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Abstract— This paper presents a non intrusive approach to
obtain driver’s face pose estimation based on stereo gray-
level image processing. Face pose estimation is based on an
automatic and incremental 3D model creation and its correct
tracking. From this information, gaze focalization in the scene
is calculated in order to detect driver distraction. Different
distraction activities are inferred in a realistic simulator and
a study of the incidence of these distracting activities in the
driver’s behaviour is carried out. Some experimental results
and conclusions are presented.

I. INTRODUCTION

Driving inattention is a major factor to highway

crashes. The National Highway Traffic Safety Administra-

tion (NHTSA) estimates that approximately 25% of police-

reported crashes involve some form of driving inattention [1].

The study of AAA FTS (American Automobile Association

Foundation for Traffic Safety) showed the driving attention

status has five categories: attentive, distraction, cognitive

distraction (looking without seeing), fatigue and unknown

[2]. In this paper, we will focus on distraction category.

Driving distraction is defined as ”when a driver is delayed

in the recognition of information needed to safely accomplish

the driving task because some event, activity, object or person

within or outside the vehicle compelled or tended to induce

the driver’s shifting attention away from the driving task”

[3]. Thirteen types of potentially distracting activities are

listed in [2]: eating or drinking, outside person, object or

event, talking or listening on cellular phone, dialling cellular

phone, using in-vehicle-technologies, etc. Since the distract-

ing activities take many forms, NHTSA classifies distraction

into 4 categories from the view of the driver’s functionality:

visual distraction, cognitive distraction, auditory distraction

(e.g., responding to a ringing cell phone), and biomechanical

distraction (e.g., manually adjusting the radio volume) [1].

Many distracting activities can involve more than one of

these components (e.g., talking to a phone while driving

creates a biomechanical, auditory and cognitive distraction).

As it can be seen, driving distraction is more diverse and

commits more risky factor that fatigue and it is present over

half of inattention involved crashes, resulting in as many

as 5,000 fatalities and $40 billion in damages every year

[2]. Increasing use of in-vehicle information systems (IVISs)

such as cell phones, GPS navigation systems, DVDs and

satellite radios has exacerbated the problem by introducing

additional sources of distraction [4]. Enabling drivers to

benefit from IVIS without diminishing safety is an important

challenge.

One promising strategy involves classifying the driver state

and then using this classification to adapt the in-vehicle tech-

nologies to mitigate the effects of distraction. The literature

contains 3 main categories according to the measurement

signals they use to detect distractions: biological signals,

driving signals and driver images. The biological signal

processing approaches directly measure biological signals

(EEG, ECG, EOG, EMG, etc) from driver’s body and as

consequence they are intrusive systems [5], [6]. Only few

works, focusing in cognitive distractions, have been reported

using this kind of approach. The main reason may be that

using biological signal to analyze distraction level is too

complicated and no obvious pattern can be found. Vehicle

signal reflects driver’s action, then measuring it, the driver’s

state can be characterized in an indirect way. Force on

pedals, vehicle velocity changes, steering wheel motion,

lateral position or lane changes are normally used in this

category [7] [8] [9]. The advantage of these approaches is

that the signal is meaningful and its acquisition is quite easy.

This is the reason because a few commercial systems existing

nowadays use this technique [10] [11] [12]. However, they

are subject to several limitations such as vehicle type, driver

experience, geometric characteristics, condition of the road,

etc. Then, these procedures require a considerable amount of

time to analyze user behaviours and therefore, they do not

work with the so called micro-sleeps when a drowsy driver

falls asleep for a few seconds on a very straight road section

without changing the vehicle signals. The image processing

based approaches are effective because of the occurrence of

distraction are reflected through the driver’s face appearance

and head/eyes activity. Different kinds of cameras and analy-

sis algorithms have been employed in this approach: methods

based on visible spectrum camera [13], [14]; methods based

on IR camera [15] [16] [17] [18] and methods based on

stereo cameras [19], [20]. Some of them are commercial

products as: Smart Eye [17], Seeing Machines DSS [18],

Smart Eye Pro [19] and Seeing Machines Face API [20].

However, these commercial products are still limited to some

well controlled environments, so there is still a long way to

go in order to estimate driver’s distraction state. On the other

hand, most works existing in the literature was carried out

on visual distraction detection, less on cognitive and none

on auditory and biomechanical distraction detection.
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From this review of the state of the art we can conclude

that in-vehicle and portable information and entertainment

technologies are emerging rapidly, making it increasingly

difficult to determine the scope of the potential distraction

problem. To date, realistic studies that provide information

on the impact of distracting activities have been developed as

small-scale studies. An effort is needed to study distraction

problem using realistic situations. There are different pro-

posals to detect distractions but, to date, they are focusing

in only some kind of distractions and they do not solve the

problem in a general way.

Simulation is an optimal method of experimentation to

acquire knowledge of driver’s behaviour. The simulation

methodologies applied in Europe to the road transport sector

research are demonstrating their profitability and efficiency

[21]. The main objective through the simulation, is to im-

merse the driver in his normal work environment. In order

to do this, a cockpit fully equipped is required to perform

the driving task. Moreover, it must be valid for the driver to

react naturally to the task entrusted by the trainer. The driving

simulator used for the development of this work, known as

TUTOR [22], is a very high scope simulator for truck and

bus, meaning that achieves a maximum level of immersion.

This paper presents a non intrusive approach to obtain

driver’s face pose estimation based on stereo image process-

ing techniques. The paper is organized as follows: section

II shows the experimental environment where the tests have

been done. The algorithm for visual-based distraction de-

tection is described in section III. Finally, the experimental

results as well as the conclusions are detailed in sections IV

and V respectively.

II. EXPERIMENTAL ENVIRONMENT

This section describes the environment where the tests

have been carried out. It is divided into five main sections.

First of them describes the physical simulator. Then, the

camera vision system, experimental protocol and subjects

selection are explained. Finally, the steps for test validation

are exposed.

A. Truck Driving Simulator

The experiments were done in the facilities of CEIT [23]

in San Sebastián (Spain), in a room with controlled light and

sound environment.

The simulator [22] (Fig. 1) consists of a real truck cabin

equipped with the common on-board devices: GPS, Tacho-

graph, Hands-free and On-board Computer. These devices

send information to a central host for a posterior analysis.

Fig. 2 shows a representative diagram of the devices setup.

The visualization system is made up of three wall-

backprojection system with a total surface of 22m
2. The fact

that the screens have no marked separation plus the geometry

of the image system makes for a flawless overall impression.

Moreover, two monitor screens are used as mirrors.

The cabin is assembled on a movement platform with 6

degrees of freedom on which drivers can feel the vehicle

accelerating, braking, its centrifugal force, etc.

Fig. 1. Real truck cabin simulator

Fig. 2. Host and Devices Setup

Main computers are placed in the simulator Instructor

Position (IP) located behind the cabin, which is surrounded

by panels to create a closed environment (Fig. 3). The config-

uration of the simulator and the scenario can be changed from

the IP. The information of previous tests can be consulted as

well.

Fig. 3. Instructor Position

B. Camera Vision System

The designed hardware for image capture is divided into

three parts: the stereo capture system, the illumination con-

troller and the infrared illumination system. This system is

located on the truck dashboard, in front of the driver pointing

to his face. The cameras are separated a distance of 20cm

and the driver is placed at 60 - 100 cm from them (Fig. 4).
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Fig. 4. Camera Vision System

C. Experimental Protocol

To design the experimental protocol we have based on the

following initial hypothesis: ”The potential driver distraction

due to on-board devices is determined by the level of atten-

tional demand required by them while driving, decreasing

the effectiveness of the primary task: driving.”

By analysing the professional drivers behaviour, the ba-

sic and most representative features in the context of this

activity are identified [24]. Some scenarios, types of vehi-

cles, incidents, on-board systems and critical situations are

selected. Thus, the professional drivers behaviour should be

generically represented.

Taking into consideration this basis, that involves obser-

vation and information recording during the task of driving,

the next step is to define the basic simulation exercises.

These exercises are defined through the editing module

from the simulator PI, we can set up scenarios, incidences,

vehicle characteristics, load distribution, road conditions,

weather, etc.

Tests have been designed with the goal of refuting the

initial hypothesis of the research regarding the potential

distraction of four different on-board systems which are com-

monly used in professional driving task. These devices are

digital tachograph, GPS, hands-free and on-board computer.

Thus, these devices are on board in all the exercises

but they will not always have a fundamental interaction to

achieve the objective of the test.

Under these conditions, four exercises have been created

(inter-city, mountain, urban and long-distance) based on three

different scenarios (inter-city, mountain and urban). Each one

includes different incidences: motor, tires or ABS breakdown

and different vehicle incidences such as sudden brake of

the precedent vehicle, broken down vehicles on the road,

vehicles running a red light, etc. (see Table I) .

These exercises were implemented in 16 tests: five of them

were based on the inter-city exercise, four on the mountain,

three on the urban and the last four on the long-distance one.

The defined procedure to evaluate these tests consists on

different drivers driving through different scenarios.

The first test of each exercise has been called ”Control

Test” which corresponds to the exercise undertaken by each

driver in the different scenarios aseptically.

TABLE I

EXERCISES CONFIGURATION

Exercise Incidences On-board Devices

Inter-city Vehicle incidences GPS

Motor breakdown Hands-free

Vehicle incidences GPS

Mountain Tire breakdown Hands-free

Tachograph

Vehicle incidences GPS

Urban Motor breakdown Hands-free

ABS breakdown Tachograph

On-board Computer

Hands-free

Long-distance Vehicle incidences Tachograph

On-board Computer

It is important to have these control tests, because using

them, the behaviour at different points of the scenarios in the

subsequent tests of each driver can be compared and defined

as distraction sources. Thus, a differential analysis of the

produced incidents could be done.

Once the chain of exercises is finished, we have enough

information about the drivers behaviour while driving in

order to generate a distraction pattern for each one.

To analyse drivers behaviour a visual record of the driver

is done.

D. Subjects

According to the previous considerations, the number of

tests and their configuration, we have defined a minimum

number of participants of 12 in order to have one participant

for each test configuration to detect the dependent behaviour

variables.

It is important to highlight that every participant needs

to pass a test to exclude people with propensity to suffer

simulator-sickness. Previous studies with similar conditions

used groups from 7 to 30 participants [25] [26].

All subjects were informed of the purpose of the experi-

ment and the security procedures in the simulator facilities.

E. Test Validation

The test model is validated following a three stages

strategy:

• STAGE 1: A group of drivers with information about

the technological tools and distraction sources while

driving. In this stage, the exercises and tests have been

designed basing on the analysis of task and taking into

account the objectives and the underlying assumptions

of the investigation. The main objective of this stage is

the validation of the designed tests.

• STAGE 2: Professional drivers group. At this stage a

group of 5 professional drivers who know the objectives

of the research and the simulation environment advise

the researchers to improve the exercises and tests to set

up a simulation environment more realistic for them.
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• STAGE 3: Final drivers group. A representative sample

of drivers are selected for this group. It is composed

of at least 12 drivers from different gender, age, expe-

rience, etc to obtain conclusions about distraction and

driver’s behaviour.

III. ALGORITHM FOR VISUAL-BASED DISTRACTION

DETECTION

This section presents in detail the pose estimation algo-

rithm using a fully automatic and incremental 3D face model

creation. A block diagram of the algorithm is shown in Fig. 5

The method consists of the following steps:

0) Calibration of the stereo-rig. After this off-line pro-

cess, all the following operations are fully automatic.

1) Model creation. Face is searched on the images using

the Viola & Jones (V&J) algorithm. We use the Harris

corner detector [27] to find interesting features on the

driver’s face. A 3D model of the face is created with

the 3D coordinates of the points.

2) Feature tracking. 3D points are tracked over images.

We use a single historic of 2D image patch projections

from both right and left camera images in conjunction,

along with its associated yaw rotation angle.

3) Pose estimation. We estimate the pose of the model

by means of the POSIT algorithm within a RANSAC

[28] process to reject tracking errors and outliers.

4) Model correction. After pose estimation, 3D model

may be increased as required to previously occluded

parts of the face. A background bundle adjustment [29]

optimization refines the model as long as we add new

3D points to the model.

A. Face Model

The first step to accomplish the pose estimation is to obtain

a 3D model of the face, made up of the 3D coordinates

of the features which will be used for tracking and later

model reconstruction. First, the face is detected using the

Viola and Jones algorithm [30]. The first frame in which a

frontal face is detected in both of the cameras is chosen for

model creation.

Features are extracted using a Harris corner detector. If an

initial Harris detector were applied over the whole detected

face, resulting points would tend to group within the more

contrasted areas. To have a spread distribution of initial

features all over the face, the face is divided into 5x5 cells,

and Harris points are taken from each cell (Fig. 6).

The next step is to accomplish the stereo matching of the

features. This is explained in detail in sec III-C.

Having the projection of the point in both images, now

we obtain the 3D coordinate of each model point out of

the feature 2D projections. Fig. 7 shows the created 3D

model. An extra filtering process is used to ensure that points

for which the 3D coordinate are incorrectly computed are

rejected from model. This filtering include aspects such a

standard face size not bigger than 15x15x18 cm, located at

around 60 to 90 cm far from the cameras and cylindrical

shaped face constraints.

Fig. 6. Viola & Jones detected fade, and initial distribution of feature
candidates to extract the 3D model

(a) (b) (c)

Fig. 7. (a) 3D view of the model. In red, correction done by Bundle
Adjustment. (b) Projections over the left image and (c) right image.

B. Feature matching

Conditions for feature matching are very complicated in

this kind of scenarios. A face doe not typically present

high contrasted features or corners. Moreover, the limited

illumination leads to dark images, what makes features even

less contrasted. Another important issue derived from low

illumination is poorly focused images. The iris of the camera

must be wide open to allow the maximum light into the

sensor, what drastically reduces depth of field. This produces

that some parts of the face, specially if the driver moves

forward or backward, might not be well focused.

In such case in which the feature changes its appearance

because of the angle of projection, it usually works better

matching small patches of the image. On the other hand, if

the image is not well focused, and to avoid incorrect tracking

because of repetitive appearance in the face, it works better

to use big patches.

To overcome this problem, the chosen matching method

is based on the addition of the matching result for three

different size patches around the feature. Thus, to obtain the

correspondence of a 3D point from one image into another,

three patches of different sizes are extracted around the

feature point, and matched over the search area of the other

image. We compute the most likely result as the maximum

of the sum of the three matching results. Figure 8 illustrates

the matching of a feature at model creation.

C. Feature tracking

The main problem to solve when a face is tracked is the

changing appearance of the feature points as the face rotation

angle changes. As features are not planer in shape, in general

it is not a good solution to try a patch homography to correct

appearance changes due to rotations. Moreover, this process

is costly, and often need some a-priory information about the

orientation of the patch in the 3D space. In our approach,

we use the different view angles of the face from the two
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Fig. 5. Block diagram of the algorithm

(a) (b) (c)

Fig. 8. Feature Points on first image (a), and its corresponding epipolar line
on second image (b,c). The graph in (b) and (c) shows the result matching
of patch size 10x10 (red), 25x25 (green), 50x50 (blue), and sum result
(black), all restricted to the epipolar line. In (b) the matching is not correct,
and point is discarded

cameras to try to advance the appearance that a feature will

have after some rotation.

At initialization, a patch for each model point is stored

with its associated projection angle for each image plane.

The tracking is initially done with original image patches.

But as the driver moves the appearance of the feature points

changes. Let say the current rotation angle with respect to a

camera is equal to a stored one. It that case the appearance

of the 2D projection over the camera frame of the feature is

almost the same to that stored patch associated to the angle.

When the angle for any of the cameras approaches to any

of the stored ones, the tracking switches its associated patch,

previously stored, and not necessarily from the same camera.

Thus, the tracking result is very accurate (see Fig. 9).

D. Pose Estimation

After the position of the tracking points has been updated

for left and right frames, the 3D face pose is estimated from

the 2D projection of each point. However, the matching

process may not succeed for all points, and can result in

Fig. 9. Model is initially created with pose Θ0. Cl sees Yi with an angle
α1. After some rotation, at t2, now Cr sees Yi with the same angle α1,
and consequently with a very similar appearance to that saw by Cl at t0,
which was stored. At the same time, Cr stores the new appearance. At t3,
the camera Cr sees Yi such as Cl did at t2, with and angle α2

errors. Thus, a robust optimization method is required to

estimate the best 3D face pose matching, that would detect

as outliers the points that have been incorrectly tracked, so

they can be safely discarded. The RANSAC algorithm is

used to eliminate the outliers. 3D pose is obtained using

DeMenthon’s four point iterative pose estimation algorithm

(POSIT) [31]. The POSIT algorithm calculates the pose of

a 3D rigid object from its projection on a single image.

The pose is given as a translation T and a rotation R

matrices, which indicate the position of the central point of

the model with respect to the camera coordinate system, and

its rotation from the initial given model.

On each RANSAC iteration, seven points are randomly

selected from the model and used to calculate the pose

using the POSIT algorithm. To detect the outliers, error is

calculated as the euclidean distance between the tracking

point and the reprojected using the estimated pose.

E. Model Corrections

The 3D model is initially created using a frontal view of

the face. Consequently, for yaw rotations wider than ±40
0
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approx, most of the points of the model are occluded. This

makes necessary to augment the model with new points from

parts of the face which where previously occluded. When

the number of visible points from a camera falls bellow a

threshold, usually 10, new points within the new ares of the

face are searched and added to the model.

As many point candidates for addition may lay out outside

the face itself. Those points are filtered attending to face

shape and size constraints mentioned above. However, new

3D point coordinates will have and increased error derived

from pose estimation at this moment. The 3D points taken

during model creation are also subject to error derived from

stereo correspondences. In order to get a better fitting of

the model to the face and correct those errors, a bundle

adjustment (BA) optimization is used to refine the 3D model.

This corrects the 3D point coordinates and the poses in which

any point has been added. To save on computational load,

this stage is only applied at certain keyframes, tk when a

minimum movement has been detected in the pose, only

during certain time after model creation or when a point

has been added, until error falls bellow a threshold. Figure

7(a) shows the corrected model.

F. Gaze Focalization Interface

To study the influence of the different sources of distrac-

tion, a visual interface for gaze focalization representation

has been designed. A projection of the obtained angles on the

image plane is done in order to obtain the gaze focalization

coordinates. This interface consists of two different parts.

First of them is a visual interface which shows the gaze

focalization over the real visual information at every frame.

This way, it is possible to know where the driver was

looking while an incidence was happening. This interface

also classifies the actual direction into the different interest

points as shown in Fig. 10.

Fig. 10. Gaze focalization visual interface

The second one is a graph which shows the coordinates

where the driver was looking along the time. Using this

interface is possible to study how long the driver was looking

to the different interest points in the cabin or how long the

driver remains with his gaze fixed on a point.

IV. EXPERIMENTAL RESULTS

In this section the obtained experimental results are shown.

The algorithm has been tested over long sequences, more

than ten minutes each one, of 12 different users. Two of

them have been compared to its corresponding ground-truth.

The sequences were recorded with professional drivers for all

the exercises simulating very high immersion conditions and

common driving disturbances, such as phone calls, handling

the GPS, traffic conditions and takeovers.

The ground truth was obtained using a calibration pattern

as a hat on the user’s head, as shown on Fig. 11. This new

form of evaluation was used because the traditional three spot

lights on the driver’s head projected corresponding flares on

the windscreen, due to low illumination conditions inside the

cabin, disturbing them.

(a) (b)

Fig. 11. Calibration pattern on the driver’s head used as ground-truth. (a)
1392x1040 image, from left hand camera. (b) Cropped image from right
hand camera, showing the 3D model. A condition is imposed at model
creation to ensure that the calibration pattern does not make part in the 3D
model.

Restrictions have been added to the model creation process

to ensure that the hat does not make part of the model, so

the algorithm evaluation is not influenced by the ground-truth

process.

After the ground-truth has been evaluated, it is compared

with the estimated pose from the algorithm. It can be

observed in Fig. 12 how the accuracy increases after around

200 seconds of execution, moment at which the resulting

residual error obtained by Bundle Adjustment is very small,

and new executions of bundle adjustment do not increase the

accuracy of the model. Under these conditions we stop the

Bundle Adjustment optimization until new points are added

to the model. The results in Table II compare the accuracy

obtained with and without using bundle adjustment. The error

results with bundle adjustment have been computed starting

from second 200 of execution, after what no more points

were added to the model.

The algorithm has been coded in c/c++, and tested in a

2.4GHz Core2 Duo processor. The most time consuming

task, the patch matching, has been coded using the OpenCV

library, which implements the patch matching using fast

Fourier transforms what drastically reduces execution times.
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Fig. 12. Graphics with the yaw (up), pitch and roll (down) and ground
truth of a section of a video sequence from user 1. Positive and negative
peaks on yaw indicates when the driver is looking at the right or left mirror
respectively. Peak on the pitch indicates when driver is looking to the on-
board computer, the hands-free or the tachograph.

TABLE II

MEAN SQUARE ERROR ON POSE ESTIMATION ANGLES

Rotation α < 15o α < 30o α < 45o α >= 60o

yaw 6.52 12.09 16.58 18.34
yaw with BA 1.64 4.47 6.01 8.30

pitch 3.82 7.8864 8.5947 -
pitch with BA 1.61 1.80 6.74 -

roll 5.27 16.62 - -
roll with BA 1.16 4.06 - -

The Bundle Adjustment is usually a time consuming task,

so it is only executed at an interval of 20 frames, and in

most of the cases does not extend more than 100 seconds

after last points addition. We use the free software library

SBA for this purpose [32]. Table III shows execution times

for the algorithm. Mean times have been computed over 1

second of execution. An average frame rate of 26 fps has

been achieved while the BA is working, and 31 fps when it

is stopped. Although the processing time can peak up to 57

ms for some key frames, this is not an issue for working in

real time, since the camera buffers filter these peaks.

TABLE III

PROCESSING TIMES

Task Mean time Max time

Model creation 453 ms 943 ms
Patch matching 16 ms 23 ms
POSIT + RANSAC 15 ms 18 ms
Points addition and BA 7 ms 16 ms

Whole process 38 ms 57 ms

To study the influence of the different sources of distrac-

tion the visual interface and gaze focalization graph (Fig.

13) is used. Analysing this information we can conclude

that most of the time driver remains looking at the front,

usually the horizon or the precedent vehicle. However, it

is important to distinguish between these long periods of

time (when the coordinates where the driver was looking

change slightly) and periods when the driver has fixed gaze

(when the driver’s attention level is low). Moreover, other

elements such as mirrors or the on-board computer are the

most common points where drivers look while driving, a

decrease in the number of looks to them can be consider as

a sign of attention level decrease.

Fig. 13. Gaze focalization graph

Look to other interest points such as GPS or hands-free

can produce distraction, thus it is important to study the

reaction times after different incidences (sudden brake of

the precedent vehicle, vehicles running a red light, etc),

the driver behaviour during a call or while following the

instructions from a GPS, etc.
Fig. 14 shows, as a example of driver’s behaviour while

driving, the reaction time from the moment an incoming

phone call is produced until the driver picks up the phone

and the coordinates where the driver is looking during it.

Fig. 14. Driver’s head

The signal corresponding to the driver’s gaze direction

during the phone conversation is more chaotic than after the

conversation. It is important to highlight that this particular

call has been done during a high cognitive activity period

as the looks to the mirrors and the high variance of the

gaze direction shows. The high reaction time and the high

variability in the gaze direction are due to distraction. In the

final version more results about distraction will be included.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper presents a face tracking and pose estimation

algorithm to detect visual distractions, using a stereo vision
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system. The algorithm is able to automatically construct a

3D model of the face, just requiring for the driver to look

straight ahead for a few seconds. Tracking of feature points is

carried out using mixed views from both cameras. Incorrectly

tracked points are rejected using RANSAC, and 3D pose is

recovered from the set of points using a fast algorithm, such

as POSIT.

Thanks to model extension and Bundle adjustment the

algorithm works reliably for the whole yaw rotation face

range, ±90
o degrees.

The Bundle adjustment method allows safely point addi-

tion to the model even assuming that there is an error on

the pose estimation of the model to which the point is being

added.

It has been demonstrate that the system it is valid to

evaluate the effects of the different sources of distraction

allowing to evaluate reaction times and driver behaviour

while driving with different kinds of incidences.

B. Future Works

To improve the estimated driver’s gaze direction a method

to calculate eyes direction is being designed. To achieve this

purpose the described matching method is used to locate the

center of the pupils and their height and width. The fusion

of both face and eyes direction will improve the accuracy at

little changes on the gaze direction when the driver is moving

only his eyes.

Another variables such as truck position in the lane are

being studied to help to find the behaviour pattern during

distraction.

Finally, with the designed interface the final conclusions

about distraction and driver’s behaviour while driving can be

obtained. This way, a method to analyse distraction could be

designed.
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