
Hybrid Decision Making for Autonomous Driving in
Complex Urban Scenarios

Rodrigo Gutiérrez-Moreno1, Rafael Barea1, Elena López-Guillén1, Felipe Arango1,
Navil Abdeselam1 and Luis M. Bergasa1

Abstract— Autonomous driving presents significant chal-
lenges due to the variability of behaviours exhibited by sur-
rounding vehicles and the diversity of scenarios encountered.
To address these challenges, we propose a hybrid architecture
that combines traditional and deep learning techniques. Our
architecture includes strategy, tactical and execution modules.
Specifically, the strategy module defines the trajectory to be
followed. Then, the tactical decision module employs a proximal
policy optimization algorithm and deep reinforcement learning.
Finally, the maneuver execution module uses a linear-quadratic
regulator controller for trajectory tracking and a predictive
model controller for lane change execution. This hybrid archi-
tecture and the comparison with other classical approaches are
the main contributions of this research. Experimental results
demonstrate that the proposed framework solves concatenated
complex urban scenarios optimally.

I. INTRODUCTION

Driving in urban scenarios requires an intelligent decision-
making system, capable of solving multiple situations, pro-
cessing the information of the environment, and executing
safe actions.

Decision-making for autonomous vehicles is typically
divided into two categories: classical methods and learning-
based methods. In complex dynamic environments where
autonomous vehicles interact with other traffic participants,
classical methods may not be effective due to lack of
flexibility. Therefore, learning-based methods are often used
to improve decision-making because they use real actions
in the learning process to manage uncertainty. Additionally,
with the advance of powerful computational technologies,
learning-based approaches have become increasingly popular
and developed in the field of autonomous vehicles [1]. In
particular, Reinforcement Learning (RL) allows the vehicle
to interact with the environment to learn the optimal action
for each situation [2]. RL does not require human labeling
or supervision. Instead, during its learning process it needs
a reward function defined to reach the optimal policy.

This paper introduces a hybrid decision-making system for
urban scenarios, like the shown in Fig. 1, based on a Prox-

*This work has been funded in part from the Spanish MICINN/FEDER
through the Artificial Intelligence based modular Architecture Imple-
mentation and Validation for Autonomous Driving (AIVATAR) project
(PID2021-126623OB-I00), Electric Automated Vehicle for Aging Drivers
(AVAD) project (PDC2022-133470-I00) and from the RoboCity2030-DIH-
CM project (P2018/NMT- 4331), funded by Programas de actividades I+D
(CAM), cofunded by EU Structural Funds and Scholarship for Introduction
to Research activity by University of Alcalá.

1R. Gutiérrez-Moreno, R. Barea, E. López-Guillén, Felipe Arango, Navil
Abdeselam and L.M. Bergasa are with the Electronics Departament, Univer-
sity of Alcalá (UAH), Spain.{rodrigo.gutierrez, rafael.barea, elena.lopezg,
juanfelipe.arango, navil.abdeselam, luism.bergasa}@uah.es

imal Policy Optimization (PPO) [3] algorithm. We combine
Deep Reinforcement Learning (DRL), High Definition (HD)
map information, and classic low-level control techniques in
the decision-making process.

A. Related Works

Decision-making systems for autonomous vehicles have
been the subject of extensive research in recent years. A
number of different approaches have been proposed to ad-
dress the challenges of creating a safe and efficient system.
In this section, we present a brief description of classical and
learning-based methods.

Crossroad

Roundabout

Fig. 1. Concatenated urban scenarios. Map and trajectory visual-
ization. Top view of a roundabout and a crossroad use cases. Ego
vehicle in blue and adversary in white.

One classical approach is the use of rule-based systems,
where a set of predefined rules are used to make decisions.
Finite-State-Machine (FSM) is the most representative of
these methods [4]. Apart from FSM, some research is carried
out using specific ruled-based approaches with a hybrid low
diagram [5] or a hierarchical framework [6].

Another approach is the use of optimization methods,
which use a utility function to generate decisions. Some
works, such as [7], use Model Predictive Control (MPC)
for controlling traffic situations. Others apply Game-Theory
methods to adopt the optimal strategy to solve driving
scenarios [8].

Probabilistic methods utilize principles of probability the-
ory to generate behaviour results. To determine behaviour,
a probabilistic model must be established. In [9], a proba-
bilistic graphical model (PGM) was used to generate motion
commands by estimating the intentions of adversaries in a
merging scenario. In [10], a lane change scenario is solved
using a Two-Sequential Level Bayesian Decision Network.



Learning-based methods refer to the use of artificial in-
telligence in the decision-making process. The use of these
techniques has increased in recent years. In [11], support-
vector machines (SVM) were trained to execute lane changes
using the position and velocities of surrounding vehicles.
Besides, deep learning-based methods are used for end-to-
end approaches, using raw sensor data as input and low-level
control [12].

Regarding RL-based approaches, a commonly utilized
technique is the Deep Q-Network (DQN) algorithm for high-
level decisions, as previously reported in literature [13].
In [14], the input vector used in the algorithm includes
information about the ego vehicle, the existing lanes, and
the surrounding vehicles. Two algorithms were trained, one
specifically for lane change actions, and the other for acceler-
ation purposes. The authors also introduced a novel method
applying a convolutional neural network to high-level inputs.
In [15], a minimal state representation and fast learning rates
were presented, resulting in improved performance in terms
of collisions in highway environments when compared to
rule-based algorithms. An algorithm trained for decision-
making at occluded intersections, utilizing a risk-based re-
ward function, was proposed in [16]. A partially observable
Markov decision process (POMDP) based low-level planner
was defined in [17], resulting in safe planning outcomes
with high-commute efficiency at unsignalized intersections
in real-time. The work reported in [18] employs a novel
simulation environment for training the algorithm, utilizing a
variety of traffic scenarios to simulate a realistic environment,
resulting in robust and reliable performance under noisy
observations. In [19], an algorithm using a proximal policy
optimization (PPO) based on automated lane change was
proposed, utilizing the SUMO simulation environment.

B. Contribution

This work focuses on achieving a realistic approach to
driving under different concatenated complex urban scenar-
ios. While most works in the literature focus on individual
use cases, we develop a whole autonomous driving system
for multiple use cases. With our novel hybrid approach,
we use RL to manage the uncertainty of the surrounding
elements; and we use classic planning, mapping, and con-
trol techniques to ensure safe and robust behaviour. The
results show our proposal works better than other classical
approaches.

II. BACKGROUND

In this section, we introduce the three decision-making
approaches evaluated in this work: Time-to-Collision (TTC),
which is a standard decision-making method; our previous
classical decision-making module [20] based on Petri nets
(PN); and a partially observable Markov decision process
(POMDP), developed in this research.

A TTC decision-making module calculates the time until
a potential collision based on the relative positions and
velocities of the ego vehicle and the detected objects. The
module then uses this information to make decisions about

how to safely navigate the vehicle, such as by braking or
steering to avoid a collision.

Our Petri nets decision-making module is a graphical
representation of the vehicle’s behaviour, where the nodes
represent states and the edges represent transitions between
states. This module analyzes and optimizes decision-making
processes.

This work defines urban scenarios as POMDPs. We solve
these POMDPs using a DRL approach, in which the ego-
vehicle is defined as an agent. This agent receives infor-
mation from the environment as observations and performs
actions regarding a policy. This policy is updated using a
reward in a process known as training. A graphic represen-
tation of this methodology is described in Fig. 2.

Environment

Obs

{dist, vel}

Actions

Simulator

St

Rt+1

St+1

At

Drive, Stop, Change Lane

Rt

π(s)

Agent

Fig. 2. An observation matrix is extracted from the simulator. The
agent selects an action considering this matrix and the reward for
this action.

A POMDP is defined as a tuple (S,A,Ω, T,O,R), where
S is a set of states, A is a set of actions, Ω is a set of
observations, T is a transition function, O is an observation
function, and R is a reward function. The agent receives
an observation o ∈ Ω, rather than observing the true state
s′ directly. The agent’s internal knowledge of the state is
represented by the belief b(s), which is the probability of
being in a state s. The optimal policy π∗(b) maps beliefs to
actions.

We propose using a policy-based method, which learns the
policy function directly. This policy maps states to actions.
The method we use is the Proximal Policy Optimization
(PPO) algorithm [3]. The loss function used in PPO is given
by Eq. 1, where LCLIP

t is a clipping function, LVF
t is the

value function loss, S[πθ] represents the entropy of the policy
at timestep t, and c1, c2 are coefficients.

LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ)−c1L

V F
t (θ)+c2S[πθ](st)]

(1)
In each iteration, the algorithm runs the policy for Ts

timesteps within a given length-Ts trajectory segment and
uses the collected samples for an update.

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1

where δt = rt + γV (st + 1)− V (st)
(2)

A truncated version of generalized advantage estimation
is used, given by Eq. 2, where δt is the temporal-difference



dego, vego

d1, v1 Intersection Point

d2, v2

d4, v4

d3, v3

(a)

Intersection Point

dego, 
vego

d1, v1
d2, v2

(b)

dego, vego Intersection Point

d1, v2

d2, v2

(c)

dlr, vlr

left current right

(d)

Fig. 3. Definition of the observation matrix for each scenario. The ego vehicle (red) and the adversaries (blue) are described for each use
case. (a)Intersection. (b) Merge. (c) Roundabout. (d) Lane Change.

error and Ât is the estimated advantage at timestep t. N
parallel actors collect T timesteps of data and the surrogate
loss function is constructed on these NT timesteps of data.
This function is optimized using minibatch stochastic gradi-
ent descent (SGD) for K epochs.

III. MODELING URBAN SCENARIOS

For developing our decision-making framework we need
to represent the urban scenarios as POMDPs. We consider
intersections and multiple lanes roads for this research. Our
goal is to use an RL algorithm to execute high-level decisions
in these scenarios, dealing with a continuous observation
matrix and a set of discrete actions. We define our vehicle as
the ego vehicle and the surrounding vehicles as adversaries.

A. Intersections

A large variety of intersections can be found in an urban
environment. In this work, we focus on three types of inter-
sections: crossroads, merge, and roundabouts. For simplicity,
we use the same representation as POMDPs for the three
scenarios. However, each of them is solved using a different
policy.

1) State: The state of a vehicle, as shown in Fig. 3, is
defined by its distance to the intersection point, its longi-
tudinal velocity, and its driving intention: si = (di, vi, ii),
these physical values are normalized between [0, 1] and the
driving intention of the adversarial vehicles are described by
i ∈ {0, 1, 2}. In the crossroads, the trajectory to be followed
by the adversarial vehicles is defined by their intention to
turn left i = 1, keep straight i = 0, or turn right i = 2.
In the merge and the roundabout, a vehicle with i = 0 may
yield, while a vehicle with i = 2 does not yield. The state of
the environment is defined as the collection of the individual
states of all the vehicles: s = (se, s1, s2, ..., sn), where se is
the ego vehicle state and s1, s2, ..., sn are the states of the n
adversaries.

2) Observation: To create realistic experiments, we as-
sume that the detection, by a theoretical perception module,
can obtain vehicle information within 50 metres in 360º.
We define the observation vector without prior information
about the intersection type. The ego vehicle can observe
the longitudinal velocity and position of the surrounding
vehicles, being the observation vector defined as o =

(de, ve, d1, v1, ..., d4, v4), only considering the ego vehicle
and the four closest adversaries.

3) Action: We propose a discrete action space formed by
just two high-level actions. The low-level controller is in
charge of performing smooth driving based on these actions.
These actions are focused on when the vehicle has to cross
the intersection and when it has to stop. The action space is
defined as a = (stop, drive).

4) Reward: The objective of an RL algorithm is to
optimize the expected value of the discounted future reward.
Different reward functions will modify the resultant policy.
The purpose of the reward function, in these use cases, is
to perform the rapid and safe navigation of the ego vehicle
through an intersection, avoiding collisions with adversarial
vehicles. Collisions, result in a negative reward, while suc-
cessful navigation results in a positive reward. To further
encourage the vehicle’s forward progression, a cumulative
reward based on longitudinal velocity is proposed. Addition-
ally, at the end of each episode, a negative reward is assigned
proportionally to its duration, where te represents the episode
duration and tout represents the maximun episode time. The
reward function is defined in the following components:

• Reward based on the velocity: kv · vego;
• Reward for crossing the intersection: +1;
• Penalty for collisions: −2;
• Penalty relative to the episode duration: −0.2te/tout.

B. Roads

Roads in urban scenarios may have one or multiple lanes.
We propose a lane change module to drive in these situations,
where a slow or stopped vehicle can hinder ego vehicle
driving. In this section, we work with a three lanes road
which can be extrapolated to any number of lanes.

1) State: The state of a vehicle is defined by its distance
to the ego vehicle, its longitudinal velocity, and its driving
behaviour: si = (di, vi, ii), these physical values are normal-
ized between [0, 1] and driving intention of the adversarial
vehicles are described by i ∈ {0, 1, 2}. In this scenario, a
vehicle may change left i = 1, keep driving in its lane
i = 0, or change right i = 2. We define the state of the
environment as the collection of the individual states of the
adversarial vehicles: s = (s1, s2, ..., sn), being n the number
of adversaries.



Localization HDMap Sensors

Strategy level

Tactical Level

RL Agents
OBS

Steer 
Velocity Waypoints 

High-Level
Actions

Selector

Tactical Trajectory

Vehicles 
Global

Location

Perception

Carla Simulator

Operative Level

Maneuver Execution

Trajectory Tracking

Fig. 4. The proposed hybrid architecture. The strategy level defines a tactical trajectory with the map information and the ego vehicle
location. The tactical level executes high-level actions in correlation with the perception information. The operative level combines the
trajectory and the actions, calculating the driving commands.

2) Observation: The observation matrix is defined by
the nearest vehicles in the current and contiguous lanes
of the ego vehicle. As shown in Fig. 3d we consider the
information of six vehicles, three leading vehicles, and three
following vehicles. The observation space is composed of
the relative normalized distances to these vehicles: o =
(dll, dlc, dlr, dfl, dfc, dfr), where the indices indicate the
lane of the vehicle and its relative position with the ego
vehicle.

3) Action: The RL algorithm only controls the lane-
changing decisions while the velocity is automatically con-
trolled by the operative layer. This is done by an Adaptive
Cruise Control (ACC) module, which softly adapts the ego
vehicle velocity to the leading vehicle as it gets closer. We
propose a discrete set of actions: change to the left lane,
continue in the current lane, and change to the right lane:
a = (change left, idle, change right).

4) Reward: We aim to drive at a desired velocity without
colliding with adversarial vehicles. A positive reward is given
when the vehicle reaches the end of the road and a negative
reward is given when it collides. We propose a cumulative
reward based on its longitudinal velocity. In addition, a
positive reward is given when the vehicle is in the right lane:

• Reward based on the velocity: kv · vego;
• Reward based on the right lane: ki;
• Reward for reaching the end of the road: +1;
• Penalty for collisions: −2;

IV. HYBRID ARCHITECTURE

This paper aims to address a completely autonomous
driving system, including high-level decision-making and
maneuver control in a hybrid architecture. It is divided into
four levels as it is described in Fig. 4. The perception
level process the camera data, the strategy level defines a

tactical trajectory, the tactical level is in charge of the high-
level decisions and the operative level executes the control
maneuvers.

A. Perception Level

The perception data are obtained directly from the ground
truth of the simulator. In practical implementations, these
data may be acquired through the integration of cameras and
lidars.

B. Strategy Level

The path planning module [21] uses the HD map input
to generate a graph of lanes and roads. Then it applies the
Dijkstra algorithm to calculate a topological route between
the ego vehicle position and the goal location. Finally, a
list of waypoints is generated. The route is calculated every
time a new goal location is set. The trajectory also describes
the scenarios that will be found in the route. This route,
containing the waypoints and the environment information
is defined as the tactical trajectory.

C. Tactical Level

Once we have introduced how the scenarios are repre-
sented as POMDPs we define our decision-making module.
The selector module receives the tactical trajectory infor-
mation and the ego vehicle location. With this information,
an RL agent is selected when the ego vehicle approaches
a scenario. The location and velocity of each adversary
are provided by the perception level and processed into an
observation matrix. This matrix is the input for the RL agent,
which executes a high-level action.

We propose the neural network structure for the RL agents,
consisting of a features extractor module and an actor-critic
approach. The features of the ego vehicle and the adversaries
are the input to the extractor. This features extractor is trained



in a supervised way, being the weights shared between the
actor/critic network. The extracted features are concatenated
in a single vector, which is the PPO input. This PPO
algorithm has two models: the Actor, which is in charge
of choosing an action representing the policy; and the Critic,
which corresponds with the value function. Both models are
defined with a simple multi-layer perceptron (MLP) formed
by two hidden layers of 128 neurons each. The net structure
is shown in Fig. 5.

obs
ego

adversaries

PPO
input

at

vt

π

value

action

Features Extractor PPO
Actor

Critic

MLP

MLP MLP

MLP

Fig. 5. Neural network: actor-critic structure with two layers of 128
neurons each.

D. Operative level

The operative level has two modules. The trajectory track-
ing module and the maneuver module.

The trajectory tracking is performed by our classic con-
troller [22]. It performs a smooth interpolation of the way-
points generated by the planner. The steering command to
follow this trajectory is calculated using LQR techniques.
A velocity profile is defined using the trajectory section’s
curvature radius and the velocity limit before navigation
begins. The velocity command is adjusted using this profile.

The maneuver module is in charge of executing the actions
selected by the tactical level. The lane change action is
performed using our MPC controller [23]. The stop-and-drive
actions are performed using a ramp signal, ensuring comfort
and safety. An ACC module is continuously running in the
background to maintain a safe distance from the leading
vehicle.

V. EXPERIMENTS

Our architecture is designed for concatenated complex
urban scenarios. We develop rich and complex use cases for
training and validation.

A. Environmental Setup

We propose four driving scenarios according to our def-
initions in section III. We divide them into intersections
(crossroads, merge, and roundabout) and roads (lane change).

1) Intersection: Traffic generation is one of the essentials
to obtain a realistic simulation. The traffic density and vehicle
features are similar for the three scenarios. A new vehicle is
generated in the simulation every sec ∈ [5, 10] seconds, these
vehicles are 4 meters long and follow a standard Intelligent
Driver Model (IDM) technique [24] with a commanded
velocity of v ∈ [4, 6] m/s. The adversarial vehicles present
different behaviours. At crossroads, they can turn in any
direction, they will yield if another vehicle is already inside
the intersection and they can accelerate or decelerate. At the

merge, the ego-vehicle must learn to yield and incorporate
in a safe way. A similar behaviour must be learned in the
roundabout, where these vehicles do not usually yield.

2) Roads: We have designed a lane change environment,
consisting of three lanes forming a 400 metres road. Three
types of adversarial vehicles are generated in a random lane
with a probability of 0.15 every second. These vehicles have
a maximum velocity of 5, 10, and 15 m/s. They may perform
a lane change as defined in section III-B.1.

3) Training: Following the principles of curriculum learn-
ing, we start training with low vehicle density and then
increment the scenario complexity by adding more vehicles.
As presented in our previous work [25], we achieve fast
convergence in our training using these techniques and a two-
stage training methodology. We propose a first training stage,
with a large number of episodes in a simple simulator, and
a second training stage with the previous prior, in charge of
adapting the model to a more complex and realistic simulator.
We solve the domain adaptation problem by keeping the
same inputs and outputs. In the first training stage, vehicle
dynamics, velocity commands and maneuvers are defined by
the SUMO simulator, while in this second stage, this is done
by CARLA simulator.

B. Evaluation Metrics

In our proposed methodology, the metrics of success
and collision rates and average passing time are utilized
as general indicators for the assessment of performance.
Specifically, the success rate serves as a direct measure
of the effectiveness of the RL agent in accomplishing the
designated task. These metrics are defined as:

• success [%] = end reached/ne

• collision [%] = ncollisions/ne

• tavg =
∑

tn / ne

where the number of episodes ne is defined for each
evaluation and simulation time is measured in seconds. The

TABLE I. Results of the previously described decision-making
architectures for single use cases. The success rate S[%], collision
rate C[%], timeout rate T[%] and episode time te are presented.

Scenario Metric Time-To-Collision Petri Nets Hybrid RL

Crossroad

S [%] 73 80 91
C [%] 1 3 1
T [%] 26 17 8
te (s) 19 18 8

Merge

S [%] 90 95 95
C [%] 0 0 0
T [%] 10 5 5
te (s) 10 10 7

Roundabout

S [%] 78 87 94
C [%] 2 1 1
T [%] 20 12 5
te (s) 17 12 8

Lane Change

S [%] 96 98 98
C [%] 3 1 0
T [%] 1 1 2
te (s) 53 51 25



Merge Crossroad

Crossroad

Roundabout Lane Change

Crossroad

Merge

Fig. 6. A representation of the Town 01 (left) and Town 03 (right) concatenated scenarios.

episode time is limited. The ego vehicle does not succeed if
this time is reached.

C. Results for individual use cases

In this section, we present the results of 100 test episodes
for each of the previously described algorithms and scenar-
ios. After a determined time for each scenario, the episode
ends. If the agent is not able to solve the use case this episode
finishes with a timeout.

The results obtained for each architecture in each scenario
described in the previous section are presented in Table I.
As expected, all three architectures obtain worse results in
the crossroad scenario, which involves more vehicles and
situations. Our Hybrid RL agent obtains the best results with
an average success rate of 0.945. Besides, our proposal solves
the scenario significantly faster than the other approaches.
The percentage of collisions of the three approaches is
similar, being the main difference the number of tests that
end with a timeout.

D. Concatenated scenarios.

One of the main contributions of this work is the con-
catenation of use cases. We define adversarial vehicles in
determined positions. These vehicles start moving at a certain
moment so they present a difficult situation to the ego
vehicle. In order to add complexity to these scenarios, the
initial position of the adversaries and their velocities will
vary from one simulation to another.

We develop two scenarios with multiple use cases using
the OpenScenario tool [26]. These scenarios, described in
Fig. 6, are simulated in two towns in CARLA:

• Town 03 scenario presents the following concatenated
use cases: a roundabout with one adversary, a lane
change with a stopped vehicle in front, a crossroad
with some adversaries approaching for both lanes and
a merge with two adversaries on the main road.

• Town 01 scenario presents the following concatenated
scenarios: merge with two adversaries on the main road
and two crossroads where the ego vehicle have to turn
left with some adversaries.

The behavior of our framework in the Town 03 scenario is
described in Fig 7, where a temporal diagram is shown. In
this diagram, both the velocity and steer commands of the
ego vehicle are represented. Each colour refers to a specific
use case. These use cases are shown in the images under the
chart, where their trajectories are represented.

The RL agents are selected using the HD map information.
These agents select the actions and the low-level execute
these actions. These high-level actions are also described in
this temporal diagram.

Finally, we run 100 tests with our architecture in the
concatenated scenarios and present the results obtained in
Table II.

TABLE II. Results of Hybrid RL architecture for concatenated use
cases. The success rate S[%] and episode time te are presented.

Town 01 Town 03
S[%] te S[%] te

Hybrid RL 98 33 97 46

These scenarios are available for the scientific com-
munity through our GitHub: https://github.com/RobeSafe-
UAH/HybridDecisionMaking. Besides, a video of the agent
performing some simulations can be found.

VI. CONCLUSIONS AND FUTURE WORKS

The results of this work show that a hybrid architecture
can solve driving decisions in concatenated complex urban
scenarios. With the use of HD map information and Re-
inforcement Learning algorithms, high-level decisions are
executed by a low-level controller. Besides, the proposed
framework obtains better results in terms of success and
execution time than the classical approaches.

In the near future, we plan to design more of these sce-
narios and study the influence of simulated sensors in these
complex scenarios. This will lead us to transfer these models
to our autonomous vehicle in controlled real scenarios.

REFERENCES

[1] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning
sensor fusion for autonomous vehicle perception and localization: A
review,” Sensors, vol. 20, no. 15, 2020.

https://github.com/RobeSafe-UAH/HybridDecisionMaking
https://github.com/RobeSafe-UAH/HybridDecisionMaking


Roundabout Lane Change Crossroad Merge

Fig. 7. A concatenated scenario temporal diagram. The behaviour of our agent is shown in the sequence of images in the CARLA
simulator. The relevant events are described. The evolution of the velocity and steer are presented in the temporal chart. Ego vehicle in
blue and adversary in white.

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. K.
Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” CoRR, vol. abs/2002.00444, 2020.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[4] Q. Liu, X. Li, S. Yuan, and Z. Li, “Decision-making technology for
autonomous vehicles learning-based methods, applications and future
outlook,” 2021.

[5] A. Artuñedo, J. Godoy, and J. Villagra, “A decision-making architec-
ture for automated driving without detailed prior maps,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), pp. 1645–1652, 2019.

[6] P. F. Orzechowski, C. Burger, and M. Lauer, “Decision-making for
automated vehicles using a hierarchical behavior-based arbitration
scheme,” in 2020 IEEE Intelligent Vehicles Symposium (IV), IEEE,
oct 2020.

[7] D. Yang, K. Redmill, and U. Ozguner, “A multi-state social force
based framework for vehicle-pedestrian interaction in uncontrolled
pedestrian crossing scenarios,” 2020.

[8] D. Isele, “Interactive decision making for autonomous vehicles in
dense traffic,” 2019.

[9] C. Dong, J. M. Dolan, and B. Litkouhi, “Intention estimation for ramp
merging control in autonomous driving,” in 2017 IEEE Intelligent
Vehicles Symposium (IV), pp. 1584–1589, 2017.

[10] D. Iberraken, L. Adouane, and D. Denis, “Safe autonomous overtaking
maneuver based on inter-vehicular distance prediction and multi-level
bayesian decision-making,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pp. 3259–3265, 2018.

[11] C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, “A machine learning
approach for personalized autonomous lane change initiation and
control,” in 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1590–
1595, 2017.

[12] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen, V. Lam,
A. Bewley, and A. Shah, “Learning to drive in a day,” CoRR,
vol. abs/1807.00412, 2018.

[13] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to
drive in intersections by combining reinforcement learning and model
predictive control,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 3263–3268, 2019.

[14] C. Hoel, K. Wolff, and L. Laine, “Automated speed and lane
change decision making using deep reinforcement learning,” CoRR,
vol. abs/1803.10056, 2018.

[15] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,

“High-level decision making for safe and reasonable autonomous lane
changing using reinforcement learning,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 2156–
2162, 2018.

[16] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller, “Risk-aware high-
level decisions for automated driving at occluded intersections with
reinforcement learning,” CoRR, vol. abs/2004.04450, 2020.

[17] K. Shu, H. Yu, X. Chen, L. Chen, Q. Wang, L. Li, and D. Cao, “Au-
tonomous driving at intersections: A critical-turning-point approach
for left turns,” CoRR, vol. abs/2003.02409, 2020.

[18] A. Alizadeh, M. Moghadam, Y. Bicer, N. K. Ure, M. U. Yavas, and
C. Kurtulus, “Automated lane change decision making using deep re-
inforcement learning in dynamic and uncertain highway environment,”
CoRR, vol. abs/1909.11538, 2019.

[19] F. Ye, X. Cheng, P. Wang, and C. Chan, “Automated lane change
strategy using proximal policy optimization-based deep reinforcement
learning,” CoRR, vol. abs/2002.02667, 2020.

[20] C. Gómez-Huélamo, J. Del Egido, L. M. Bergasa, R. Barea, E. López-
Guillén, F. Arango, J. Araluce, and J. López, “Train here, drive
there: Ros based end-to-end autonomous-driving pipeline validation
in carla simulator using the nhtsa typology,” Multimedia Tools and
Applications, pp. 1–28, 2021.

[21] A. Diaz-Diaz, M. Ocaña, A. Llamazares, C. Gómez-Huélamo, P. Re-
venga, and L. M. Bergasa, “Hd maps: Exploiting opendrive potential
for path planning and map monitoring,” in 2022 IEEE Intelligent
Vehicles Symposium (IV), 2022.

[22] R. Gutiérrez, E. López-Guillén, L. M. Bergasa, R. Barea, Pérez,
C. Gómez Huélamo, J. F. Arango, J. del Egido, and J. López, “A
waypoint tracking controller for autonomous road vehicles using ros
framework,” Sensors, vol. 20, p. 4062, 07 2020.

[23] N. Abdeselam Abdel-Lah et al., “Controlador hı́brido basado en mpc y
“splines” para maniobras de cambio de carril en vehı́culos autónomos,”
2022.

[24] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical Review
E, vol. 62, pp. 1805–1824, aug 2000.

[25] R. Gutiérrez-Moreno, R. Barea, E. López-Guillén, J. Araluce, and
L. M. Bergasa, “Reinforcement learning-based autonomous driving
at intersections in carla simulator,” Sensors, vol. 22, no. 21, 2022.

[26] J.-M. Jullien, C. Martel, L. Vignollet, and M. Wentland, “Opensce-
nario: A flexible integrated environment to develop educational activi-
ties based on pedagogical scenarios,” in 2009 Ninth IEEE International
Conference on Advanced Learning Technologies, pp. 509–513, 2009.


	Introduction
	Related Works
	Contribution

	Background
	Modeling Urban Scenarios
	Intersections
	State
	Observation
	Action
	Reward

	Roads
	State
	Observation
	Action
	Reward


	Hybrid Architecture
	Perception Level
	Strategy Level
	Tactical Level
	Operative level

	Experiments
	Environmental Setup
	Intersection
	Roads
	Training

	Evaluation Metrics
	Results for individual use cases
	Concatenated scenarios.

	Conclusions and Future Works
	References

