
Real-Time Bird’s Eye View Multi-Object Tracking system based on
Fast Encoders for Object Detection

Carlos Gómez-Huélamo1, Javier Del Egido1, Luis M. Bergasa1, Rafael Barea1, Manuel Ocaña1,
Felipe Arango1, Rodrigo Gutiérrez-Moreno1

Abstract— This paper presents a Real-Time Bird’s Eye View
Multi Object Tracking (MOT) system pipeline for an Au-
tonomous Electric car, based on Fast Encoders for object
detection and a combination of Hungarian algorithm and
Bird’s Eye View (BEV) Kalman Filter, respectively used for
data association and state estimation. The system is able to
analyze 360 degrees around the ego-vehicle as well as estimate
the future trajectories of the environment objects, being the
essential input for other layers of a self-driving architecture,
such as the control or decision-making. First, our system
pipeline is described, merging the concepts of online and real-
time DATMO (Deteccion and Tracking of Multiple Objects),
ROS (Robot Operating System) and Docker to enhance the
integration of the proposed MOT system in fully-autonomous
driving architectures. Second, the system pipeline is validated
using the recently proposed KITTI-3DMOT evaluation tool that
demonstrates the full strength of 3D localization and tracking
of a MOT system. Finally, a comparison of our proposal with
other state-of-the-art approaches is carried out in terms of
performance by using the mainstream metrics used on MOT
benchmarks and the recently proposed integral MOT metrics,
evaluating the performance of the tracking system over all
detection thresholds.

keywords: 3D Multi-Object Tracking, ROS, Real-Time,
Evaluation Metrics.

I. INTRODUCTION

One of the key concepts when developing safe Au-
tonomous Driving Systems (ADS) is the perception of the
environment. Furthermore, the reliability of the Collision
Avoidance System (CAS) lies on the performance of the
environment detector and its ability to predict future situa-
tions. In that sense, a real-time Multi-Object Tracking (MOT)
system is essential for self-driving, representing the most im-
portant module of the perception layer in a fully-autonomous
driving architecture. The improvements in object detection in
the last years have allowed the research community, specially
those groups related to ADS, to focus on MOT techniques,
yielding higher accuracy at the cost of computational cost
and complexity, making its use prohibitive in real-time
systems.

MOT systems aim to estimate the orientation, location
and scale of all the objects in the environment over time.
While object detection only captures the information of the
environment in a single frame, a tracking system must take

1Carlos Gómez-Huélamo, Javier del Egido, Luis M. Bergasa,
Rafael Barea, Manuel Ocaña, Felipe Arango and Rodrigo
Gutiérrez-Moreno are with the Electronics Department, University
of Alcalá (UAH), Spain. cram3r95@gmail.com, {javier.egido,
luism.bergasa, rafael.barea, manuel.ocanna}@uah.es, {juanfelipe.arango,
rodrigo.gutierrez}@edu.uah.es

temporal information into account, filtering outliers (a.k.a
false positives) in consecutive detections and being robust to
partial or full occlusions. When travelling throughout a route
programmed by the path-planner, the vehicle may detect an
undetermined number of unforeseen objects over which the
MOT module of the ADS should consider only the most
relevant from a safety point of view (such as pedestrians,
cyclists or cars) to predict and monitor their trajectories.
Then, the vehicle can use the evolution of the scene over time
to infer driving behaviour and motion patters for improved
forecasting.

Fig. 1. LiDAR to BEV coordinates transformation illustrated in CARLA
simulator

In this work, we approach the MOT problem with a simple
yet accurate combination of traditional techniques such as
Kalman Filter (KF) [1] and Hungarian algorithm (HA) [2]
for state estimation and data association respectively. Nev-
ertheless, most MOT approaches [3] [4] model the state of
each obstacle with its 3D position, scale, orientation and their
corresponding linear and angular velocity. These approaches
introduce an unnecessary complexity and computational cost
to the system since most traffic scenes can be described in
terms of 2D position, angular and linear velocity, apart from
the orientation and scale of the resulting bounding box, that
is, a Bird’s Eye View (BEV), as depicted in Fig. 1. The
prediction step is featured by a constant linear and angular
velocity, being the unknown accelerations modelled as Gaus-
sian random variables. The input of the update step of the KF
is fed with the output of our 3D object detector (PointPillars)
[5] as measurements. PointPillars is a state-of-the-art 3D
object detector based on fast encoders that achieves accurate

detections at a high frame rate taking advantage of 2D
convolutions and Graphical Processing Unit (GPU) to extract
clusters by using the 3D pointcloud of the environment
around the vehicle. In a similar way to the prediction model,
the noise associated to the model measurement is featured
by Gaussian random variables. Regarding data association
between the actual and predicted object detections, we use
the 2D Intersection-Over-Union (2D-IoU) in BEV plane in-
stead of using the 3D-IoU version applied in the AB3DMOT
baseline [3] and other previous works. The affinity matrix of
the HA is then computed using the BEV-IoU between every
pair of detection and predicted trajectories. Moreover, we
exploit the concepts of standard communication in robotics
using the Robot Operating System (ROS) [6] and lightweight
Linux containers for consistent software development and
deployment using Docker [7].

II. RELATED WORKS
A. 3D Multi-Object Tracking

A MOT system is basically divided in two sequential
stages: First, an object detector must obtain the most relevant
obstacles in the scene. In that sense, the scene is mainly
analyzed by using cameras (2D object detectors), LiDAR
(3D object detectors) or a combination based on their fu-
sion.Second, a tracking module, based on a combination of
data estimation and association techniques, is used to monitor
the obstacles throughout the scene.

Both 2D and 3D MOT systems can be split into two
branches based on the way data association is performed:
Online and batch methods. While batch methods aim to find
the global optimal solution by using the whole sequence,
using network flow graphs that can be solved by minimum
cost flow algorithms [8] [9], online methods take into account
the data association as a bipartite graph matching problem
traditionally solved by a HA.

On the other hand, regarding motion estimation and tra-
jectory prediction, analyzing the scene with a 2D object
detector usually designs the appearance and motion models
in BEV/3D space adding perspective distortion. Some works
attempt to solve this problem from different approaches. [10]
uses an Unscented Kalman Filter (UKF) in the BEV space to
estimate both the linear and angular velocity of the obstacles.
[11] approaches the object detection to an image-based
method that estimates the obstacles location in image plane
in addition to their 3D distance to camera. Then, a Poisson
Multi-Bernoulli Mixture (PMBM) filter is applied to estimate
the velocity of the obstacles in the 3D space. As observed,
previous works use relatively complicated filters to predict,
in an accurate way, the spatial features of the obstacles in
the scene. In this work, we use [3] as our baseline, which
employs a 3D KF for tracking, where each obstacle state
includes the 3D centroid position, rotation angle and 3D
bounding box dimensions, excluding the angular velocity.
According to the original system pipeline, tracking is fed by
the results of the 3D object detector throughout the whole
scene, which does not match with real-time requirements. In
our case, we conduct real-time tracking-by-detection system,

creating or removing tracklets along the sequence in order
to get a better perspective of what is happening around the
ego-vehicle.

B. 3D Object Detection

As stated above, detecting the bounding boxes directly in
3D has the potential to design the appearance and motion
models in 3D space without perspective distortion [3], in-
stead of detecting the obstacles in image plane and then
retrieving their remaining 3D information. Naturally, the
quality of the detected bounding boxes is essential for the
final tracking accuracy. Modern LiDAR based 3D object
detection usually belong to one of two branches [4]: Point- or
Voxel-based methods. Regarding voxel-based methods, they
first divide the input point cloud (3D space) into equally-
sized 3D voxels to generate 3D feature tensors based on the
points inside each voxel. Then, the feature tensors are fed
to 3D CNNs to predict the position of the bounding boxes.
On the other hand, point-based methods do not required this
quantization step, but they directly apply PointNet++ [12]
on the input point cloud for detecting the objects in the 3D
space. In this work we use PointPillars [5], a voxel-based
state-of-the-art 3D object detector, due to its computational
efficiency. This end-to-end network analyzes the raw point
cloud by clustering it into upright columns to process the data
as a 2D pseudo-image in such a way that highly efficient
2D convolutions can be applied on GPU, not requiring
performing a fine-tuning process to improve the quality of
the network parameters. We trained it by using the KITTI
[13] Multi-Object Tracking dataset, containing information
of vehicles, cyclists and pedestrians in arbitrarily complex
urban environments.

III. OUR APPROACH

As commented above, we use AB3DMOT [3] as our
baseline. Even though their MOT architecture attempts to
obtain a real-time 3D MOT system, in practice this is not
true because it uses offline tracking.

In this approach, we propose to merge the concepts of
online and real-time DATMO (Deteccion and Tracking of
Multiple Objects), ROS (Robot Operating System) [6] and
Docker [7] to enhance the integration of this MOT system
in fully-autonomous driving architectures [14]. Although [3]
bases its tracking module in the SORT (Simple Online and
Real-time Tracking) algorithm [15], its potential has not
been yet exploited, since so far, it has been offline executed
as in batch tracking methods, feeding the tracking module
with a single text file containing all detections in the scene
over time, and then generating an unique identifier by using
an affinity matrix [2] and 3D-IOU. Instead, based of the
bounding boxes retrieved by our 3D object detector and the
ROS network, our modified SORT algorithm transforms the
3D bounding boxes features, which are in LiDAR system
coordinates and in real units (m), to BEV image coordinate
system in image units (pixels), translating the origin from
the ego-vehicle to the top-left corner of the grid analyzed by
the 3D object detector. After the tracking stage is performed,

Fig. 2. BEV MOT system pipeline: (1) 3D object detection module provides the detected bounding boxes at frame t from the raw LiDAR pointcloud
using ROS communications; (2) The coordinates are transformed into BEV image plane, so a BEV Kalman filter predicts the state of trajectories in frame
t-1 to current frame t̂ throughout the prediction step; (3) the detections at frame t and predicted trajectories at t̂ are matched using the Khun-Munkres
(a.k.a Hungarian) algorithm; (4) matched trajectories is updated based on their corresponding matched detections to obtain update trajectories at frame t;
(5) Unmatched trajectories and detections are used to delete disappeared trajectories or create new ones respectively; (6) Matched predicted trajectories are
returned to the system using ROS communications.

the BEV information of the obstacle in LiDAR coordinate
system is retrieved, which can be stored in static files for
tracking validation (as in KITTI dataset) or published in the
corresponding autonomous driving architecture using ROS
facilities to provide the required information for other layers
of the vehicle, such as the control or the decision-making
[14]. For this purpose, we have integrated the object detector
and the tracking module in two different Docker images,
enhancing the portability, isolation and flexibility of the
work. In this way, both stages of the MOT problem (detection
and tracking) can be abstracted as two MIMO (Multiple
Inputs-Multiple Outputs) systems, whose input and outputs
are clearly defined in such a way both the tracking algorithm
and the object detector (in addition to additional modules and
requirements) can be substituted, improved or modified by
similar approaches providing the same format for the inputs
and outputs of both MIMOs. Our MOT system pipeline, as
well as its stages, is illustrated in Fig. 2.

A. 3D Object Detection

The first step our MOT algorithm must carry out is to
detect the bounding boxes of the most relevant obstacles in
the environment around the vehicle. As discussed before, to
avoid perspective distortion, we use PointPillars, a voxel-
based state-of-the-art 3D object detector. At a given frame
t, the detections provided by PointPillars are given in the
following form:

Dett = [Det1
t ,Det2

t , ...,Det f
t] (1)

Where f is the number of detected 3D bounding boxes at
a given frame and threshold. At this point, instead of using
all the 3D information of the object [4] [3], we only take its
projection on the floor plane (BEV information), as discussed
above, to reduce the complexity and computational cost of
tracking stage, specially in those urban scenarios full of
vehicles, based on the assumption that height (z-dimension)
is not as important as other coordinates (x-axis, y-axis) in

a context of self-driving navigation. Then, each detection in
eq. 1 is represented as the tuple:

Deti
t = [xm,ym,wm, lm,θ , type,score] (2)

Where xm,ym correspond to the object centroid in LiDAR
coordinates (m), wm and lm correspond to the width and
length of the object respectively (m), θ its orientation angle
around the LiDAR Z-axis, the object type (according to
KITTI format) and detection confidence. Fig. 1 shows the
transformation from the source coordinate system (LiDAR),
measured in m and placed at the ego-vehicle, to the target
coordinate system (BEV), measured in pixels and placed on
the top-left corner of the grid, which is the most common
way to work with images in computer vision.

Eq. 3 and eq. 4 show the transformation matrix between
both coordinate systems, including both the rotation and the
translation, where a LiDARpoint = [xm,ym,zm,1]T is given as
the column vector in homogeneous coordinates.

T =

0 −1 0 grw

2
−1 0 0 grh

2
0 0 −1 0
0 0 0 1

 (3)

BEVpoint = T ·LiDARpoint (4)

At this point, each detection is represented by the tuple
shown in eq.2, but now xm,ym represent the obstacle centroid
in BEV image perspective. Furthermore, the resolution of
the BEV image can be modified, in such a way a width
value in pixels is given to the algorithm and the height is
calculated according to the aspect ratio of the real world
grid with respect to the width of the image in pixels

Where gpw and gph correspond to the width and height
of the BEV image perspective in pixels. To convert a point
from the real word units (m) to camera units (pixels), we
apply the corresponding scale factor to each coordinate:

[
xpx
ypc

]
=

[gpw
grw 0
0 gph

grh

][
xm
ym

]
(5)

However, it is very common to have different scales for
x and y axis in BEV since the grid is not usually squared.
It is more interesting to have a further view in x LiDAR
axis rather than a large side sweep in terms of y LiDAR
axis. Considering this hypothesis, the right way to obtain
the width and length of the BEV LiDAR bounding box in
(pixels) is to obtain the corners of the rotated bounding box
in pixels and then perform the Euclidean distance among
the corresponding corners to obtain the width and length
in (pixels). Nevertheless, the object detector provides the
rotation angle of the obstacle (featured as θ) according to
its own coordinate system and not around the ego-vehicle
coordinate system. Regarding this constraint, to calculate the
dimensions of the bounding box in pixels, three steps must
be followed.

First, we assume a horizontal bounding box (θ = 0) at the
BEV image coordinate system origin, where c1 corresponds
to the top-left corner (c2, c3 and c4 are placed clockwise .

Then, using eq. 4 and eq. 5 for each corner, the Euclidean
distance is applied between c1 and c2 to obtain the width in
pixels, in the same way that the Euclidean distance is applied
between c1 and c4 to obtain the length in pixels.

Finally, the first four variables of the detection tuple shown
in eq. 2 are converted into pixels, in such a way the SORT
algorithm deal with these bounding boxes in the BEV image
by using the following tuple:

Deti
t = [xpx,ypx,wpx, lpx,θ , type,score] (6)

B. BEV Kalman Filter - Object State Prediction

Once we have each BEV detection as shown in eq. 6, a
BEV Kalman Filter is used to track the objects. Since the
average frame rate of PointPillars is over 50 fps, real-time
can be considered at the detection module, so the inter-frame
displacement of the objects can be approximated by using
the constant velocity model, which is independent of other
objects in the scene and of the LiDAR motion. Regarding
this, the estimation of the measured variables in the following
frame are:

xpx(t̂) = xpx(t)+ vx ; ypx(t̂) = ypx(t)+ vy

s(t̂) = s(t)+ vs ; θ(t̂) = θ(t)+ vθ

On the other hand, due to we use the SORT algorithm
to carry out the online MOT, some additional variables are
included in the object state, such as the aspect ratio and the
scale of the bounding box. The aspect ratio can be defined as
the relation between the width and the length of the obstacle.
Likewise, the scale represents the area of the target bounding
box. Then, the state of each object trajectory is modelled as:

Tr j
t = [xpx,ypx,s,r,θ ,x

′
px,y

′
px,s

′
,θ
′
] (7)

Note that the angular velocity θ
′

is used in the state
space to improve the prediction of the obstacle in later
frames. Furthermore, as shown in [15], the aspect ratio of
the bounding box is considered to be constant. As observed
in Fig. 1, at every frame, a tuple Trt = [Tr1

t ,Tr2
t , ...,Trg

t],
with length g is calculated, where each element correspond
to an association between a detection and a trajectory tracker.
Then, based on the associations of the previous frame and the
constant velocity model, the tuple Trt̂ is calculated, where
each element corresponds to the predicted trajectory (Tr j

t̂) in
the current frame t expressed as:

Tr j
t̂ = [xpx(t̂),ypx(t̂),s(t̂),r,θ(t̂),x

′
px,y

′
px,s

′
,θ
′
] (8)

This tuple of predicted trajectories based on the previous
frame associations, in addition to the current frame detec-
tions, represents the inputs to the data association algorithm
at frame t.

C. Data association

In order to associate the detections Dett and the predicted
trajectories Trt̂ , a simple but accurate data association algo-
rithm [2] is applied. The resulting affinity matrix presents
f rows (number of detections at frame t) and g columns,
which correspond to the number of predicted trajectories
based on the information of frame t − 1. Each element
of the matrix corresponds to the BEV-IoU between every
pair of predicted trajectory and detection. Then, we solve
the bipartite graph matching problem using the Hungarian
algorithm, rejecting the matching if the BEV-IoU is lower
than a given hyperparameter IoUth, giving rise to a set of
matched detections (Detmatched) and predicted trajectories
(Trmatched) (both with the same number of elements, h, that
is, the number of matches), as well as a set of unmatched
detections (Detunmatched), where n = f −h is the number of
unmatched detections, and a set of unmatched trajectories
(Trunmatched), where m = g−h is the number of unmatched
detections.

D. BEV Kalman Filter - Object State Update

As observed in Fig. 1, once we have the corresponding
sets of matched detections and trajectories, based on the
Kalman Filter prediction-update cycle, we update the state
space of each trajectory based on its corresponding matched
detection. To do that, we use the weighted average between
the matched detection values and the state space of the
trajectory tracker, according to [1]. On the other hand, in the
same way that [3], we appreciate that this state update step
does not work properly for obstacle orientation. The reason is
simple: Since the object detector is based on point cloud and
no vision information is included, the object detector cannot
distinguish if the obstacle is rotated 0 or π , π

2 and 3π

2 , and so
on, around its Z-axis. That is, the orientation may differ by π

in two consecutive frames. Then, if no orientation correction
is applied, the Kalman Filter associated to the tracker can
get easily confused, since it tries to adapts itself to the new
orientation value rotating the object by π in following frames,

giving rise to a low BEV-IoU between new detections and
predicted trajectories. However, regarding the assumption
that obstacles must move smoothly and its orientation cannot
be modified by π in one frame (0,02 s according to our
object detector), when this happens the orientation of the
corresponding matched detection or matched tracker can
be considered wrong. To solve this problem, the detection
module only considers angle from 0 to π (that is, if an angle
exceeds π , it is substracted to the provided angle). Then,
if the difference of orientation between a given matched
detection and its corresponding matched trajectory is greater
than π

2 , as stated before, either the orientation of the detection
or the orientation of the tracker is wrong. Then, we add π to
the orientation of the tracker with the aim to be consistent
with the matched detection.

E. Deletion and Creation of Track Identities

When obstacles leave and enter the LiDAR grid, unique
identities must be destroyed or created accordingly. In most
tracking algorithms it is known as the B/D (Birth and Death)
Memory, which is based on the set of unmatched trackers
and detections provided by the data association algorithm,
where the unmatched trackers represent potential objects
leaving the LiDAR grid, in the same way that unmatched
detections represent potential objects entering in the analyzed
environment. In order to avoid tracking of false positives
(that is, clusters in the point cloud that actually do not
represent a relevant obstacle, such a vehicle or a pedestrian),
a new trajectory is not created until the unmatched detection
has been continuously detected in the next fmin frames. Then,
the tracker is initialised with the features of the detected
bounding box, and the associated velocities set to zero.
Note that, as stated in [15], since the velocity associated
to the measured variables is unobserved at this moment (i.e.,
tracker initialization), the covariance initialises the value of
the velocities (in the present work, velocity of the xpx,ypx
centroid, scale s and rotation angle θ) with large values,
reflecting their uncertainty. To avoid removing true positives
trajectories from the scene, they are not terminated unless
they are not detected during consecutive amax frames. This
assumption prevents an unbounded growth in the number
of localisation errors and trackers due to predictions over
long duration where the object detector does not provide any
correction. Note that since this work does not consider object
re-identification for simplicity, an object should leaves the
scene and then reappers, according to the SORT algorithm,
if it is initialized with a new tracker under a new identity. As
shown in Fig. 1, the inputs to the Matched Trackers module
are the updated matched trajectories from the BEV Kalman
Filter and a set of created and deleted trackers, which jointly
represent the input trajectories for the prediction step in the
following frame.

IV. EXPERIMENTAL RESULTS

In order to evaluate our proposed MOT system pipeline,
we carry out the evaluation in the KITTI MOT benchmark
based on the method proposed by [3]. The KITTI MOT

benchmark is composed of 29 testing and 21 training video
sequences, where each sequence is provided with the corre-
sponding RGB images (left and right camera of the stereo
pair), LiDAR point cloud and the corresponding calibration
file. Since KITTI does not provide any annotation (i.e., the
groundtruth) for the testing split, we decided to evaluate our
system in the training/validation split, which contains 636
and 30,601 annotated trajectories and objects respectively.

Mainstream metrics applied to MOT systems are extracted
from CLEAR MOT metrics [18], such as MOTA (Multi-
Object Tracking Accuracy), MOTP (Multi-Object Track-
ing Precision), ML/MT (Number of Mostly Lost/Tracked
trajectories), IDS (Number of identity swutches), FRAG
(Number of fragmentations generated by false negatives) and
FN/FP (Number of false negatives/positives). Nevertheless,
these metrics analyze the MOT system performance at a
given threshold, not considering the confidence of the object
detector. That means they do not take into account the full
spectrum of precision and accuracy over different thresholds.
Moreover, these traditional metrics evaluate the performance
of the MOT system on the image plane (by projecting the
detected 3D bounding box onto the image plane), which
does not demonstrate the full strength of 3D DATMO. In
that sense, the baseline [3] followed by the present work
presents a 3D extension of the KITTI 2D MOT evaluation,
known as KITTI-3DMOT, which focuses on the dimensions,
orientation and centroid position of the 3D bounding box
instead of the projection onto the image plane to evaluate the
performance of the MOT system. Moreover, two new integral
MOT metrics are introduced in order to solve the problem
of evaluating the MOTA and MOTP of the system across all
thresholds, known as AMOTA and AMOTP (Average MOTA
and MOTP), as shown in eq. 9:

AMOTA =
1
L ∑
{ 1

L ,
2
L ,...,1}

(1− FP+FN + IDS
numgt

) (9)

Where L is the number of different recall values. Note
that IDS, FP and FN are modified according to the results
of each threshold value. Likewise, AMOTP can be estimated
by integrating MOTP across all recall values.

Our final system configuration is as following: We use
PointPillars trained over 1,187,840 training steps using the
KITTI MOT benchmark database, the BEV Kalman Filter
formulated in the previous section, an IoUth = 0.25 in the
data association module, and fmin = 1, amax = 1 values for the
birth and death module. We evaluate our system using the
KITTI-3DMOT evaluation tool proposed by [3], obtaining
the results summarized in Table I. In this table, we compare
our numbers with the obtained by the representative state-
of-the-art MOT system, AB3DMOT [3], with the following
parameters: IoUth = 0.1 in the data association module, fmin
= 3 and amax = 2, and for two different object detectors:
Pointrcnn [17] and Monocular 3D [16]. Additionally, we
include our previous proposal, which uses PointPillars [5] as
object detector, with an IoUth = 0.1 in the data association
module, and fmin = 1, amax = 3. Best results are coloured

TABLE I
ABLATION STUDY IN KITTI MOT BENCHMARK VALIDATION SPLIT USING KITTI-3DMOT. WE BOLD THE BEST RESULTS IN BLACK AND THE

SECOND BEST IN BLUE FOR EACH METRIC

Method AMOTA (%) AMOTP (%) MOTA (%) MOTP (%) IDS FRAG FP FN
[3] using [16] as object detector 28.84 51.28 56.80 68.43 3 73 2788 7713
[3] using [17] as object detector 39.44 74.60 76.47 78.98 0 58 1804 3859

Previous work using [5] as object detector 27.30 63.45 59.26 75.24 131 186 4310 5364
Current approach 28.57 60.36 73.57 79.77 57 224 3 2698

in black and the second best in blue. It can be appreciated
the individual effect of using different 3D object detectors as
well as using different hyperparameters in terms of tracking
configuration. We get the best performance in three evaluated
parameters, as well as the second best results in terms of
MOTA, significantly improving our previous results for all
parameters. Even though we do not overcome the results
obtained by AB3DMOT using [17] as object detector, these
are promising results since PointPillars configurations run
at least twice faster with respect to remaining configura-
tions, dealing with the real-time requirement in terms of
autonomous driving.

V. CONCLUSIONS AND FUTURE WORKS

This work illustrates the system pipeline and validation of
our Real-Time Bird’s Eye View MOT system based on 3D
object detector on KITTI MOT benchmark using the recently
proposed KITTI-3DMOT evaluation tool. The implemented
system merges the concepts of ROS, that offers a robotic
standard to integrate the MOT system in an easier way;
Docker, in order to provide flexibility and isolation in terms
of software development; and real-time DATMO, based on
fast encoders for object detection and a simple but accurate
and real-time algorithm to perform data prediction and
association of multiple objects, such as BEV Kalman Filter
and Hungarian algorithm. Our system establishes a state-of-
the-art performance on 3D-MOT, as well as the possibility to
be integrated in fully-autonomous driving architecture in an
easier way due to its plug-and-play design, only requiring
a slight fine-tuning. As future works, the system will be
tested on the CARLA simulator using the corresponding
groundtruth and validation tool in order to test the ability
of the system to track multiple objects in arbitrarily complex
urban scenarios. This strategy will wide the concept of train-
ing and validation regarding the current MOT benchmarks
based on static recorded sequences, opening the possibility
to build new online challenging sequences adapted to the
users’ needs.

ACKNOWLEDGMENT

This work has been funded in part from the Span-
ish MICINN/FEDER through the Techs4AgeCar project
(RTI2018-099263-B-C21) and from the RoboCity2030-DIH-
CM project (P2018/NMT- 4331), funded by Programas de
actividades I+D (CAM) and cofunded by EU Structural
Funds.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[2] H. W. Kuhn and B. Yaw, “The hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

[3] X. Weng and K. Kitani, “A baseline for 3d multi-object tracking,”
arXiv preprint arXiv:1907.03961, 2019.

[4] H.-k. Chiu, A. Prioletti, J. Li, and J. Bohg, “Probabilistic 3d
multi-object tracking for autonomous driving,” arXiv preprint
arXiv:2001.05673, 2020.

[5] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 12697–12705, 2019.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

[7] D. Merkel, “Docker: lightweight linux containers for consistent de-
velopment and deployment,” Linux journal, vol. 2014, no. 239, p. 2,
2014.

[8] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network
flow for multi-object tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6951–6960, 2017.

[9] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-
object tracking using network flows,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2008.

[10] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The h3d dataset for
full-surround 3d multi-object detection and tracking in crowded urban
scenes,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 9552–9557, IEEE, 2019.

[11] S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan, and
K. Granström, “Mono-camera 3d multi-object tracking using deep
learning detections and pmbm filtering,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 433–440, IEEE, 2018.

[12] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” in Advances
in neural information processing systems, pp. 5099–5108, 2017.

[13] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3354–3361, IEEE,
2012.

[14] C. Gómez-Huelamo, L. M. Bergasa, R. Barea, E. López-Guillén,
F. Arango, and P. Sánchez, “Simulating use cases for the uah
autonomous electric car,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 2305–2311, IEEE, 2019.

[15] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE International Conference on
Image Processing (ICIP), pp. 3464–3468, IEEE, 2016.

[16] X. Weng and K. Kitani, “Monocular 3d object detection with pseudo-
lidar point cloud,” in Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops, pp. 0–0, 2019.

[17] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 770–779,
2019.

[18] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

