9)

These two covariances define both elliptical search regions,
which are obtained taking a certain number of standard
deviations (usually 3) from the 3D Gaussians.

2) Correlation Search
Once the areas, where the current projected feature should

lie, are defined, we can look for them. At the initialization
phase, the left and right images representing the feature
patches are stored. Then, to look for a feature patch, we
perform normalized sum-of-squared-difference correlations
across the whole search region (see [9]).

The best correlation matching is then compared to a
threshold value. If both correlations are good enough, the new
measured projection coordinates are captured in order to
perform the update process. Otherwise, the feature is marked
as "unsuccessfully measured."

C. Measurement Vector Calculation
To obtain zi we need to solve the inverse geometry

problem described in [12]. We take the measured new
projection coordinates UL, UR as a basis. First, we need to
obtain the "undistorted" projection coordinates ULS, URS , as it
is explained in chapter VII. The projection coordinates are
related to the measurement vector zi by means of the so-
called projection equations (see [12]), where mL, and mRj are
the elements of the projection matrices ML and MR for left
and right camera. They can be calculated as a function of the
known intrinsic parameters matrices: ICL and ICR Then, to
obtain ML and MR from ICL and ICR' we just need to express
ICL and ICR in the left and right camera reference frames,
using the extrinsic parameters as it was showed in (8). For the
left camera, ML =ICL because the camera reference frame is
actually the left camera reference frame.
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From the projection equations we can form the redundant
equation system showed in [12]. Transforming it into the
matrix form A zi=b, the system can be solved giving the
following result: zi=(ATA) lATb . At the end, before to
performing the filter update, all feature measurements must be
combined to form the "total" vectors.

D. Filter Update
In order to perform the update, the Kalman gain W must

be calculated using the following expression:
W=P- ((ah/dxX) t )T S-1 For each individual feature, the
jacobians ahI/dX and ahi/dYi are calculated from (7), which
conveniently grouped form the total jacobian (Dh/dX)tot .
Following the same procedure ztt I which will contain all
feature measurements, is formed as well.

In the other hand, as it is stated in (11), to be able to
calculate S we still need to calculate the measurement noise
covariance Rtot. Because the 3D feature position vector is
used as the measurement, this calculation is not so evident.

1) Measurement Noise Covariance Calculation
Starting from the projection coordinates, we can assume

an intrinsic uncertainty on its determination, which will be one
pixel for each coordinate and for each image: (UL,VL) ,

(UR ,VR) . Furthermore, uncertainty in u and v is assumed
independent and gaussian distributed. Therefore, we can
define a vector Tj = (UL VL UR VR ) with the four
coordinates of both images. The covariance matrix RTi for this
vector will be diagonal. To calculate the feature measurement
noise Ri , the following transformation will be done:
Ri= (hi/aTi )RTi -(ahi/Ti )T . Starting from the equation
system A hi = b, we calculate a(A hi )aTDs = ab/TIs , where
T7s refers to the undistorted coordinates vector. Regrouping
the equation we obtain A (hi /Tis )=C , and therefore
ah, laTIs can be found. The matrix C is obtained as a result of
the regrouping:

(1) 0 0 0 , where (1) = -mL3lhi mL32hy, mL33h_z mL34 (10)
C = ( 2) 0 l(2) = -MR Ij3,hi, R3h m h-k MR34

o 0 (2)

In order to obtain ahi laTi , the jacobian ahi laTi, is
transformed using aUL, /aUL and aURS /aUR Assuming
measurements are independent, Rt t can formed by all
individual Ri in a diagonal arrangement.

The total covariance S is obtained using the previous
calculated values:

S=[(ah/dX)t 0P.(ah/dX)Tt] +R,to (11)

V. FEATURE INITIALIZATION

One important aspect on this implementation is the way
new features are incorporated into the filter process. When a
new feature needs to be initialized, its corresponding patch
will be searched within a rectangular area randomly located on
one of the camera images (usually the left one). If the search

process does not success, a new random location for the
region is generated. The maximum number of attempts is
limited to 10. Then the filter is one step moved forward and
the process is reinitiated.

A. Best Feature Search
At the time to look for the best feature to introduce in the

filter, we need to assure "good tracking" properties. It means
that this feature must be correctly distinguished from the rest
of the image along the camera movement. In [15], an operator
to measure the "goodness" of a feature is described. It applies
the intensity gradient on both vertical and horizontal
directions. The operator is calculated on each of the pixels of
the feature patch to evaluate in an efficient way. In case that
the absolute maximum value is good enough, the
corresponding feature is selected.

B. Feature 3D Position Calculation
Once the feature is selected, for including it into the filter,

the absolute position vector y and its covariance matrix pyy
needs to be obtained. Unlike the approach used in [5], here we
can obtain y just in one step because, as in the measurement
process, we can solve the four equations redundant system.
Besides that, at this time, we obtain the estimated 3D position
of all the pixels within the patch as it is explained in VIII.

1) Epipolar Correspondence Search
Taking the feature patch found on the left image, the first

step is to look for its corresponding one on the right image.
According to the stereo theory this patch must lie over a line
called epipolar line (see [12]). Then, we must limit the search
region to be close to that line. Once the region is defined, the
process will consist in make correlations with the left patch, as
it is done in the measurement process. The epipolar line
equation is defined as ax + by + c = O . The three coefficients
are calculated using the fundamental matrix F. This matrix is
obtained by expressing the essential matrix E in image pixel
coordinates: F =(CR1 )T E CL-1 . Therefore, the mentioned
coefficients are calculated in this way:
(a b c)T =F(uL VL 1)T.

2) Absolute Position Calculation
Once the left and right projection coordinates are

obtained, y can be calculated. The procedure to follow is the
same that the one used for the measurement vector
calculation. However, in this case, the feature position is
relative to the global reference frame. It means that the
projection matrices ML and MR have to be also relative to the
global reference frame.

3) Covariance matrix Calculation
The feature position covariance pyy depends on two

sources: the camera state uncertainty p. and the feature
measurement noise Ri
PYy(D /DXV()P(Yxa)T+(aD /lahi )Ri (aylahi )T We
easily obtain aY lahi from (7). In order to calculate ay /Dlax,
we use aYlah and ahi /aX . This last jacobian is calculated
from (7) as well, but we have to take into account the
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relationship between the quaternion qrob and the rotation
matrix R described in [1].

VI. FEATURES MANAGEMENT

In order to maintain the map up to date, we need to define
criteria about when to introduce (capture) new features and
when to delete them.

At the beginning, the first feature captured is supposed to
be a certain one; it means that it will have zero covariance. In
the following steps, the rules to follow will be to capture new
features to maintain, at least, 5 visible features at the same
time. In addition to that, there will have to be, at least, 4
successfully measured features at the same time in order to
avoid the complete loss the camera tracking.

In the other hand, some of the captured features can be
"bad" features; i.e. features that are often unsuccessfully
measured. This could be as a consequence of reflections,
frequently occluded objects, etc. The rule to follow is to
eliminate any feature that has been unsuccessfully measured
more than a half of the attempts.

When a new feature is added to the filter, not only the
total state vector X has to be modified, but also the total
covariance matrix P. This is done by adding an extra row and
column in P. To eliminate any feature, P will be modified by
removing the corresponding row and column.

VII. IMAGE DISTORTION MODEL

Due to the use of a wide-angle lens, we need to make use
of a model that allows obtaining the equivalent "undistorted"
projection coordinates from the distorted ones and the other
way around. To do that, radial and tangential distortion
models are applied. The models definition described in [14] is
expressed in metric units; therefore in order to apply them,
first we need to transform the pixel coordinates used on the
filter. It is done by using the previously described intrinsic
parameters FC1, FC2, CC1 and CC2. After applying the
model, the result must be re-expressed in pixel. Taking the left
camera, we define, in metric coordinates, the distorted
(ULC ,VLC) and undistorted (ULNC,VLNC) projection coordinates.
Then, we can relate them as follows, using the direct model:

ULC J 'ULNC + 2P1LULNCVLNC + P2L (r + 2ULNC) (12)
VLC f VLNC +PIL (r + 2VLNC)+ 2P2LULNCVLNC (13)

On the previous equations the following parameters are
defined as: r2= UNC +VLNC , f=+Kl r2+KLr4 .On this
model, we use KIL 'K2L as the radial distortion coefficients
and PIL' P2L as the tangential distortion coefficients. For the
inverse model, we apply an iterative procedure, starting from
the assumption that ULNC =ULC and VLNC VLC

The jacobians aULlaULS and aURIaURS are calculated
from (12) and (13), while the inverse jacobians are also
calculated by inverting the previous ones.

VIII. PATCH TRANSFORMATION

As it was explained before, as the robot moves within the
environment, the appearance of the patches changes respect to
the original one (at the initialization time). At the same time as
the robot moves away from the original state, the difference
increases. This leads to an inaccurate matching correlation as
well as an increase in unsuccessfully measurements. In order
to reduce its impact a method to transform the appearance of
the patch is applied. When the feature is initially captured, the
3D positions of all the pixels within the patch is estimated and
stored. A flat robot parallel plane is assumed for the 3D patch
representation. From now on, each time the corresponding
feature is measured the patch appearance is estimated by
predicting the projection of each of the pixels within the
patch. An efficient interpolation method is applied to obtain
the full patch appearance.

IX. RESULTS

In order to test the behaviour of our system several video
sequences have been used. The cameras used were the
Unibrain Fire-i IEEE1394 modules with additional wide-angle
lens which provide a field of view of around 100° horizontal
and vertical. Both cameras are synchronized at the time of
commanding the start of transmission. The calibration is
performed offline using a chessboard panel using the method
referenced in [14]. To check the ability of revisiting "old"
features, a 360 degrees turn around sequence was taken,
which is shown on Fig 2. In addition to that, a long lateral
translation sequence was also taken, where the ability to
distinguish between rotations and translations was checked.
The state estimation accuracy was tested by using another
video sequence, which registered an 80 cm forward movement
and 80 cm lateral movement. The results showed a 75 cm
forward movement and 86 cm lateral movement. On the Fig 3,
the system is located onto a mobile robot. The robot covered a
path along different corridors within our laboratory. The real
path covered by the robot is shown in green colour while the
estimated one is shown in yellow. Along this path there were
people crossing in front of the camera in different points. The
number of captured marks was 984.

Respect to the processing time, the real-time
implementation imposes a time restriction, which shall not
exceed 33 ms for a 30 frames/second capturing rate. Testing
both mono and stereo implementations showed the results on
Table 1. The results were taken using a 2.0 GHz speed CPU.
It was seen that, using the same video sequence, the number
of features needed for a stable behaviour using the mono
implementation was significantly higher than using the stereo
one. The consequence is that, even with a 3 components
feature measurement vector, the time needed for the filter
updates is lower with the stereo implementation. Respect to
the initialization phase, it appears to be slower with the stereo
system due to the epipolar correlation phase. However, it has
to be taken into account that, in this case, the feature is
completely initialised in one single step, giving a more robust
implementation.
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TABLE I
PROCESSING TIMES

Using stereo camera Using mono camera
Number of features 16 Number of features 35

Filter step Time Filter step Time

Measurements 3 ms Measurements 5 ms

Filter update 5 ms Filter update 42 ms

Feature initializations 20 ms Feature initializations 10 ms

X. CONCLUSION

We have presented a system that allows self-locating a
stereo camera by measuring the 3D positions of different
natural landmarks. Several benefits have been showed
comparing it with a single camera system, like avoidance of
the prior-known features or the processing time improvements
described above. Some improvements can be done in the
distortion model in order to allow more accurate feature
position estimations on lower distance ranges.
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