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Abstract— Motion Prediction (MP) of multiple surrounding
agents, and accurate trajectory forecasting, is a crucial task
for self-driving vehicles and robots. Current techniques tackle
this problem using end-to-end pipelines, where the input data
is usually a Bird Eye View (BEV) HD map and the past
trajectories of the most relevant agents; leveraging this infor-
mation is a must to obtain optimal performance. In that sense,
a reliable Autonomous Driving Stack (ADS) must produce
fast predictions. However, despite many approaches use simple
ConvNets and LSTMs to obtain the social latent features,
State-Of-The-Art (SOTA) models might be too complex for
real-time applications when using both sources of information
(map and past trajectories) as well as little interpretable,
specially considering the physical information. Moreover, the
performance of such models highly depends on the number
of available inputs for each particular traffic scenario, which
are expensive to obtain, particularly, annotated High-Definition
(HD) maps.

In this work, we propose a transformer-based model that
does not rely on HD maps, but on minimal interpretable
map information. The proposed model combines the powerful
attention mechanisms with GNNs to model agent interactions,
it has less parameters than other methods, and it is faster than
most previous methods. We achieve near-SOTA results on the
Argoverse Motion Forecasting Benchmark. Our code is publicly
available at https://github.com/Cram3r95/mapfe4mp.
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I. INTRODUCTION

Autonomous Driving (AD) is a trendy research topic in
academia and industry due to its real-world impact. Predict-
ing fast and accurately the future behavior of traffic agents
around the ego-vehicle is one of the key unsolved challenges
in reaching full self-driving autonomy. In that sense, an
ADS can be hierarchically split in the following tasks: (i)
perception, identify what is around the ego-agent, then track
and predict the behavious of the other agents in the scene.
(ii) planning and decision-making. (iii) control and command
-brake, throttle and steering angle- the agent.

Assuming the surrounding agents have been detected and
tracked i.e. we have their past trajectories, the core task
of the perception layer is Motion Prediction (MP), that is,

This work has been supported from the Spanish PID2021-126623OB-
I00 project, funded by MICIN/AEI and FEDER, TED2021-130131A-I00,
PDC2022-133470-I00 projects, funded by MICIN/AEI and the European
Union NextGenerationEU/PRTR, and ELLIS Unit Madrid funded by Au-
tonomous Community of Madrid.

1 Carlos Gómez-Huélamo, Rodrigo Gutiérrez-Moreno, Rafael
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predicting the future trajectories [1] of the surrounding traffic
agents given the past on-board sensor and map information,
and taking into account the corresponding traffic rules and
social interaction among the agents. These predictions are
typically multi-modal i.e. given the past motion of a partic-
ular vehicle and its surrounding scene, there may exist more
than one possible future behaviour (also known as modes).
Therefore, MP models need to cover the different choices a
driver could make (e.g. going straight, turning, accelerate)
as a possible trajectory in the immediate future, or in a
probabilistic manner [2].

Fig. 1: Motion Prediction Scenario in Argoverse 1 [3]. We
represent: our vehicle (ego), the target agent, and other
agents. We can also see the ground-truth trajectory of
the target agent, our multimodal predictions (with the
corresponding confidences) and plausible centerlines. Cir-
cles represent last observations and diamonds last future
positions.

Traditional methods for motion forecasting [4], [5] are
based on physical kinematic constraints and road map in-
formation with handcrafted rules. These approaches fail
to capture the rich behavior strategies and interaction in
complex scenarios, in such a way they are only suitable for
simple prediction scenes and short-time prediction tasks.

The advances in Deep Learning (DL) allows us to un-
derstand and capture the complexity of a driving scenario
using data-driven methods [6], [7] and achieve the most
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promising state-of-the-art results by learning such intrinsic
rules, and agent interactions. In this work we focus on at-
tention transformer-based approaches such as [8], [9], [10]
for context encoding and Graph Neural Networks (GNNs) to
compute the most interesting social interactions.

In these models, an encoder usually takes into account: (ii)
multiple-agents history states (position, velocity, etc.), and
(ii) a High Definition (HD) Map [4] that includes: inter-
sections, traffic lights and signals, multi-channel codification
or complex vectorization [2], [11]. Note that obtaining and
fusing this information (e.g. actor-to-actor, map-to-actor) is
a research topic by itself [12], [11] and a core part in the
AD pipeline. Here we identify a bottleneck for efficient real-
time applications [4], as usually, more (complex) data-inputs
implies higher model complexity and inference time [13].
Most state-of-the-art methods require an overwhelmed
amount of information as input, specially in terms of the
physical context -HD maps-, this can be inefficient in terms
of latency and computation [13], [14].

In this paper, we aim to achieve accurate trajectory fore-
casting, yet, using light-weight transformer-based models
that take as input the past trajectories of each agent, and
integrate prior-knowledge about the map easily. We make
the following contributions:

1) We propose an Efficient Context-Aware Graph Trans-
former model that does not rely on heavily annotated
HD maps, but on minimal interpretable geometric map
information.

2) Compared to other methods that use LSTM/RNN for
temporal encoding and agents interaction, these net-
works are non-parallelizable, therefore, despite having
more parameters, transformers are faster [15]. Then,
our model has less parameters than other methods, and
it is faster than most previous methods.

3) We achieve near-SOTA results on the Argoverse Mo-
tion Forecasting Benchmark.

4) We provide an open-source framework for MP.

II. RELATED WORKS
One of the crucial tasks that Autonomous Vehicles (AV)

must face during navigation, specially in arbitrarily complex
urban scenarios, is to predict the behaviour of dynamic ob-
stacles. In a similar way to humans that pay more attention to
close obstacles and upcoming turns, rather than considering
the obstacles far away, the perception layer of an AD stack
must focus more on the salient regions of the scene, and the
more relevant agents to predict the future behaviour of each
traffic participant.

Traditional methods [5], [16] usually consider only
physics-related factors (e.g. the velocity and acceleration of
the target vehicle) and road-related factors (predictions must
be in the proper lane), and are only suitable for short-time
prediction tasks [5] and simple traffic scenarios, e.g. constant
velocity in a highway (Constant Turn Rate Velocity, CTRV)
where only a single path is allowed.

Recently, MP learning-based methods [1], [6], [17], [12],
[18] have become increasingly popular since they are able

not only to take into account these above-mentioned factors
but also consider interaction-related factors (like agent-agent
[19], agent-map [6] and map-map [11]) in such a way
the algorithm can adapt to more complex traffic scenarios
(intersections, sudden breaks and accelerations, etc).

Methods based on Graph Neural Networks (GNNs) [20],
[11], [21] have shown very promising results.

MultiPath by Chai et al. [7] uses ConvNets as encoder
and adopts pre-defined trajectory anchors to regress multiple
possible future trajectories.

HOME by Gilles et al. [2], [20] presented a novel rep-
resentation for multi-modal trajectory prediction, where the
model takes as input the context (HD map) and history of
past trajectories, and generates a 2D heatmap of the agent’s
possible future trajectories.

Most SOTA methods use attention mechanisms [22], [23].
In this work we focus on transformer-based approaches [9],
[10] such as Liu et al. mmTransformer [8].

III. OUR APPROACH

Considering the trade-off between curated input data and
complexity, we aim to achieve competitive results on the
Argoverse Benchmark [3] using (i) the agents past obser-
vations and their corresponding interactions and (ii) min-
imal interpretable map information in the form of most
plausible centerlines around the target agent. Therefore, our
model does not require full-annotated (including, topological,
geometric and semantic information) HD Maps or BEV
representations of the scene to compute the physical context.

We use a simple-yet-powerful map preprocessing algo-
rithm where the target agents trajectory is initially filtered.
Next, we compute the feasible area where the target agent
can interact taking into account only the geometric informa-
tion of the HD Map (lane, roads). In Fig. 2 we show an
overview of our final approach.

A. Problem Definition

We tackle the task of predicting the future positions
of certain agents. Each position of the whole sequence is
expressed via x and y coordinates in the 2D ground plane.
We observe the trajectories Xi = {

(
xt

i ,y
t
i
)
∈R2|t = 1, . . . , tobs

} of N agents in the scene and the corresponding physical
information of the scene (2D HD Map), observed at the
timestep tobs. Regarding the Argoverse 1 Motion Forecasting
dataset, our goal is to predict the future positions Yi =
{
(
xt

i ,y
t
i
)
∈ R2|t = tobs + 1, . . . , tpred} of a particular agent,

also referred as the target agent. These future trajectories
should be compliant with the social (i.e. traffic rules, such
as right-a-way, crosswalk, left/right turning) and physical
(ensuring the presence of the vehicle in the driveable area)
constraints of the scene.

B. Preprocessing

Multiple methods [11] [23] consider only the vehicles that
are observable at t=0, handling those agents that are not
observed over the full sequence spectrum (observation length
= obslen + prediction length = predlen) by concatenating a
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Fig. 2: Overview of our Motion Prediction pipeline. We distinguish: 1) Encoding module, which uses minimal HD map
information (most plausible centerlines around the vehicle) and agents past observations (in terms of relative displacements)
to compute the motion and physical latent features, 2) Social Attention module, which computes the social relationships
among the different agents and returns the most relevant social features regarding the target agent, 3) Finally, the Decoding
module calculates the multimodal predictions with their corresponding confidences using the autoregressive strategy using
the past observation of the target agent as input and the concatenation of the social and physical context as hidden vector.

binary flag bt
i that indicates if the agent is padded or not. In

our case, we consider the agents that have information over
the full history horizon f ulllen = obslen + predlen (e.g. 5s
timeframe for Argoverse), reducing the number of agents to
be considered in complex traffic scenarios. Instead of using
2D-BEV (xy plane) local coordinates, the input for the agent
i is a series of relative displacements:

∆ν
t
i = ν

t
i −ν

t−1
i (1)

Where ν t
i represents the state vector (in this case, xy

position) of the agent i at timestamp t.
In terms of map information, we carry out the following

heuristic to obtain the most relevant centerlines around a
particular agent:

1) Filter the agent trajectory as a polynomial curve fitting
problem by means of the Least Squares (2nd order) per
axis and Savitzky-Golais algorithms to obtain a smooth
representation of the position vector.

2) Assuming the agent is moving with a constant ac-
celeration, we are able to calculate the subsequent
derivatives (velocity and acceleration) of the target
agent in tobslen .

3) In order to compute the velocity, acceleration and yaw
angle in the last observation frame, we compute a
weighted mean by assigning less importance (weight)
to the first positions of the corresponding vector and
higher importance to the latter states, in such a way
immediate past observations are the key states to
determine the current spatio-temporal variables of the
agent.

4) We compute the future travelled distance by means of
the well-known Constant Acceleration (CA) model:

d(t) = x0 + vt +
1
2

at2 (2)

where t corresponds to the prediction horizon tpred, x0
is equal to 0 since we want to determine the travelled
distance from the current position and v and a are the
velocity and acceleration in the last observation frame
previously calculated.

5) Get all lane candidates within a bubble, given the agent
last observation and Manhattan distance.

6) Expand the bubble until at least 1 lane is found.
7) Once some preliminary proposals are found, we em-

ploy the Depth First Search (DFS) algorithm to get all
successor and predecessor candidates, merging the past
and future candidates and removing the overlapping
ones.

8) Given these raw lanes, we compute closest candidates
to our current position. Then, the above-mentioned
travelled distance is evaluated along the raw center-
lines. We determine the end-point index p of the
centerline m as the waypoint (each discrete node of
the centerline) where the accumulated distance (con-
sidering the L2 distance between each waypoint) is
greater or equal than the above-computed d(obslen):

p : d(obslen)≤
centerlinelength

∑
p=startpoint

L2(w(p+1),w(p))

(3)
9) Finally, in order to have the same points per center-

line (particularly, the prediction horizon predlen), we
interpolate them using a 1st spline order, considering
as start point the last agent observation and as end or
goal point the aforementioned travelled distance along



the corresponding centerline, and compute the relative
displacements among the different points, in a similar
way to the social past trajectories. Note that if the
number of proposed centerlines is lower than a pre-
defined number M, a virtual centerline is created and
padded with zeros.

Note that in order to enhance the generalization of the
model and prevent overfitting, we follow the principles of
translation and rotation invariant, since the coordinate system
in our model is BEV centered of a given target agent at t = 0,
and we use the orientation from the target location given in
the same timestamp as the positive x-axis.

C. Social and Map encoding

Once the map and social information are processed, the
model needs to encode the spatial and temporal information
of inputs by encoding them into feature vectors. In this work
we focus of designing an effective encoder transformer while
keeping its structure as simple and efficient as possible. In a
similar way to [24], we adopt the combination of CNN/MLP,
attention block and normalization, as observed in Fig. 2

In order to encode the centerlines, we first use an MLP-
based encoder to transform the input vector at each time
stamp (dt

i , which actually represents a plausible position of
the target agent) into deep features:

f t
i = MLPmap

(
dt

i ;Wmap
)

(4)

where MLPmap is a Multi-Layer (3) Perceptron with a
ReLU asnon-linear layer and Wmap as the weight matrix that
is learnable. However, to predict the future trajectory, the
separate feature of each vector is insufficient. For example,
even if two road segments in the first half have the same
structure, the difference in the last half can result in a total
difference in geometric meaning. Therefore, we make use of
the well-established Multi-Head Self-Attention (MHSA) [15]
mechanism to encode the overall set of physical features per
agent as a single vector.

To be more specific, we first calculate the query, key and
value matrix:

qt
i =W q f t

i ,k
t
i =W k f t

i ,v
t
i =W q f t

i ,

where W q,W k,W v are the learnable weight matrices. Then,
we take these three matrices as the inputs of the weighting
block based on softmax:

ht
i = softmax

(
qt

i · ktT
i√

dk

)
vt

i,

where dk is the length of matrix k. Finally, we adopt a 2-
layer MLP to aggregate the features of vectors within a road
segment:

hi = MLPagg
(
ht

i;Wagg
)

,

where MLPagg is a 2-layer MLP with a ReLU non-linear
layer and Wagg is the weight matrix that is learnable. Now,
we have the feature vector for each target agent, stored as a
2D matrix (M,H), where M is the number of road segments
and H is the length of hidden features.

For agents, we use similar techniques to encode and
aggregate the information. In particular, we use a trajectory
encoder block to encode each vector into the form of a
feature vector. Then, similar to roads, even two vehicles have
the same movement in the first half of their trajectory, and
the differences in the last half of trajectories can lead to a
totally different future trajectory. Therefore, we use a MHSA
block to encode the overall feature of one trajectory in the
observed time period and form a single feature vector for
each agent. Finally, a 2-layer MLP-based aggregator is used
to construct a single feature vector for each trajectory.

One aspect worth mentioning is the agent encoder. While
trajectory data are, unlike roads (well structured) usually
non-smooth, as expected from real-world datasets. Then,
while we make use of MLP to compute the deep physical
features, we use a 1D-CNN based motion encoder in the
first stage due to its wider receptive field compared with
MLP in such a way the convolutional encoder can smooth
the trajectories and reduce the influence of noisy input
trajectories.

D. Social Attention Module

After encoding the past history of each vehicle in the
sequence, we compute the agent-agent interactions to obtain
the most relevant social information of the scene. For this
purpose, we construct an interaction graph using Crystal-
GCN [23]. Then, MHSA [15] is applied to enhance the
learning of agent-agent interactions. One of the advantages of
using this powerful combination (GCN + Attention) is that,
unlike other methods, we do not limit nor fix the number of
agents per sequence, in such a way the agent of interest only
pays attention to the actual social context around it.

Before creating the interaction mechanism, we split the
temporal information in the corresponding scenes, taking into
account that each traffic scenario may have a different num-
ber of agents. The interaction mechanism is defined in [23]
as a bidirectional fully-connected graph, where the initial
node features v(0)i are represented by the latent temporal
information for each vehicle hi,out computed by the motion
history encoder. On the other hand, the edges from node k to
node l is represented as the vector distance (ek,l) between the
corresponding agents at t = obslen in absolute coordinates,
where the origin of the sequence (x = 0,y = 0) is represented
by the position of the target at t = obslen:

ek,l = ν
obslen
k −ν

obslen
l , (5)

Given the interaction graph (nodes and edges), the Crystal-
GCN, proposed by [25], is defined as:

v(g+1)
i = v(g)i +

N

∑
j=0: j ̸=i

σ

(
z(g)i, j W(g)

f +b(g)
f

)
⊙µ

(
z(g)i, j W(g)

s +b(g)
s

)
. (6)

This operator, in contrast to many other graph convolu-
tion operators [21], [11], allows the incorporation of edge



features in order to update the node features based on the
distance among vehicles (the closer a vehicle is, the more
is going to affect to a particular node). As stated by [23],
we use Lg = 2 layers of the GNN (g ∈ 0, . . . ,Lg denotes
the corresponding Crystal-GCN layer) with ReLU and batch
normalization as non-linearities between the layers. σ and
µ are the sigmoid and softplus activation functions respec-
tively. Moreover, z(g)i, j = (v(g)i ||v(g)j ||ei, j) corresponds to the
concatenation of two node features in the gth GNN layer and
the corresponding edge feature (distance between agents),
N represents the total number of agents in the scene and
W and b the weights and bias of the corresponding layers
respectively.

After the interaction graph, each updated node feature
v(Lg)

i contains information about the temporal and social
context of the agent i. Nevertheless, depending on their
current position and past trajectory, an agent may require to
pay attention to specific social information. To model this, we
make use of a scaled dot-product Multi-Head Self-Attention
mechanism [15] which is applied to the updated node feature
matrix V(Lg) that contains the node features v(Lg)

i as rows.
Then, after computing each head separately, we combine

the information of the different attention heads in a single
matrix, which will represent the Social Attention Matrix
SATT (output of the Social Attention Module, after the
Crystal-GCN and MHSA mechanisms), where each row
illustrates the interaction-aware feature of the agent i with
surroundings agents, considering the temporal information
under the hood, being Wo / bo the corresponding weight and
bias of the layer that merges the different attention heads.

Regarding the Argoverse Motion Forecasting benchmark,
we only consider the row of the final matrix that takes into
account the interactions of the target agent with surrounding
obstacles.

E. Decoding Module

The decoding module is the third component of our model,
as observed in Fig. 2. It consists of an LSTM network, which
recursively estimate the relative displacements for the future
timesteps, in the same way we represent the past observations
as the difference between two consecutive timesteps in the
x and y-axis. We concatenate the social context provided
by the Social Interaction Module -only paying attention to
the target agent row- and the latent features provided by the
physical encoder, which will finally represent the deep traffic
context around the target agent (its encoded trajectory, social
interactions and encoded plausible future trajectories on the
road, that is, the encoded centerlines).

Regarding the LSTM input, it is represented by the en-
coded past n relative displacements of the target agent after a
spatial embedding. We process the output of the LSTM using
a standard Fully-Connected (FC) layer (one per mode). Once
we have the relative prediction in the timestep t, we shift
the initial past observation data in such a way we introduce
our last-computed relative displacement at the end of the
vector, removing the first data. We identify this technique as
a temporal decoder, where a window of size n is analized

by the autoregressive decoder in contrast to other techniques
[26] [19] where only the last data is considered.

Finally, after performing relative displacements to absolute
coordinates operation, we obtain our multimodal predictions
Ŷ ∈ Rk×predlen×datadim , where k = 6 represents the number
of modes, predlen = 30 represents the prediction horizon
and datadim represents the data dimensionality, in this case
2 (xy, predictions from the BEV perspective). Once the
multimodal predictions are computed, they are concatenated
and processed by a residual MLP to obtain the confidences
for each trajectory.

IV. EXPERIMENTAL RESULTS

a) Dataset: Large-scale annotated datasets have been
proposed to impulse the research on the MP task. Focusing
on self-driving cars, we find several state-of-the-art datasets
with their corresponding benchmarks.

The Waymo Open Motion Prediction [27] and NuScenes
Prediction [28] datasets offer thousands of real driving sce-
narios and exhaustive annotations. In this work, we focus on
the Argoverse Motion Forecasting Dataset [3], which is the
most frequently used dataset for MP development in the field
of AD. It contains more than 300K scenarios, each traffic
scenario contains a 2D BEV centroid of unique objects (so,
multi-object tracked) at 10 Hz. The task is to predict the
future trajectories of a particular target agent in the next 3s,
given the past 2s observations in addition to the HD map
features.

For training (205,942 samples) and validation (39,472
samples), full 5-second trajectories are provided, while for
testing (78,143 samples), only the first 2 seconds trajectories
are given.

b) Metrics: We evaluate the performance of our mod-
els using the standard metrics for multimodal MP [3]: (i)
Average Displacement Error (ADE), which averages the L2
distances between the ground truth and predicted output
across all timesteps, (ii) Final Displacement Error (FDE),
which computes the L2 distance between the final points of
the ground truth and the predicted final position. When the
output is multimodal, we generate k outputs (also known as
modes) per prediction step and report the metrics for the best
out of k outputs, regarding the agent i.

We report results for k = 1 (unimodal case, only the mode
with the best confidence is considered) and k = 6 as this is
the standard in the Argoverse Motion Forecasting dataset in
order to compare with other models.

A. Implementation Details

We train our models to convergence using a single
NVIDIA RTX 3090, and validate our results on the official
Argoverse validation set [35]. We use Adam optimizer with
learning rate 0.001, batch size 128 and linear LR Scheduler
with 0.5 decay factor on plateaus. The hidden dimension in
both encoding modules is 128, whilst the hidden dimension
for the autoregressive prediction is 256. The social encoder
first smooths the trajectories of the agents and then presents 2
layers of self-attention and normalization mechanisms, whilst



TABLE I: Results on the Argoverse 1 Motion Forecasting Leaderboard. We borrow some numbers from [3], [2], [20]. We specify the map info for each
model: Raster, GNN or polyline. We indicate the error difference of our best method w.r.t top-25 SOTA methods, in centimeters. Our predictions differ
w.r.t top-25 SOTA only 6cm and 10cm for the uni-modal and multi-modal minADE metric respectively, yet our model is much more efficient. We bold
the best results in black and the second best in blue for each metric. Our methods are indicated with †. TP = Target Points, CB = Class Balance.

Model Map info K=1 K=6
minADE ↓ minFDE ↓ minADE ↓ minFDE ↓

Constant Velocity [3] - 3.53 7.89
Argoverse Baseline (Nearest Neighbour) [3] - 3.45 7.88 1.71 3.29
Argoverse Baseline (LSTM) [3] Polyline 2.96 6.81 2.34 5.44

TPNet-map-mm [29] Raster 2.23 4.70 1.61 3.70
Challenge Winner: uulm-mrm (2nd) [3] Polyline 1.90 4.19 0.94 1.55
Challenge Winner: Jean (1st) [22], [3] Polyline 1.74 4.24 0.98 1.42
TNT [18] GNN 1.77 3.91 0.94 1.54
mmTransformer [8] Polyline 1.77 4.00 0.84 1.33
HOME [2] Raster 1.72 3.73 0.92 1.36
LaneConv [30] Raster 1.71 3.78 0.87 1.36
LaneGCN [11] GNN 1.70 3.77 0.87 1.36
LaneRCNN [21] GNN 1.70 3.70 0.90 1.45
GOHOME [20] GNN 1.69 3.65 0.94 1.45
† Attention-based GAN [31], including CB and TP Polyline 1.73 4.07 - -
† MAPFE4MP (Social baseline) [32] - 1.89 4.19 1.26 2.67
† MAPFE4MP (Map baseline) [32] Polyline 1.72 3.89 0.96 1.63
SOTA (top-10) [20], [8], [33], [34] 1.57±0.06 3.44±0.15 0.79±0.02 1.17±0.04
SOTA (top-25) [20], [8], [33], [34] 1.63±0.08 3.59±0.20 0.81±0.03 1.22±0.06

† Ours Polyline 1.71 (8cm) 3.75 (26cm) 0.91 (10cm) 1.49 (27cm)

the physical encoder employs an MLP encoder in every
layer (again 2) in addition to self-attention and normalization,
performing feature aggregation along the hidden dimension.

In terms of the Social Interaction module, the latent
vector of the Crystal-GCN layers is 128 and the number
of heads in the MHSA module is Lh = 4. Regarding the
Autoregressive predictor, we set the window size to 20 to
match the observation length. We set the number of plausible
centerlines M as 3, which cover most cases (padding with
zeros if needed).

The regression head is represented by k=6 FC layers that
map the output latent vector returned by the LSTM to the
final output relative displacements (dim = 2, xy). Multimodal
predictions are processed by a residual MLP to obtain the
corresponding confidences (similar to [11]). We refer to the
aforementioned code for more details.

a) Loss: We use the Hinge (a.k.a. max-margin) and
Winner-Takes-All (WTA) losses between the predicted tra-
jectories and the ground-truth, optimizing for confidences
and regressions [11]:

L = βLHinge + γLWTA (7)

Where β = 0.5 and γ = 1 initially, and can be manually
adjusted during training (especially γ).

B. Results

As we state in Section I and III, our main goal is to achieve
competitive results while not using complex HD maps, and
being efficient in terms of model complexity (FLOPs -
Floating-Point Operations per seconds- and parameters). For

this reason, we have proposed a light-weight transformer
model, whose main input is the history of past trajectories
of the agents, complemented by interpretable map-based
features. In this section we aim to analyze our results and
ablation studies, and prove the benefits of our approach for
self-driving motion prediction.

The Argoverse Benchmark [35] has over 300 submitted
methods, in our opinion, the top-100 submissions achieve
essentially the same performance i.e. the standard deviation
(in meters) of the ADE errors is 0.05m, meaning that
there is no significant performance difference. As observed
in Table ??, best metrics are obtained by methods that
employ complex graphs-based mechanisms to encode the
physical information and agent-map interactions, though we
achieve up-to-pair results with other state-of-the-art methods,
specially in terms of multimodal prediction (k = 6).

Furthermore, in terms of efficiency, we find very few
methods that reports efficiency-related information [20], [2],
[8], [13]. Furthermore, comparing runtimes is difficult, as
only a few methods provide code, and this information is
missing at the Argoverse Benchmark [35]. As studied by
[13], CNN-based models for processing the HD map infor-
mation are able to capture social and map interactions, but
most of them are computationally too expensive - See Table
II -. We show the efficiency comparison with other relevant
methods in Table II. We calculate FLOPs and parameters
using a third-party library 1. Some minor operations were not
supported, yet, their contributions to the number of FLOPs
were residual and ignored. The information for the other

1https://github.com/facebookresearch/fvcore



Fig. 3: Qualitative Results on challenging scenarios (intersections, sudden accelerations and breaks, etc.) using our best
model. We represent: our vehicle (ego), the target agent, and other agents. We can also see the ground-truth trajectory
of the target agent, our multimodal predictions (with the corresponding confidences) and plausible centerlines. Circles
represent last observations and diamonds last future positions. Circles represent last observations and diamonds last future
positions.

methods is consulted from [2] [20] [13] [39] [8]. To calculate
the FLOPs, we follow the common practice [13] [38] [20] of
fixing the number of lanes, which in our case, is limited to
3. Gao et al. [13] compares its GNN method with CNNs
of different kernel sizes and map resolution to compute
deep map features (decoder operations and parameters are
excluded, min), demonstrating how CNN-based methods
notably increase the amount of parameters and operations per
second. We do not require CNNs to extract features from
the complex HD map - see Sec. III-B. Moreover, our map
prior-features are interpretable in comparison with CNNs
high-dimensional outputs.

We use MHSA with a dynamic number of input agents,
this typically implies a quadratic growth in complexity with
the number of agents in the scene [15].

Even though our method do not obtain the best regression
metrics, we achieve comparable results (Table II) against
other SOTA approaches whilst our number of FLOPs is sev-

eral orders of magnitude smaller than other approaches [38]
[11], obtaining a good trade-off between model complexity
and error (minADE, k=6).

Moreover, as it is well known in machine learning, the
number of parameters is not always proportional to the
inference speed. In that sense, our transformer approach also
has certain benefits in comparison to LSTM/RNN temporal
encoding, since these are non-parallelizable, therefore, de-
spite having more parameters, transformers are faster [15].

We provide qualitative results in Fig. 3, where we show
challenging scenarios with multiple agents and complex
topology. It can be observed that the target agent is able to
illustrate different modality predictions in terms of different
directions (when facing an intersection) or in terms of
different profiles (sudden break, constant velocity or sudden
acceleration in a highway).



TABLE II: Efficiency comparison among SOTA methods. We show the number of parameters for each model, FLOPs, minADE (k=6) in the Argoverse
test set, and runtime. Works from [13] focus on unimodal predictions (k=1). N/A stands for Not Available. Time measured on a RTX 2080 Ti (using batch
32). Some numbers from [36], [37]. We bold the best results in black and the second best in blue for each metric. Our methods are indicated with †.

Model # Par. (M) FLOPs (G) ↓ minADE (m) ↓ Run (ms) ↓

CtsConv [14] 1.08 0.34 1.85 684
R18-k3-c1-r100 [13] 0.25 0.66 2.21 N/A
R18-k3-c1-r400 [13] 0.25 10.56 2.16 N/A
VectorNet [13] 0.072 0.41 1.66 1103
DenseTNT (w/ 100ms opt.) [38] 1.1 0.763 0.88 2644
DenseTNT (w/ goal set pred.) [38] 1.1 0.763 0.85 531
LaneGCN [11] 3.7 1.071 0.87 173
mmTransformer [8] 2.607 0.177 0.84 N/A
MF-Transformer [39] 2.469 0.408 0.82 N/A
HOME+GOHOME [20] 0.40 0.09 0.94 32
MAPFE4MP (Map baseline) [32] 0.621 0.047 0.96 31

Ours 1.235 0.038 0.91 16

V. CONCLUSIONS

In this work, we propose a transformer-based model that
does not rely on heavily annotated HD maps, yet it uses
past trajectories and minimal map priors. The proposed
method combines the transformer attention mechanisms with
GNNs to model agent interactions. We show that it has
less parameters than other methods, and it is faster than
most previous methods. We achieve near-SOTA results on
the Argoverse Motion Forecasting Benchmark while having
a low computational cost compared to other state-of-the-
art proposals. In future works, we plan to extend our work
for multi-agent modal prediction in the Argoverse 2 dataset,
taking into account more complex features and interactions
in an efficienct and powerful way.Our framework is open-
sourced.
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[32] C. Gómez-Huélamo, M. V. Conde, and M. Ortiz, “Exploring map-
based features for efficient attention-based vehicle motion prediction,”
arXiv preprint arXiv:2205.13071, 2022.

[33] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti,
A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, et al.,
“Multipath++: Efficient information fusion and trajectory aggregation
for behavior prediction,” in 2022 International Conference on Robotics
and Automation (ICRA), pp. 7814–7821, IEEE, 2022.

[34] M. Ye, T. Cao, and Q. Chen, “Tpcn: Temporal point cloud networks
for motion forecasting,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11318–11327, 2021.

[35] “Argoverse benchmark.” https://eval.ai/web/challenges/
challenge-page/454/evaluation. Accessed: 2023-01-13.

[36] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu, “Hivt: Hierarchical vector
transformer for multi-agent motion prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[37] C. H. Prarthana Bhattacharyya and K. Czarnecki, “Ssl-lanes: Self-
supervised learning for motion forecasting in autonomous driving,”
2022.

[38] J. Gu, Q. Sun, and H. Zhao, “Densetnt: Waymo open dataset
motion prediction challenge 1st place solution,” arXiv preprint
arXiv:2106.14160, 2021.

[39] B. He and Y. Li, “Multi-future transformer: Learning diverse inter-
action modes for behaviour prediction in autonomous driving,” IET
Intelligent Transport Systems, 2022.

https://eval.ai/web/challenges/challenge-page/454/evaluation
https://eval.ai/web/challenges/challenge-page/454/evaluation

	INTRODUCTION
	RELATED WORKS
	OUR APPROACH
	Problem Definition
	Preprocessing
	Social and Map encoding
	Social Attention Module
	Decoding Module

	EXPERIMENTAL RESULTS
	Implementation Details
	Results

	CONCLUSIONS
	References

