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Abstract— This paper describes a monocular vision-based
Vehicle Recognition System in which the basic components
of road vehicles are first located in the image and then
combined with a SVM-based classifier. The challenge is to
use a single camera as input. This poses the problem of
vehicle detection and recognition in real, cluttered road
images. A distributed learning approach is proposed in
order to better deal with vehicle variability, illumination
conditions, partial occlusions and rotations. The vehicle
searching area in the image is constrained to the limits of
the lanes, which are determined by the road lane markings.
By doing so, the rate of false positive detections is largely
decreased. A large database containing thousands of vehicle
examples extracted from real road images has been created
for learning purposes. We present and discuss the results
achieved up to date.

I. INTRODUCTION

This paper describes a monocular vision-based Ve-
hicle Recognition System in the framework of Intelli-
gent Transportation Systems (ITS) technologies. In our
approach, the basic components of road vehicles are
first located in the image and then combined with a
SVM-based classifier. The challenge is to use a single
camera as input, in order to achieve a low cost final
solution that meets the requirements needed to undertake
serial production. A monocular imaging device (a single
FireWire digital camera) is deployed to provide ”indirect
range” measurements using the laws of perspective. Some
previous works use available sensing methods such as
radar [1], stereo vision [2], or a combination of both [3].
Only a few works deal with the problem of monocular
vehicle detection using symmetry and colour features [4]
[5], or pattern recognition techniques [6]. Detecting a
vehicle in a monocular image poses the general problem
of object detection in static images. This is a complex
problem as long as it requires that the object class exhibits
high interclass and low intraclass variability. In addition,
vehicle detection should perform robustly under variable
illumination conditions, variable rotated positions, and
even if some of the vehicle parts are partially occluded.

Object detection techniques can be classified into three
major categories, as described in [7]. The first category is
represented by model-based systems in which a model is
defined for the object of interest and the system attempts
to match the model to different parts of the image in order
to find a fit. Unfortunately, road vehicles can be regarded
as quite a variable class that makes it impossible to define
a model that represents the class in an accurate, general
way. In consequence, model-based systems are of little
use for vehicle recognition purposes. The second category
are image invariance methods which perform a matching

based on a set of image pattern features that, supposedly,
uniquely determine the object being searched for. Road
vehicles do not exhibit any deterministic image pattern
relationships because of its large variability (different
types of vehicle models depending on manufacturers).
For this reason, image invariance methods are not a
viable option in order to solve the vehicle recognition
problem. The third category of object detection techniques
is characterised by example-based learning algorithms.
The salient features of a class are learnt by the system
based on a set of examples. This type of technique can
provide a solution to the vehicle recognition problem as
long as the following conditions are met.

• A sufficiently large number of vehicle examples are
contained in the database.

• The examples are representative of the vehicle class
in terms of variability, illumination conditions, and
position and size in the image.

Example-based techniques have been previously used
in natural, cluttered environments for pedestrian detection
[8] [9]. In general, these techniques are easy to use with
objects composed of distinct identifiable parts arranged
in a well-defined configuration. This is the case of road
vehicles, where a distributed learning approach based on
components [7] is more efficient for object recognition
in real cluttered environments than holistic approaches
[10]. Distributed learning techniques can deal with par-
tial occlusions and are less sensitive to object rotations.
However, in spite of their ability to detect objects in real
images, we propose to reduce the vehicle searching space
in an intelligent manner, based on the road image, so
as to increase the performance of the detection module.
Accordingly, road lane markings are detected and used
as the guidelines that drive the vehicle searching process.
The area contained by the limits of the lanes is scanned in
order to select candidate regions of interest. These regions
are likely to contain the vehicle candidates that are passed
on to the vehicle recognition module. This helps reduce
the rate of false positive detections. In case that no lane
markings are detected, a basic area of interest is used
instead covering the front part ahead of the ego-vehicle.
The description of the lane marking detection and vehicle
recognition systems is provided in the following sections.

II. CANDIDATE REGIONS OF INTEREST

The system is divided in two modular subsystems.
The first subsystem is responsible for lane detection
and tracking, as well as lane crossing monitoring. The
second subsystem extracts candidate regions of interest by
detecting vehicle candidates within the limits established
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Fig. 1. Lane tracking example in a sequence of images.

by the first subsystem according to the estimated road
lanes.

A. Lane detection and tracking

Images obtained from the camera are processed and
clothoid curves are fitted to the detected lane markings
in order to estimate the road lanes that determine the
candidates searching area. The algorithm scans up to 50
lines in the candidates searching area, from 2 meters in
front of the camera position to below the horizon. The
developed algorithm implements a non-uniform spacing
search that reduces certain instabilities in the fitted curve.
The final state vector is composed of 6 variables [11]
for each line on the road:coh, c1h, cov, c1v, xo, θo, where
coh and c1h represent the clothoid horizontal curvature
parameters, cov and c1v stand for the clothoid vertical
curvature parameters, while xo and θo are the lateral
error and orientation error, respectively, with regard to the
centre of the lane. The clothoid curves are then estimated
based on lane marking measurements using a Kalman
filter for each line. These lines conform the candidates
searching area. Figure 1 depicts a sequence of images
in which the result of the lane tracking algorithm is
overprinted on the road images. The green lines represent
the estimated lines of the road, while the blue ones show
the lane marking validation area. The example also depicts
the error between the left wheel of the car and the left
lane (left), the error between the right wheel of the car and
the right lane (right), the road curvature radius estimated
at a look-ahead distance of 50m (R), and the maximum
recommended velocity to bend the curve (V) according
to the radius of curvature.

B. Candidate vehicles

An attention mechanism has been devised with the
intention of filtering out inappropriate candidate windows
based on the lack of distinctive features, such as horizontal
edges and symmetrical structures, which are essential
characteristics of road vehicles. This has the positive
effect of decreasing both the total computation time and
the rate of false positive detections. Each road lane is
sequentially scanned, from the bottom to the horizon line
of the image, looking for collections of horizontal edges
that might represent a potential vehicle. The scanned
lines are associated in groups of three. For each group, a
horizontality coefficient is computed as the ratio of con-
nected horizontal edge points normalized by the size of
the area being analysed. The resulting coefficient is used
together with a symmetry analysis in order to trigger the
attention mechanism. Apart from the detected road lanes,
additional virtual lanes have been considered so as to
cope with situations in which a vehicle is located between
two lanes (for example, if it is performing a change lane
manoeuvre). Virtual lanes provide the necessary overlap
between lanes, avoiding both misdetections and double
detections caused by the two halves of a vehicle being
separately detected as two potential vehicles. A virtual
lane is located to provide overlap between two adjoining
lanes. Figure 2 depicts the candidate regions of interest
generated by the attention mechanism in a sequence of
images. On average, the system generates 5 candidate
windows per frame that are passed on to the classifier.
Nonetheless, this figure is bound to change depending on
traffic conditions.

III. VEHICLE RECOGNITION

The road vehicle class contains quite a large amount of
different cars that makes it a non-homogeneous cluster. In
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Fig. 2. Generation of candidate regions of interest in a sequence of
images.

consequence, it makes sense to use a distributed learning
approach in which each individual part of the vehicle
is independently learnt by a specialized classifier in a
first learning stage. The local parts are then integrated by
another classifier in a second learning stage. According
to the previous statements, the proposed approach can
be regarded as a hierarchical one. By using independent
classifiers in a distributed manner the learning process
is simplified, as long as a single classifier has to learn
individual features of local regions in certain conditions.
Otherwise, it would be difficult to attain an acceptable
result using a holistic approach. We have considered a
total of 3 different sub-regions for each candidate region,
as depicted in figure 3. The 3 sub-regions cover the most
characteristic parts of the vehicle. Two small sub-regions
have been located in the area of the region where the
wheels are supposed to be. A third sub-region is located
in the central part of the region, covering the area where
car plates and rear windshield are usually placed. The
locations of the three sub-regions have been chosen in an
attempt to detect coherent and structural car features.

Fig. 3. Decomposition of a candidate region of interest into 3 sub-
regions.

A set of features must be extracted from each sub-
region and fed to the classifier. Before doing that, the

Fig. 4. Normalized input to the classifi er. Left: original images, Right:
Canny images.

entire candidate region of interest is pre-processed using
a Canny operator in order to enhance the differential infor-
mation contained in it (edges). The Canny image provides
a good representation of the discriminating features of
the car class. On the one hand, edges, both horizontal
and vertical, are clearly visible and distinguishable. On
the other hand, the vertical symmetry of a car remains
unchanged. In addition, edges are not affected by colours
or intensity. This property makes the use of edges robust
enough to different car models of the same type. In
a first attempt, a set of features was extracted from
each sub-region using the normalized histogram based on
the co-occurrence matrix of the pre-processed sub-region
(four co-occurrence matrixes were computed using four
different searching vectors). This option was discarded in
practice after observing the results derived from it.

The use of co-occurrence matrixes proved to be non-
discriminating enough as long as other parts of the image
(that do not contain a car) can trigger the attention
mechanism since they exhibit similar co-occurrence based
values. The fact is that the information provided by co-
occurrence matrixes does not uniquely reflect the 2D
structure of a car. Instead, the pre-processed sub-region is
directly applied to the input of the classifier, as the set of
features that is finally used for learning. The dimensions
of the entire region of interest are normalized before being
fed to the classifier. A size of 70x80 pixels has been
chosen as depicted in figure 4. This size is adequate for
detecting vehicles at long distances (up to 80 meters).

Several training sets were created for each sub-region in
order to store representative samples in different weather
and illumination conditions, as suggested in [8]. This
technique allows to learn every separate training set using
a specialized Support Vector Machine (SVM) [12] that
yields excellent results in practice. Otherwise, the use of
a global classifier would demand for excessive general-
ization of the classifier. General classifiers are doom to
failure in practice when dealing with images acquired in
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Fig. 5. Global structure of the two-stage SVM classifi er.

Fig. 6. Vehicle detection and tracking in a sequence of images.
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outdoor scenarios, as they contain a huge variability. The
global training strategy is carried out in two stages. In
a first stage, separate SVM-based classifiers are trained
using individual training sets that represent a subset of
a sub-region. Each SVM classifier produces an output
between -1 (non-vehicle) and +1 (vehicle). Accordingly,
it can be stated that this stage provides classification
of individual parts of the candidate sub-regions. In a
second step, the outputs of all classifiers are merged
in a single SVM classifier in order to provide the final
classification result. Figure 5 depicts the global structure
of the classification process. SVM classifiers in the first
stage are denoted as SV Mij in figure 5, where i stands
for the sub-region of interest and j represents the training
sub-set for that sub-region. The SVM classifier in the
second stage is denoted as SV Mf (final SVM).

IV. RESULTS

The system was implemented on a Apple PC at 2.0
GHz running the Knoppix Linux Operating System. The
complete algorithm runs at 25 frames/s. We created a
database containing 2000 samples of road vehicles. The
samples were extracted from recorded images acquired
in real experiments onboard a road vehicle in real traffic
conditions in Madrid. 2 different training sets were built
for the same sub-region in different conditions. This yields
a total of 6 training sets (2x3). All training sets were cre-
ated at day time conditions using the TsetBuilder tool[13],
specifically developed in this work for this purpose. By
using the TsetBuilder tool different candidate regions are
manually selected in the image on a frame-by-frame basis.
This allows to select candidate regions containing vehicles
of different size, from different manufacturers, and so
on. The number of non-vehicle samples in the training
sets was chosen to be similar to the number of vehicle
samples. Special attention was given to the selection of
non-vehicle samples. If we select simple non-vehicle ex-
amples (for instance, road regions) the system learns very
quickly but it does not develop enough discriminating
capability in practice, as the attention mechanism can
select a region of the image that might be very similar
to a car but it is not a car in reality. The training of
all SVM classifiers was performed using the free-licence
LibTorch libraries for Linux. We obtained a detection rate
of 85% in a test set containing 1000 images, and a false
detection rate of 5%. The performance of the single-frame
recognition process is largely increased by using multi-
frame validation. The probability of a candidate region
being classified as vehicle is modelled as a Bayesian
random variable. Accordingly, its value is recomputed
at each frame as a function of the outputs provided by
the single-frame classifier and by a Kalman filter used
for vehicle tracking. As an example, figure 6 shows a
sequence of images in which a vehicle is detected and
tracked along the lane of the host vehicle. A blue box
is overprinted over the detected vehicle indicating the
estimated distance measured from the host vehicle. Other
vehicles appearing along the adjoining lane are marked
with a horizontal red line.

V. CONCLUSIONS AND FUTURE WORK

We have developed a visual multi-frame two-stage
vehicle classification system based on Support Vector Ma-
chines (SVM). The complete system is implemented in C
language under Linux Operating System (Knoppix). The
learning process has been simplified by decomposing the
candidate regions into 3 local sub-regions that are easily
learned by individual SVM classifiers. Several training
sets have been built for each sub-region in order to
cope with different weather and illumination conditions.
The complete classifier can be regarded as a hierarchical
SVM classifier. The results achieved up to date with a
set of 2000 samples are encouraging. Nevertheless they
still need to be improved before being safely used as an
assistance driving system onboard road vehicles in real
conditions. For this purpose, the content of the training
sets will be largely increased by including new and more
complex samples that will boost the classifier perfor-
mance, in particular when dealing with difficult cases.
We aim at enhancing the classifier ability to discriminate
those cases by incorporating thousands of them in the
database. In addition, the attention mechanism will be
refined in order to provide more candidates around the
original candidate region. This will reduce the number
of candidate regions that only contain a part of the
vehicle, i.e., those cases in which the entire vehicle is
not completely visible in the candidate region due to a
misdetection of the attention mechanism.
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