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Abstract— This paper presents an approach that improves
the efficiency and generalization capabilities of Reinforcement
Learning-based autonomous vehicles operating in urban driving
scenarios. The proposed method introduces an Efficient Social-
based Motion Prediction module, which predicts the future
positions of vehicles within the scenario. These predictions
serve as input to a Reinforcement Learning-based Decision-
Making module, responsible for executing high-level actions.
The Proximal Policy Optimization algorithm is employed to
develop our approach. We conduct experiments in an unsignal-
ized T-intersection scenario using the SMARTS framework,
comparing our approach with and without the proposed state
representation, as well as against various baseline methods.
Through this study, we demonstrate that our approach achieves
performance improvements, particularly in scenarios involving
high velocities. Our code and qualitative results are available
at https://github.com/Cram3r95/argo2goalmp.

I. INTRODUCTION

The increasing popularity of autonomous vehicles (AVs)
has brought with it significant challenges in ensuring safe
and effective decision-making, particularly in complex urban
driving scenarios [1]. Reinforcement learning (RL) tech-
niques have emerged as a promising solution to address
these challenges [2]. They enable AVs to learn from their
interactions with the driving environment, without relying on
pre-defined rules. However, RL-based approaches still face
a number of limitations that can hinder their development,
including issues related to state representation.

A key challenge in RL-based AVs is the development
of effective state representations that can account for the
complexity of urban driving scenarios. Unlike in simpler
environments, state representations for urban driving must be
able to incorporate a wide range of information, including
dynamic features of traffic flows and interactions among
different agents. Finding ways to effectively encode this
information and develop accurate state representations is
essential to enabling RL-based AVs to generalize to various
scenarios and make effective driving decisions. Distilling
predictive information from scene representations can aid in
the development of effective decision-making policies for
AVs. By better understanding the potential consequences
of different driving actions, RL-based AVs can make more
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informed decisions that lead to safer and more efficient
driving behaviour.

This paper proposes an approach to enhance the efficiency
and generalization of RL-based AVs in urban driving scenar-
ios. Specifically, we introduce the use of a Motion Prediction
(MP) module to obtain the future positions of the ego-vehicle
and the surrounding vehicles (adversaries) in the scenario.
These predictions are the input to an RL-based decision-
making module that executes high-level actions. Our ap-
proach is developed using the Proximal Policy Optimization
(PPO) algorithm [3]. We carry out an evaluation in the
unsignalized T-intersection scenario shown in Fig. 1 with
and without the proposed state representation and provide a
comparison with some baseline methods.

Adversary 1

Adversary 2

Adversary 3

T-Intersection scenario

Fig. 1. Simulation environment. A visualization of the ego-vehicle
driving in the T-intersection scenario. The past positions of the
adversaries (yellow) and the predicted trajectories (blue) are repre-
sented in the scenario.

A. Related Works

In recent years, RL has emerged as a promising ap-
proach for developing decision-making policies for AVs [4],
outperforming ruled-based approaches that usually cannot
solve complex situations [5]. However, a large number of
interactions with the environment are required to obtain
the desired policy. This is why other approaches such as
imitation learning [6] and inverse RL [7], based on human
experts’ behaviours are also used in the literature.

This work is focused on a critical issue for RL-based
AVs, which is the state representation problem. Traditional
state representations often focus on low-dimensional features
such as distance to obstacles, lane positions, and vehicle
velocities [8]. However, these representations may not be
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Fig. 2. An overview of the Augmented Reinforcement Learning with Efficient Social-based Motion Prediction for Autonomous Decision-
Making. The observations (both position and ID, so, trackers) of the vehicles in the scenario are obtained from the simulator. The MP
module estimates the future positions of these vehicles, taking into account the most plausible score of a multi-modal prediction. The
decision-making module selects high-level actions based on this information. These actions are executed by the simulator, which provides
a new state to the framework.

sufficient to capture the complex interactions among different
agents and road structures in urban driving scenarios. To
address the state representation problem, some methods
have been proposed that use higher-dimensional or learned
representations, such as convolutional neural networks [9]
and recurrent neural networks [10]; other methods have
been proposed to use more detailed representations, such
as Bird-Eye-View images [11], image augmentation [12] or
occupancy grids [13]. These methods have shown promising
results in improving the generalization and robustness of
the decision-making approaches. Recently, transformer-based
approaches have gained increasing attention for their ability
to capture long-term dependencies and interactions among
different entities in sequential data. In the context of AVs,
transformers have been used to reduce the computational
load in end-to-end approaches [14] and anticipate future
states with prediction-aware planning [15].

B. Contribution

The objective of this study is to illustrate the efficacy of
employing a low-dimensional state representation in conjunc-
tion with an MP method. We aim to prove that the proposed
framework can lead to good performance in urban scenarios.
More specifically, we present the following contributions:

• The augmentation of RL techniques with MP to improve
state representation. By predicting vehicle trajectories,
we can better capture the complex interactions between
different agents and road structures in urban driving
scenarios.

• Higher explainability than end-to-end methods. Inter-
mediate states are accessible in our approach. This can
help to understand the decisions made.

• We provide a comparison with baseline methods in a
standard scenario. We demonstrate that our approach
leads to some improvements in performance, particu-
larly in scenarios with high velocities.

II. AUGMENTED REINFORCEMENT LEARNING WITH
MOTION PREDICTION

The RL framework proposed in this work, which executes
high-level decisions to solve urban driving scenarios, is
represented in Fig. 2. The past observations of the position
of adversaries are obtained from the environment. This
information is provided to the MP module, which estimates
future positions. The PPO algorithm takes these predictions
and generates the decision-making output.

We propose two different learning processes: supervised
learning for the MP module and an RL approach for the
decision-making module. These two modules are trained
separately, which allows access to the information of the
predictions that feed the decision-making module.

A. Efficient Social-based Motion Prediction

Predicting the future behaviour of traffic agents [16]
around the ego-vehicle is one of the key unsolved challenges
in reaching full self-driving autonomy. In that sense, an Au-
tonomous Driving Stack (ADS) can be hierarchically broken
down into the following tasks: (i) perception, responsible
for identifying what is around the vehicle, then tracking and
predicting what will happen next, (ii) planning and decision-
making, deciding what the ADS is going to do in the near
future and (iii) control, that sends the corresponding low-
level commands (brake, throttle and steering angle) to the
vehicle.

This prediction must be multi-modal, which means that
given the past motion of a particular vehicle and its surround-
ing scene, there may exist more than one possible future
behaviour (also known as modes). Therefore, MP models
need to cover the different choices a driver could make (i.e.
going straight or turning, accelerations or slowing down) as a
possible trajectory in the immediate future or as a probability
distribution of the agent’s future location. In other words,
when an ADS attempts to make a specific action (e.g. left
turn), it must consider the future motion of the other vehicles,
since its own future actions (also known as decision-making
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Fig. 3. Overview of our Efficient Social-based Motion Prediction. The main inputs are the relative displacements and centers (last
observations) of the agents in the ego-vehicle frame. The relative displacements and centers are encoded through a sequence of Residual,
Convolutional Blocks, LSTM and Attention modules. Finally, a multi-modal decoder based on residual blocks is used to predict K final
future trajectories (modes) and their confidence scores.

or behaviour planning) depends on all possible manoeuvres
of the other agents of the scene for safe driving.

Since our proposed pipeline (Fig. 2) is multi-stage to
provide a more interpretable framework, we follow the
principles of the Argoverse 2 Motion Forecasting dataset
[16] to train our prediction model. In our case, we build
an efficient model solely based on past trajectories (motion
history, obslen = 50) and agents interactions, taking into
account the corresponding traffic rules, not requiring fully-
annotated HD map information, to predict obslen = 60 future
steps.

B. Preprocessing

The SMARTS [17] framework provides only the positions
of the agents in the timestamp t. Nevertheless, in order
to predict the future predlen trajectories of the agents, we
require their corresponding obslen trackers over a certain set
of observations. Most vehicle prediction datasets [16] aims
to predict the future behaviour of a target agent assuming
the surrounding agents have been detected and tracked (so,
monitored over time) and the map information is also pro-
vided. In that sense, since SMARTS provide the agents in
the same order for consecutive timestamps (that is, agent 5,
unless it disappears from the scene, will be agent 5 again in
the next frame), we are able to compute a FIFO (First Input
First Output) for each agent, not requiring data association
[18] to perform this task.

On top of that, as proposed by multiple methods [19],
[20], we consider only the vehicles that are observable at
t=0, handling those agents that are not observed over the full
sequence spectrum (observation length = obslen + prediction
length = predlen) by concatenating a binary flag bti that
indicates if the agent is padded or not. In particular, we
filter the static elements and track fragments scored by
Argoverse 2 to get only the most relevant traffic agents,
reducing the number of agents to be considered in complex
traffic scenarios. Furthermore, to make the model translation
and rotation invariant, the coordinate system in our model
is Bird-eye-view (BEV) centered on a given target agent at

t = 0, and we use the orientation from the target location
given in the same timestamp as the positive x-axis. Note that
this representation will benefit the model to have a common
representation to enhance the generalization of the model and
prevent overfitting. Once the scene has been translated and
rotated, instead of using absolute 2D-BEV (xy plane), the
input for the agent i is a series of relative displacements:

∆νt
i = νt

i − νt−1
i (1)

Where νt
i represents the state vector (in this case, xy

position of the agent i at timestamp t).
1) Efficient social encoding: Since our model focuses

on an efficient encoding of social information, we base
our model on the ActorNet backbone proposed by [19], as
observed in Fig. 3. While both CNNs and RNNs can be used
for temporal data, ActorNet uses a 1D CNN to process the
trajectory input for its effectiveness in extracting multi-scale
features and efficiency in parallel computing. The output is
a temporal feature map, whose element at t = 0 is used as
the actor feature. The network has 3 groups/scales of 1D
convolutions. Each group consists of 2 residual blocks, with
the stride of the first block as 2. Then, a Feature Pyramid
Network (FPN) [21] is used to fuse the multi-scale features,
and apply another residual block to obtain the output tensor.

On top of that, in a similar way to [22], the agents’ centers
(observations at t = 0) are encoded through a linear layer
to initialize the hidden and cell vector of the LSTM layer,
which processes the previously latent motion history. After
that, a social attention block is used to compute the most
representative agents’ interaction.

2) Multi-modal decoder: Taking the final actor features
after motion history and agents interaction, a multi-modal
prediction header outputs the final motion forecasting. For
each agent, it predicts K possible future trajectories and
their confidence scores. The header has two branches, a
regression branch to predict the trajectory of each mode and
a classification branch to predict the confidence score of each
mode.



For the m-th actor, a residual block and a linear layer in
the regression branch to regress the K sequences of BEV
coordinates are obtained:

Om,reg = {(pk
m,1,p

k
m,2, ...,p

k
m,T )}k∈[0,K−1] (2)

where Om,reg is the whole set of regressions and pk
m,i is

the predicted m-th actor’s BEV coordinates of the k-th mode
at the i-th time step.

On the other hand, for the classification branch, a Multi-
Layer Perceptron (MLP) to pk

m,T − pm,0 to get K distance
embeddings is applied. Finally, each distance embedding is
concatenated with the actor feature, applying a residual block
and a linear layer to output K confidence scores, Om,cls =
(cm,0, cm,1, ..., cm,K−1).

In this particular work, we take the most plausible future
trajectory for each agent (both the adversaries and the ego-
vehicle) in the following timestamps: t=0, t=10, t=20 and
t=30, which correspond to the current position and the
predicted position of the corresponding agent 1, 2 and 3
seconds in the future respectively. Even though we train
our prediction model following the principles of Argoverse
2 (5s and 6s of observation and prediction respectively),
given the velocities and traffic density of the experiments
run in the SMARTS simulator (see Section III), we believe
that predicting 3s in the future is enough for this purpose
to evaluate the high-level actions of decision-making layer
preventing overfitting.

C. Reinforcement Learning-based Decision Making
A Markov Decision Process (MDP) is a discrete-time

stochastic control process that provides a mathematical
framework for modelling decision-making environments. An
MDP is a tuple (S,A, P,R) in which S is a set of states
named state space, A is a set of actions named action space,
P is the probability function and R is a reward function. An
algorithm with a given state s ∈ S takes an action a ∈ A
transitioning to s′ with a probability P (s, a, s′), and getting a
reward R(s, a, s′) as shown in Fig. 2. This algorithm iterates
through this loop to learn a desired behaviour.

The goal in an MDP is to find a good policy for the
decision-making system. The objective is to find the optimal
policy π ∗ (s), that maximizes the cumulative function of the
future reward.

We represent the driving scenario as an MDP to develop
our decision-making module. We consider the output of the
MP module as an input to this module. The state space,
action space, and reward functions are defined in this section.

1) State Space: The state is defined by the predicted
trajectories of the ego-vehicle and the five closest vehicles
in the scenario.

st = (Kego
t ,K1

t , ...,K
5
t ) (3)

where Ki
t = (xi

t0 , y
i
t0 , x

i
t1 , y

i
t1 , x

i
t2 , y

i
t2 , x

i
t3 , y

i
t3) contains the

future estimations of the positions of the vehicles across
a future horizon of three seconds. A representation of a
state vector is shown in Fig 4, where the vehicles’ predicted
positions are represented.

(xego, yego)t

(xego, yego)t=t+1

(xego, yego)t=t+2

(xego, yego)t=t+3
Kt

1

Kt
2

Fig. 4. The ego-vehicle (red) and the adversaries (blue) predicted
positions in the next three seconds are represented.

2) Action Space: We propose a discrete action space
formed by two actions. A low-level controller implemented
by the simulator is in charge of performing smooth driving
based on these actions. These actions are focused on the
ego-vehicle velocity. The first action aims to reach a desired
predefined velocity and the second action reduces the veloc-
ity until the vehicle stops. The action space is defined as:

a = (Drive, Stop) (4)

3) Reward Function: The reward function is defined in
terms of success or failure. A negative reward is given when
there is a collision and a positive reward is given when the
vehicle reaches the success point, situated at the end of the
scenario.

r = kv ∗ vego +
{

1 if sucess
−1 if collision

(5)

As shown in eq. 5, we add one more factor to the reward
function to encourage the ego-vehicle to move. We propose
a cumulative reward based on its longitudinal velocity. We
use a constant kv , small enough to ensure that the reward
per episode is bounded between -1 and 1.

Our approach for the RL implementation (Fig. 5) builds
upon our previous research [23], where we demonstrated that
incorporating a feature extractor module to a PPO algorithm
yields improved metrics and faster convergence.

state
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Fig. 5. The neural network architecture consists of two fully
connected layers followed by the concatenation of both adversaries
and ego vehicle features. The resulting concatenated features are
then passed through an actor-critic structure, which comprises two
layers, each containing 128 neurons.

In this implementation, we introduce separate feature
extractors for adversaries and the ego-vehicle, which are
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Fig. 6. Simulation overview of our system behaviour. The red car follows the green path, and each image represents a different frame of
the simulation. We also show the predicted positions below each image and the actions taken by the decision-making module.

then concatenated into the input for the PPO algorithm. This
algorithm consists of two models: the Actor, responsible for
selecting an action based on the policy, and the Critic, which
estimates the value function.

III. EXPERIMENTS

A. Driving Scenario

To validate the performance of our approach, an intersec-
tion scenario is implemented in SMARTS, which is a SUMO
[24] based simulation platform for research on autonomous
driving.

The scenario is an urban unsignalized T-intersection. The
objective is to execute a left turn maneuver in the absence
of traffic signal protection, allowing the continuous flow of
traffic. Fig. 1 illustrates the drivable area (highlighted in
green) where the ego-vehicle can navigate to reach the target
location. Simulations are reset under three conditions: 1) the
ego-vehicle successfully reaches the target, 2) the episodic
step surpasses the maximum time steps limit, and 3) the ego-
vehicle collides or deviates from the drivable route.

We define different scenario configurations to test the
performance of the proposed framework. First, the regular
T-intersection scenario which is defined in SMARTS, where
a random number of vehicles between [5-10] are spawned
every minute, and the maximum velocity of these vehicles is
14 km/h. Then, we propose different configurations increas-
ing the maximum velocity of the adversaries to 30, 60, and
90 km/h.

B. Evaluation Metrics

In decision-making, the success rate serves as a direct
measure of the effectiveness of the RL agent in accomplish-
ing the designated task. Besides, the average time of the
episode is a common metric used in the literature. These
metrics are defined as:

• success [%] = nsuccess/nsuccess

• te[s] =
∑

tn/nepisodes

where the number of episodes ne is 100 and simulation
time is measured in seconds.

C. Results

To evaluate the performance of our approach we first
present a comparison with the existing methods for decision-
making in the literature and then an ablation study is con-
ducted.

This first study compares the proposed approach with other
existing methods for decision-making. The baseline methods
used for comparison are Data-regularized Q-learning (DrQ)
[12], Soft Actor-Critic (SAC) [25], and PPO. These methods
have different features and serve as reference points for
evaluating the proposed approach. The results presented in
Table I demonstrate a higher success rate of our proposal.

TABLE I. A comparison of the proposed framework against the
existing baselines in the T-intersection scenario. The success rate
S[%] and the average episode time te are presented.

Metric Ours PPO SAC DrQ
S[%] 80 70 68 78
te(s) 22.3 36.4 19.2 18.2

Two ablative studies are carried out to see how the use of
MP in the state representation can improve the performance
of the framework. The first approach is to use just the
position of the vehicles as the input to the decision-making
module and the second approach is to use the locations
over the past five seconds. We test the three approaches
under the previously introduced configurations with different
adversaries’ velocities, from 15km/h to 90km/h. To correctly
evaluate the performance of the decision-making system
we propose different metrics that aim to provide a better
comprehension of the behaviour. We believe that the success
rate is still a good indicator, but we slightly modify the
average time, only considering the successful episodes to
calculate this metric. In addition, we include a new relevant
metric: the average ego-vehicle velocity when a collision
takes place vc.

The results presented in Table II show that the use of the
predicted positions in the state vector avoids more collisions
as the velocities increase. Besides, the average collision
velocity and the average time to complete the scenario are
lower for the proposed approach.



TABLE II. An ablation study comparing three state representations
with the different scenario configurations: Current positions, Past
positions, and Future positions. The success rate S[%], the episode
time te in these successful episodes, and the average velocity of
collision vc are presented.

Metric 15 km/h 30 km/h 60 km/h 90 km/h

Future
S [%] 80 78 78 77
te (s) 22.3 23.3 23.4 23.3

vc (km/h) 4.9 5.1 5.6 5.6

Current
S [%] 77 73 70 70
te (s) 25.1 23.4 23.4 23.3

vc (km/h) 5.1 5.5 6.1 6.2

Past
S [%] 78 75 72 71
te (s) 24.2 23.3 23.2 23.1

vc (km/h) 4.9 5.2 5.9 6.0

Finally, an overview of the behaviour of our system is
shown in Fig. 6. The ego-vehicle in red follows the trajectory
defined in green. Each image represents a different frame of
the simulation and the respective predictions of the positions
are displayed below. Besides, the action executed by the
decision-making module for each frame is shown.

IV. CONCLUSIONS AND FUTURE WORKS

The proposed method incorporates an Efficient Social-
based MP module, which predicts the future positions of
vehicles within the scenario. These predictions improve a
Reinforcement Learning-based Decision Making module.
The results of the study demonstrate that our approach
achieves significant performance improvements, particularly
in scenarios involving high velocities.

This research opens up several potential directions for
future work. The proposed approach can be evaluated in
a broader range of urban driving scenarios to assess its
robustness and scalability, up-to-pair with the difficulty of
the Argoverse 2 dataset scenarios (especially in terms of
intersections or lane change behaviours at high speed) where
multi-modal predictions with higher prediction horizons will
be required. Furthermore, the Reinforcement Learning-based
Decision Making module can be enhanced by exploring
advanced algorithms.
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