
  

 

Abstract— This paper presents DriveSafe, a new driver 

safety app for iPhones that detects inattentive driving 

behaviors and gives corresponding feedback to drivers, scoring 

their driving and alerting them in case their behaviors are 

unsafe. It uses computer vision and pattern recognition 

techniques on the iPhone to assess whether the driver is drowsy 

or distracted using the rear-camera, the microphone, the 

inertial sensors and the GPS. We present the general 

architecture of DriveSafe and evaluate its performance using 

data from 12 drivers in two different studies. The first one 

evaluates the detection of some inattentive driving behaviors 

obtaining an overall precision of 82% at 92% of recall. The 

second one compares the scores between DriveSafe vs the 

commercial AXA Drive app obtaining a better valuation to its 

operation. DriveSafe is the first app for smartphones based on 

inbuilt sensors able to detect inattentive behaviors evaluating 

the quality of the driving at the same time. It represents a new 

disruptive technology because, on the one hand, it provides 

similar ADAS features that found in luxury cars, and on the 

other hand, it presents a viable alternative for the “black-

boxes” installed in vehicles by the insurance companies. 

I. INTRODUCTION 

Driving while being inattentive (drowsy or distracted) is 
dangerous. According to the National Highway Traffic Safety 
Administration (NHTSA) about 25% of police-reported 
crashes involve some form of driver inattention [1]. In 2010 
only in USA, 3,092 people were killed and 416,000 injured 
during accidents directly attributed to inattention [2]. These 
figures are similar in Europe [3]. According to experts, many 
drivers fail to recognize they are in a fatigued state. In 
consequence, developing technologies to detect and alert 
inattentive drivers is essential to avoid vehicle accidents and 
to stimulate safe driving practices in drivers.  

In the last years, there have been active research toward 
developing systems that make driving safer [4, 5]. These 
include collision-avoidance, lane departure warning, blind 
spot warning and driver inattention monitoring systems. 
Some systems even trigger automatic steering when the 
vehicle drifts into another lane or brake before getting 
dangerously close to the vehicle in front. While these systems 
are quite valuable in enhancing the safety, they are pricey 
too. Therefore, these safety features are commonly fitted only 
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in top-end vehicles. Toward developing an affordable 
alternative for bringing safety features to economy vehicles 
our approach is to leverage smartphones that are always 
present with people.  

Fig. 1.  DriveSafe app running on iPhone 5  

On the other hand, the advent of mobile sensing platforms 
facilitates the cost-effective capturing and processing of data 
from the real world, thus increasing the information base of 
business processes and decision making [6]. In the motor 
insurance sector, such data can be used to improve the 
assessment, communication and mitigation of insured risk, 
thereby creating value for insurers and policyholders alike. 
The premise of this approach is that providing feedback of 
recorded driving actions to drivers, they are encouraged to 
change their behavior and reduce their individual accident 
risk. However, in the current insurance markets, consumers 
have rejected the so-called Pay-As-You-Drive due to two 
main reasons [7]: the required installation of “black-boxes” in 
vehicles makes drivers perceive the monitoring as intrusive, 
and the installation and operation of these units incurs 
additional costs to insurers and consumers. Our alternative 
approach is to use a smartphone application that is operated 
at the users’ discretion, emphasizing that it is more a driving 
support tool than a “black-box” monitoring device.      

With this background, we propose DriveSafe. The 
driver’s iPhone must be placed on the windshield, just below 
the rearview mirror and aligned with the relevant axes of the 
vehicle, as it is depicted in Fig. 1. Using the information 
obtained from some inbuilt iPhone sensors, DriveSafe applies 
computer vision and pattern recognition techniques on the 
phone to detect the most commonly occurring inattentive 
driving behaviors divided into two main groups: drowsiness 
and distractions. Lane weaving and drifting behaviors are 
measured to infer drowsiness. Lane weaving happens when a 
driver performs lane changes without turning the blinkers. 
Lane drifting is the inability of the driver to keep its vehicle 
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within the center of the lane. Distractions are based on 
sudden longitudinal and transversal movements. In addition, 
the app scores the driving as a function of the frequency and 
level of these dangerous behaviors. In case they get over a 
certain threshold an alarm is generated. On the one hand, 
DriveSafe aims to mimic some safety features found in many 
top-end vehicles on the market today but using a commodity 
iPhone. On the other hand, it persuades insurers this app is an 
interesting alternative to conventional “black-boxes” 
improving other proposals of the state of the art. 

II. RELATED WORKS 

Monitoring driving behavior using fixed vehicle-mounted 
devices is an active area of research. In the case of inattentive 
driving, a good review of the current state of the art can be 
found in [8]. The systems used by many auto manufacturers 
are mainly based on core technology from Mobileye [4] and 
Iteris [5]. Both companies use radars as well as cameras for 
this purpose. However, none of the cited examples consider 
the limitations and challenges of a smartphone-based 
implementation.  

Although the cost of vehicle safety technology is 
dropping, most safety technologies are not available in 
economy vehicles and it will be a decade before the vast 
majority of cars on the road today have these safety features 
built-in. In contrast, smartphone solutions can be used in all 
vehicles (new or old) and represent a cheap and disruptive 
technology. This is the reason why in the last years there has 
been an active work on using smartphones to assist drivers. 
Hereafter, we review some of the most important references. 
SignalGuru [9] advises the driver to maintain a certain speed 
while approaching a signal for fuel efficiency. iOnRoad [10] 
and Augmented Driving [11] are apps that warn drivers when 
they get too close to a vehicle. SmartLDWS [12] offers 
warning sounds when the vehicle departs a lane marker. 
CarSafe [13] alerts drowsy and distracted drivers using dual 
cameras on smartphones, one for detecting driver state and 
the other for tracking road conditions. However, it works in 
quasi real-time and the driver’s indicators get worse at night 
and with bad lighting conditions. In [14], a recognition 
system of the driver aggressiveness based on sensor-fusion is 
presented. In the same line, [15] estimates if a driving 
behavior is safe or unsafe. The last two cases need a previous 
learning and are dependent of the road curvature. Other 
works have proposed to extend smartphone’s sensors 
capabilities by connecting them to a vehicle’s OBD-II 
diagnostic interface for driver classification [16] or reduction 
of fuel consumption purposes [17].  

In developing DriveSafe, we’ve revised some techniques 
available in our group [18][19] and we have adapted them to 
be run on an iPhone. To the best of our knowledge, none of 
the related works detects driver inattentions (drowsiness and 
distractions) by using lane weaving/drifting and sudden 
longitudinal/transversal movements from the inbuilt sensors 
of an iPhone, evaluating the quality of the driving at the same 
time, independently of the road geometry and running in real-
time. DriveSafe comes to fill this gap. 

III. DRIVESAFE IMPLEMENTATION 

In this section, we present an overview of DriveSafe 
architecture and its algorithms, as it is illustrated in Fig. 2. 

This app is activated when the vehicle overtakes 50 Km/h 
(about 31 Mph) because it has been conceived as an assistant 
for roads and not for cities driving. Our app is divided in four 
main modules: sensors pre-processing, detection of 
inattention behaviors, driving evaluation and user interface. 
We apply a different methodology depending on the 
inattention to be detected. Drowsiness is based on image 
analysis because this is a low frequent behavior that can be 
faced at the image processing rate (25 to 30 fps) adapting our 
previous knowledge. Distractions are very fast behaviors that 
need the fastest possible detection. We use inertial sensors at 
100 Hz for this purpose instead camera images. Hereafter, we 
explain the two methodologies carried out. 

Fig. 2.  DriveSafe architecture 

A.  Drowsiness 

Drowsiness is evaluated through the detection of lane 
drifting and weaving events obtained from a modification of 
the Dickmans road model-based method [20]. The combined 
effect of low resolution and lack of real camera parameters 
has made unreliable the deployment of some algorithms 
based on Inverse Perspective Mapping. It employs road 
images captured by the rear-camera to detect lane markings 
on the road ahead and to estimate the position of the vehicle 
relative to the lane and lane crossings. The microphone is 
used for blinking detection and the GPS for estimating 
vehicle speed and road curvature. Our lane detection 
algorithm is robust to failures and guaranties a correct 
detection. It is based on three functionalities which are 
contained in the pre-processing module: calibration, 
initialization and detection.  

Pre-processing. This module transforms the color image 
to gray scale, resizes it to 320 x 240 pixels and adapts the 
ROI for the lane markings detection in the next frame. There 
is only a trapezoidal ROI in the calibration and initialization, 
but in the detection it is divided in two, one for the left 
markings and another for the right one (see Fig. 3(a)).  The 
width of these areas is adaptive and depends on the tracking 
module. As long as the tracking gets worse, the width 
increases, and vice versa. Then, this module is in charge of 
the switching among the different functionalities based on 
tracking performance.  
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Lane markings detection. Lane markings are assumed to 
be edges. Then, an edge detection stage is carried out by 
using an adaptive Canny algorithm which maximizes the 
edges in each ROI (see Fig. 3(b)). After that, the Hough 
transform algorithm is applied to obtain candidate lines for 
each of the two ROIs, limiting the solution space by 
imposing some geometrical constraints (see Fig. 3(c)). 
Among all the segmented lines, we choose a representative 
line per ROI maximizing the length of the line, minimizing 
the angle difference between the candidate and the road 
model and the difference between the model vanishing point 
and the vanishing point obtained among the candidates for 
the left and the right side. After this process, we will have a 
winner line for each ROI aligned with the lane boundaries 
(see Fig. 3 (c) winner lines in white color). 

Fig. 3.  Illustrative example of lane detection process at night. a) ROIs in 

the gray scale image,  b) Canny edges,  c) Segmented and winner lines,      
d) Marker measures and lane model 

To increase detection robustness we use a 3D road model 
in the real world and the position of the road edges in the 
image, following a clothoidal model defined in [20]. The 
mathematical problem is that of computing the clothoidal 
parameters as well as road parameters and the position of the 
ego-vehicle with respect to the road edges. This amounts to a 
total of 5 different parameters: C0 (initial curvature), C1 

(velocity of the clothoidal curve), w (road lane width), x0 
(lateral displacement of the car with regard to the center of 
the lane), and ψ (angular displacement of the car with regard 
to the lane orientation). The meaning of these parameters is 
described in Fig 4.  

Fig. 4.  Definition of parameters. a) Side view. b) Bird’s eye view. 

 Measurements in the image plane must be related to 
measurements in the 3-D scene. Following the perspective 
projection equations of a camera and the equations of 
clothoidal curves, a measurement model is set as follows. 
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where v stands for the vertical coordinate of the road edge 
feature in the image plane, h is the camera height, α is the 
camera pitch angle, L is the distance from the car to the edge 
feature in the 3-D scene, and fv is the vertical size of the 
camera focal length. Horizontal coordinates are computed 
from Eq. (2). 
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where d stands for the distance between the vehicle 
gravity center and the camera position, fu is the horizontal 
dimension of the camera focal length, and u is the horizontal 
coordinate of the edge feature pixel in the image plane. 
Camera parameters, h and d are set in the calibration. Eq. (2) 
is computed for all lane markings detected in the 
neighborhood of the winner lines for every meter (Fig. 3 (d) 
points in red and green). Then, the road model is estimated 
(in white).   

Lane tracking. It is implemented using Kalman filtering 
based on the previous measurement model and the dynamic 
state model for the following state vector: 

                 TwxCCx 010                       (3) 

When the lateral position (x0) is about to leave the lane, a 
new lane model is generated by shifting the current model to 
the left or the right a current lane width. If enough lane 
marking measures are detected with the new model, a lane 
switch is carried out. Otherwise, the current lane model is 
kept. A lane change is detected when the lateral position 
overtakes half of the lane width (w/2).   

Event detector Lane drifting. It is based on the indicator 
called Lanex (fraction of Lane exits), which is a measure of 
driver’s tendency to exit the lane [19]. It is defined as the 
fraction of a given time interval spent outside a virtual 
driving lane around the center of 1.2 m width.  It is calculated 
by applying windowing techniques over the lateral position 
of the vehicle (x0) during 60 s.  

Event detector Lane weaving. It evaluates involuntary 
lane changes. Analyzing the presence or absence of the 
directional indicator, the event detector module can conclude 
whether a lane change is intentional or not. We have used the 
built-in microphone to capture the clicking sound generated 
by the indicator, in order to avoid external dependencies. We 
enable the sound recognition module when the vehicle is 
about to leave the lane. The details on how the sound is 
captured and identified are beyond the scope of this paper. 

B. Distractions 

According to the state of the art, the most established 
method for assessing driving distractions is to analyze the 
frequency of critical driving events [21], which are generated 
by different means of sensor fusion. They can be aggregated 
by summation and normalized over the driven distance, and 
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are thus suitable metrics of driving behavior. For the scope of 
this paper, we consider critical driving events as violations of 
certain thresholds imposed on vehicle acceleration measured 
by iPhone IMU. A major part of smartphone-based 
applications for the assessment of driving behavior follow 
this approach. 

There are three accelerometers and three gyroscopes 
available on the iPhone IMU for the measurement of lateral 
and angular accelerations along three fixed axes. These axes 
form the coordinate frame of the device. The x-y plane of the 
accelerometer sensor is parallel to the touch screen and the z 
component is perpendicular, as it is depicted in Fig. 5. In our 
case and after the setup process, the device is mounted in a 
vehicle with its three axes aligned with the relevant axes of 
the vehicle. Thus, the vehicle-fixed z-axis is tangential to the 
vehicle trajectory and the y-axis is perpendicular. Then, four 
different maneuvers can be detected by thresholds on these 
measurements. Along the z-axis, forward acceleration 
corresponds to the throttle use of the driver, where abrupt 
peaks indicate aggressive increases of velocity. Sudden 
deceleration is an indicative of harsh braking, and therefore 
indirectly of not retaining a minimum distance to the vehicle 
ahead. Along the y-axis, high lateral acceleration points 
toward excessive velocity in left or right turns, and may result 
in the vehicle loosing traction. The thresholds needed to 
detect these four event types have been taken from [6]. 
Additionally, we have established three different levels for 
each one in order to get a better evaluation of the driver’s 
behavior, as shown in Table I. 

Fig. 5.  Coordinate frame of the iPhone vs vehicle. 

TABLE I.  DISTRACTION EVENT THRESHOLDS 

Event Type Threshold sensitivity 

Low Medium High 

Acceleration 0.1g <az<0.2g 0.2g <az<0.4g az>0.4g 

Braking -0.1g >az>-0.2g -0.2g >az>-0.4g az <-0.4g 

Turning 0.1g <|a’y|<0.2g 0.2g <|a’y|<0.4g |a’y|>0.4g 

 
Pre-proccesing. Accelerometer data is sampled at a rate 

of 100 Hz. The raw data from the iPhone contains significant 
amounts of noise from the vibrations onboard the vehicle. 
Thus, this signal is cleaned using a Kalman filter with a state 
vector formed by the three components of the accelerometer 
(ax, ay, az). The filtered features prove to be highly correlated 
with the vehicle movements.  

Event detector. We use a triple threshold that comprises 
a minimum absolute acceleration value, a minimum time 

period during which this value is exceeded and a minimum 
longitudinal velocity of 50 Km/h. Moreover, each event is 
identified with its intensity (low, medium, high) depending 
on the thresholds in Table I. When an event is activated, a 
hysteresis period is enabled to account for potential 
activations in the near future.  

As it is remarked in [6], none of the currently available 
applications for the assessment of driving behavior consider 
the dependence of the event counts with the road geometry. 
To solve this problem we propose to decouple the lateral 
acceleration due to the road curvature from the one caused by 
wrong driver movements. When a vehicle makes a turn, it 
experiments a centripetal force, which has its direction 
orthogonal to the direction of movement of the vehicle and 
toward the center of the turn. This centripetal force generates 
a centripetal acceleration, ac

y, also pointing toward the center 
of the curve. Assuming a turn following a perfect circle, the 
centripetal acceleration (ac

y) can be obtained by using the 
angular speed (ω), the tangential velocity (v) and the radius 
of the turn [22].     

                      vr
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Based on Fig. 5, it can be seen that vehicle and iPhone 
have the same radii, then, they will have the same centripetal 
acceleration. Taking into account that (v,ω) can be estimated 
each second from the GPS, we have a coarse estimation of 
the centripetal acceleration of the vehicle due to the road. 
Subtracting the lateral acceleration measured by the iPhone 
from the centripetal acceleration of the vehicle, we estimate 
the lateral vehicle acceleration due to defective driving 
maneuvers (a’y= ay-ac

y). Inspired by this simple yet useful 
physics observation, we have reached to solve an important 
gap of the state of the art. 

C. Score Driving Behaviors 

We propose a preliminary evaluation technique that has 

shown good practical results. Drowsiness is evaluated with 

only one indicator that takes into account the mean and the 

standard deviation of Lane Drifting (mLD,σLD) and Lane 

Weaving (mLW,σLW) signals each second. 

 

           















 








 


22
1 LWLWLDLD

Drow

mm
Score

            (5) 

 

Distractions are evaluated with three different indicators 

(e={acceleration, braking, turning}) in order to compare our 

results with another system of the state of the art. We score 

the indicators taking into account the number and intensity 

of the events detected per Km through the Eq. (6). (k1, k2, k3) 

are constants experimentally calculated. CDFe represents 

cumulative distribution functions of the Gaussians for a 

normal driving, previously obtained for one of the users in 

the highway route. 
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D. Graphics User Interface (GUI) 

DriveSafe is a stand-alone application which GUI 
consists in augmented reality of the road with the position of 
the vehicle in the lane. It has a color bar in the right side 
indicating on-line driver inattention level. Then, it offers 
some visual and acoustic alarms that can be switched on/off 
in the configuration menu. To avoid visual distractions, 
augmented reality can be switched off. Our app has a 
complete repository where users can find useful information 
about their trips as: date, starting and ending time, driving 
time, distance, max and average speed, driving scores, 
number of detected events, a map of the driving route and 
automatically recorded videos of the dangerous behaviors.  

IV. EXPERIMENTAL RESULTS 

DriveSafe is embedded on iPhone 5 and has been written 
in C/C++ based on the OpenCV libraries. It is able to run at 
25-30 fps in average. The first version of this app was 
uploaded to the Apple store in June 2013 with some limited 
functions (Version 1.0). In the first 6 months, more than 
2,500 downloads were carried out. In this paper, we present 
the version 2.0, which will be uploaded to the market in the 
near future. This version has been tested by the developers in 
thousands of kilometers in different roads (city, country and 
highways) with different drivers and vehicles, at different 
daytime (day and night) and with bad weather conditions 
(rain, snow, fog, wind) reaching a subjective good behavior. 
In this section we present a quantitative evaluation of our 
system based on a controlled test-bed. Two studies are done. 
On the one hand, we analyze the performance of the events 
detection using a supervised ground-truth. On the other 
hand, we study the driving behavior evaluation comparing 
the scores provided by DriveSafe with the scores provided 
by AXA Drive [23]. 

A. Test-bed 

Collecting datasets to adequately evaluate DriveSafe is 
challenging. This is because dangerous driving events are not 
guaranteed to happen during normal/routine driving 
experiences. Thus, we can’t accumulate enough examples of 
poor or dangerous driving to fully evaluate DriveSafe. 
Furthermore, it would be irresponsible to run an experiment 
that promoted risky behaviors. For these reasons, we evaluate 
DriveSafe using two different tests: (1) aggressive driving 
under controlled vehicle maneuvers, where we safely “stage” 
dangerous driving events under controlled conditions, in 
which each driver is accompanied by a “co-pilot” who 
launches the controlled maneuvers only when external 
conditions on the road are safe; (2) normal driving, which 
only contains data collected during everyday driving routines, 
but in this case with the presence of a “co-pilot” that only 
takes some notes.  

We recruited a total of 12 participants (9 males and 3 
females) of our Lab. Each participant carried out the two tests 
(aggressive and normal), 20 min long each one, in different 
days and varied daytime (4 at morning, 4 at afternoon and 4 
at night). In 20 tests, the weather conditions were mainly 
bright and sunny, 2 were raining and 2 foggy. The test 
vehicle was a Renault Laguna with manual shift, as a 
reasonable representation of mid-sized cars. All sequences 
together added up 480 minutes of driving data and they were 

staged in a predefined highway under normal traffic. For the 
aggressive driving test, each participant was invited to 
perform the following maneuvers: 2 x lane drifting, 6 x lane 
weaving, 4 x sudden acceleration, 6 x sudden brake and 2 x 
sudden turn. All the events were instantaneous except lane 
drifting. In the case of lane drifting the user was forced to 
drive out of the lane center during 30 s. The number of events 
was chosen depending on the priori event dangerousness. 
Under normal daily driving conditions, participants tend to 
drive their cars carefully, and therefore perform few 
dangerous driving events. A total of 282 inattentive driving 
events were recorded, 245 coming from the controlled 
experiments and 37 coming from the normal daily driving 
dataset. The most common dangerous driving event found in 
the normal daily driving was braking.  

The test car was instrumented with two smartphones in 
order to get the ground-truth for the performance analysis 
events detection, and to have data for comparing driving 
scores. One runs DriveSafe, with an additional skill for 
recording data, and the other runs AXA Drive app. Upon 
completion of the experiments, we manually labeled 
inattentive driving events analyzing recorded driving data and 
the co-pilot information. A lane drifting event was marked 
when the Lanex is over 80%. A lane weaving event was 
marked when an involuntary lane change happened. For the 
acceleration, breaking and turning signals we labeled an 
event when the low threshold was reached. In the 
classification phase, an event was true if it was detected in a 
temporal window of 2 s around the ground-truth position. 

B. Events Detection Performance 

The key feature in DriveSafe performance is its ability to 
detect instances of inattentive driving under real-world 
conditions. Table II provides the precision and recall results 
across all tested driving scenarios (aggressive and normal). 
We get an overall precision of 82% at 92% of recall. LW and 
LD yielded best results with a precision about 90% at high 
recall. This shows that indicators based on vision are very 
robust. We have studied the 3 FPs of LD and are due to the 
car being close to the lane markers for some periods before 
overtaking the vehicle ahead. FPs of LW are mainly due to 
shadows and near crossings.  Some AC and BR wrong 
detections are due to road bumps or confusions between 
them. Finally, some false TNs are occasioned by the delay in 
the estimation of the centripetal acceleration due to the road 
curvature regarding the current acceleration measures by the 
inertial sensor. Besides, we observed that differences found 
between daytime in IMU and vision indicators were very 
low. In the case of vision, indicators are less noisy at night. A 
high influence of weather conditions on measured data could 
be excluded as well.  

TABLE II.  EVENTS DETECTION PERFORMANCE. TRUE POSITIVES (TP), 
FALSE POSITIVES (FP), GROUND-TRUTH (GT), PRECISION (PR), RECALL (RC) 

Event TP FP GT PR RC 

Lane Drifting (LD) 25 3 25 0.89 1.00 

Lane Weaving (LW) 75 6 78 0.93 0.96 

Acceleration (AC) 51 19 58 0.74 0.88 

Braking (BR) 80 20 91 0.80 0.88 

Turning (TN) 28 10 30 0.74 0.93 

Overall 260 57 282 0.82 0.92 
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C. Driving Behavior Evaluation 

We employ the same database as in the previous section. 
In this case, we compare the number of events and the mean 
score for each event given by both apps. For AXA Drive we 
consider all the detections (low, medium, high) over the three 
events that this app evaluates: ACs, BRs and TNs. Only 
DriveSafe (DS) detects LDs and LWs, then, these events are 
excluded from this comparison. However, it must be 
remarked that AXA app begins when the car starts moving 
while DS detects events when the car is over 50 km/h. 
Besides, AXA only use inertial sensors and DS uses inertial 
and camera sensors. Further, a subjective comparison is done. 
At the end of the two tests, each user is invited to fill a survey 
where he evaluates which of the scores obtained for each 
event is closer according to his/her own driving feeling in a 
hidden way. Results are depicted in Table III. 

TABLE III.  COMPARATIVE DRIVING BEHAVIOR EVALUATION.  

Event Type 

Normal driving Whole subjective 

score (%) Detections Score (Mean) 

DS AXA DS AXA DS AXA 

Acceleration 12 15 8.85 6.37 62.50 37.50 

Braking 13 11 9.92 7.27 87.50 12.50 

Turning 8 28 8.10 6.18 80.00 20.00 

Event Type 

Aggressive driving   
 Detections Score (Mean) 

  DS AXA DS AXA 

  Acceleration 58 56 4.54 5.00 

  Braking 87 80 4.73 3.70 

  Turning 30 58 3.60 2.20 

   

DS detections are similar for AC, a bit higher for BR and 
lower for TN. Scores differ between normal and aggressive 
driving, being lower in the last case in both apps, indicating 
worst driving behaviors. Scores from DS are higher than 
AXA. The highest difference is in the turns because in AXA 
the turns of the driver and the road curvature are coupled, 
then, this app is unable to differentiate between them. As a 
consequence, the higher road curvature, the higher number 
of events is detected. Our proposal is able to decouple these 
two effects and the detected turns mainly come from 
dangerous maneuvers. This improvement is noticed in the 
subjective evaluation, where DS gets better score than its 
competitor. Similar findings can be regarded for AC and BR 
(see Table III).  

V. CONCLUSIONS AND FUTURE WORKS 

This paper has presented the motivation, implementation 
and evaluation of DriveSafe, a new driver safety app for 
iPhones that detects inattentive driving behaviors, generating 
some alarms in case they are unsafe, and scoring driving 
style at the same time. A quantitative evaluation based on a 
controlled test-bed in real scenarios has been carried out 
analyzing the detection performance of some inattentive 
driving events and a comparative study between the driving 
scores provided by our app and the commercial AXA Drive 
app. In the near future we plan to include new 
functionalities, e.g. forward collision warnings with other 
vehicles, and to upload Drivesafe version 2.0 to the Apple 
store after deeper tests with more vehicles, roads and users. 

Moreover, we plan to use Machine Learning techniques for 
improving event detection and scoring. 
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