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Abstract— Intersection navigation comprises one of the major
ingredient of Intelligent Transportation Systems (ITS) for Visu-
ally Impaired Pedestrians (VIP), who are the most vulnerable
road users that should be protected with a high priority in
metropolitan areas. Robotic vision-based assistive technologies
sprung up over the past few years, which focused on specific
scene objects using monocular detectors or depth sensors. These
separate approaches achieved remarkable results with relatively
low processing time, and enhanced the intersection perception
to a large extent. However, running all detectors jointly incurs
a long latency and becomes computationally prohibitive on
wearable embedded systems. In this paper, we put forward
to seize pixel-wise semantic segmentation to cover navigation-
related perception needs in a unified way. This is not only
critical to perceive crosswalk position (where to cross roads),
traffic light signal (when to cross roads), but also to analyze
the states of other pedestrians and vehicles (whether safe to
cross roads). The core of our unification proposal is a deep
architecture, aimed to attain efficient semantic understanding.
A comprehensive set of experiments demonstrate the qualified
accuracy over state-of-art algorithms while maintaining high
inference speed on a real-world navigation assistance system.

I. INTRODUCTION

Ambient smart living and Intelligent Transportation Sys-
tems (ITS) are becoming tightly intertwined [1] to enhance
road safety assisted with robotic vision [2]. Intersections in
complex metropolitan areas are one of the most hazardous
where many accidents occur between turning-vehicles and
pedestrians [3]. Rich functionalities have been included
in mass-produced vehicles and transportation infrastruc-
tures [4], together with mobility aid for wheelchairs and
individual travelers. In spite of the significant contributions
of all these advances, there is still a long way to go towards
the utopia of all traffic participants.

Arguably, most of the time ITS support able-bodied users
to safely and efficiently use a transport system. Problems
arise when the user has some kind of disability, e.g., vi-
sual impairments. Precisely at urban intersections, Visually
Impaired Pedestrians (VIP) encounter a diverse range of
navigational challenges. There is a necessity to expand the
coverage of assistance to help VIP crossing roads indepen-
dently, which will also contribute to the improvements of
transportation. Towards this end, a wide spectrum of tasks
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Fig. 1. Two approaches of perception in navigational assistance for visually
impaired pedestrians at metropolitan intersections.

are concerned (see Fig. 1), with a vital part of vision-
based proposals focused on crosswalk detection [3], [5],
[6] and pedestrian crossing light detection [7], [8]. In order
to reduce traffic accidents during self-navigation, proof-of-
concepts were also investigated to equip infrastructure-based
pedestrian tracking [4] at signalized crosswalks, along with
integration of wearable radar [9] to warn against collisions
with vehicles, taking into consideration that fast-approaching
objects are response-time critical.

As a matter of fact, each one of these navigational tasks
has been well resolved through its respective solutions. De-
spite the impressive strides towards higher mobility of VIP, a
majority of processing pursues the sequential pipeline instead
of a unified way, separately detecting different assistance-
related scene elements. Thereby, it is computationally inten-
sive to run different detectors together and the processing
latency makes it infeasible within road crossing context.
For illustration, one of a pioneering work [7] recognizes
traffic lights at about 5-10FPS, while delivering feedback
in a few seconds. It sacrificed real-time performance by
exploring temporal analysis for safety reasons. To locate
crosswalks for transportation management system, [3] takes
about 1.43s per frame based on MSER and ERANSAC.
These approaches depend on further optimization to provide
assistance at normal walking speed. A more recent example
could be the navigation assistance system reported in [6],
[8], which detects zebra crosswalks at about 15-30FPS, with
additional 47ms to detect pedestrian crossing lights, let alone
other processing components [10] that make it sub-optimal
for real-time assistance on embedded platforms. In this sense,
it is desirable to juggle multiple tasks simultaneously and
coordinate all of the perception needs efficiently.



In order to close the gap, we derive insight from the
field of autonomous driving, another safety-critical task
that faces similar perception challenges, whose impressive
developments could be leveraged for assistive intersection
navigation given the following facts:

• Full pixel-wise semantic segmentation, as one of the
challenging vision tasks, aims to partition an image into
several coherent semantically meaningful parts. Fueled
by deep learning, it has grown as the key enabler to
cover navigation-related detection tasks in an end-to-
end unified manner [11].

• An even higher potency of Convolutional Neural Net-
works (CNNs) arguably lies in the capacity to learn
contexts and inter-relations. In our application domain,
pedestrian crossing lights appearing above zebra cross-
walks is one common property, which is contextual
information to be exploited despite the inherent variance
in shapes, sizes and textures.

• Large-scale scene parsing datasets feature a high vari-
ability in capturing viewpoints (from road, sidewalks,
and off-road) [12], which offer a broad range of images
with assistance-related intersection elements, supposing
essential prerequisites to aid perception in visually
impaired individuals.

Inspired by the synergy, we propose to seize pixel-wise
semantic segmentation to provide a comprehensive set of
assistive awareness, including crosswalk position (where
to cross roads), traffic light signal (when to cross roads),
as well as pedestrian and vehicle state (whether safe to
cross roads). This paper considerably extends the previous
work on traversability awareness [10] by including novel
contributions and results that reside in the following aspects:

• A unification of intersection perception with regard to
crosswalk detection, traffic light detection, pedestrian
and vehicle detection.

• A real-time semantic segmentation network to learn
both global scene contexts and local textures without
imposing any assumptions.

• A real-world navigational assistance framework on a
wearable prototype for visually impaired individuals.

• A comprehensive set of experiments on a large-scale
scene parsing dataset [12] and two real-world egocentric
intersection datasets [6], [8], by comparing with tradi-
tional algorithms and state-of-art networks.

The remainder of this paper is structured as follows.
Section II reviews related work that has addressed both
crosswalk detection, pedestrian traffic light detection and
pixel-wise semantic segmentation for assistive navigation. In
Section III, the proposed framework is elaborated in terms of
the wearable navigation assistance system and the real-time
semantic segmentation architecture. In Section IV, the ap-
proach is evaluated and discussed as for real-time/real-world
performance by comparing to the most relevant approaches.
Section V draws the conclusions and offers an outlook into
what are expected in future work.

II. RELATED WORK

A large part of researches were dedicated to detecting
merely one of landmarks at intersections, such as zebra cross-
walks [3], [5], [6] or pedestrian crossing lights [7], [8]. Com-
paratively, only a fraction of works have put efforts into the
incorporation of crosswalk detection with crossing light de-
tection. One of the earliest intersection assistance algorithm
was proposed with analytic image processing [13]. It detects
crossing lights in near-view images, where the light covers
a dominant portion and no crosswalk exists, hence these
two elements were not detected simultaneously. A robotic
guide dog [14] was assembled with template matching-
based crossing light detection and Hough transform-based
crosswalk detection. However, this system was simply tested
in one scenario, forgetting to guarantee the robustness across
various situations. Another similar algorithm for intersection
assistance based on RGB-D images [15] was specially de-
signed to detect US crossing lights. In our application domain
towards real-world assistance, the reliability should be en-
sured against the variety of street configurations, illumination
changes, and even across continents.

Pixel-wise semantic segmentation has come into view
as an extremely powerful approach to provide a reliable
generalization capability, as well as to detect multi classes
of scenes simultaneously. However, the research topic to
leverage semantic segmentation to assist VIP has not been
widely investigated. For prosthetic vision, a computer sys-
tem [16] was presented to aid in obstacle avoidance by using
semantic labeling techniques. Although related, the produced
stimulation pattern can be thought of as a low resolution,
low dynamic range, distorted image, which is insufficient
for our task. A different piece of related work [17] has been
recently presented to identify the most walkable direction
for outdoor navigation. While inspiring, this work focused
on the tracking of a safe-to-follow object by providing
only sparse bounding-box semantic predictions, and hence
cannot be straightforwardly used for upper-level reasoning
tasks. Although sporadic efforts have been made along this
line, these approaches are unable to run in real-time and
render intersection-centered assistance. Considering these
reasons, this task represents a challenging and so far largely
unexplored research topic.

III. APPROACH

A. Wearable assistive intersection navigation system

In this work, the main motivation is to design a prototype
which should be wearable without hurting the self-esteem
of VIP. With this target in mind, we follow the trend of
using head-mounted glasses [10] to acquire environmental
information and interact with VIP. As worn by the user at
an urban intersection in Fig. 2, the pair of smart glasses is
comprised of a RGB-D sensor of RealSense R200 and a set
of bone conducting earphones.

This pair of smart glasses captures real-time RGB-D
streams and transfers them to the processor, while the RGB
images are fed to the network for semantic segmentation.



Fig. 2. Overview of the wearable navigation assistance system.

As for the depth images, which are acquired with the
combination of active speckle projecting and passive stereo
matching, support a higher-level robust obstacle avoidance
as previously presented in [10]. The crosswalk location,
crossing light signal, and pedestrian/vehicle states are de-
termined by directly using the semantic segmentation output
as the base for assistive awareness, with which feedback are
delivered through the bone conducting earphones. This is
important as VIP need to continue hearing environmental
sounds when crossing the roads and the bone conducting
interface allows them to hear a layer of augmented acoustic
reality that is superimposed on the environmental sounds.

B. Real-time semantic segmentation architecture

Up until very recently, pixel-wise semantic segmentation
was not usable in terms of speed. However, a fraction of
networks has focused on the efficiency by proposing archi-
tectures that could reach near real-time segmentation [11],
[18], [19]. These advances have made possible the utilization
of full scene segmentation in time-critical cases like blind
assistance. To leverage the success of segmenting a variety
of scenes and maintaining the efficiency, we design the
architecture according to the SegNet-based encoder-decoder
architectures like ENet [18] and our previous ERFNet [11].
In FCN-like architectures, feature maps from different layers
need to be fused to generate a fine-grained output. As
indicated in Fig. 3, our approach contrarily uses a more
sequential architecture based on a encoder producing down-
sampled feature maps and a subsequent decoder that up-
samples the feature maps to match input resolution. In
addition, Table I gives a detailed description of the integrated
architecture. Generally, the residual layer adopted in state-
of-art networks has two instances: the bottleneck version
and the non-bottleneck design. In our previous work [11],
“Non-bottleneck-1D” (non-bt-1D) was proposed, which is a
redesign of the residual layer to strike a rational balance
between the efficiency of the bottleneck and the learning
capacity of non-bottleneck, by using 1D factorizations of the
convolutional kernels. Thereby, it enables an efficient use of
minimized amount of residual layers to extract feature maps
and achieve semantic segmentation in real time.

However, for robust segmentation of intersection-centered
scene elements, we attach a different decoder with respect to
the previous work. This critical modification aims to collect
more contextual information while minimizing the sacrifices
of learning textures. Global context information is of cardinal
significance for navigational assistance at urban intersec-
tions. To detail this, two common issues are worthwhile
to remark for context-critical blind assistance. First, context
relationship is universal and important especially for complex

TABLE I
LAYER DISPOSAL OF OUR PROPOSED NETWORK.

“OUT-F”: NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT,
“OUT-RES”: OUTPUT RESOLUTION FOR INPUT SIZE OF 640×480.

Layer Type Out-F Out-Res

E
N

C
O

D
E

R

0 Scaling 640×480 3 320×240
1 Down-sampler block 16 160×120
2 Down-sampler block 64 80×60

3-7 5×Non-bt-1D 64 40×30
8 Down-sampler block 128 40×30
9 Non-bt-1D (dilated 2) 128 40×30

10 Non-bt-1D (dilated 4) 128 40×30
11 Non-bt-1D (dilated 8) 128 40×30
12 Non-bt-1D (dilated 16) 128 40×30
13 Non-bt-1D (dilated 2) 128 40×30
14 Non-bt-1D (dilated 4) 128 40×30
15 Non-bt-1D (dilated 8) 128 40×30
16 Non-bt-1D (dilated 2) 128 40×30

D
E

C
O

D
E

R

17a Original feature map 128 40×30
17b Pooling and convolution 32 40×30
17c Pooling and convolution 32 20×15
17d Pooling and convolution 32 10×8
17e Pooling and convolution 32 5×4
17 Up-sampler and concatenation 256 40×30
18 Convolution C 40×30
19 Up-sampler C 640×480

intersection scene understanding. If the network mis-predicts
crosswalks on sidewalks, VIP would be left vulnerable in
the dynamic environments. The common knowledge should
be learned by the data-driven approach that crosswalks are
seldom over sidewalks. Second, when crossing the roads, the
scene elements such as crosswalks, crossing lights, pedestri-
ans and vehicles are with arbitrary sizes from the sensor
perspective. Navigation assistance system should pay much
attention to different sub-regions that contain inconspicuous-
category stuff.

These risks could be mitigated by exploiting more context
and learning more relationship between categories. Bearing
the goal of helping VIP in mind, we reconstruct the decoder
architecture. In this reconstruction, the decoder architec-
ture follows the pyramid pooling module as introduced by
PSPNet [20]. This module is leveraged to harvest different
sub-region representations, followed by up-sampling and
concatenation layers to form the final feature representations.
In this way, local and global context information are carried
from the pooled representations at different locations. By
fusing features under a group of different pyramid levels,
the output of different levels in this pyramid pooling module
contains the feature map from the encoder with varied sizes.
With the aim to maintain the weight of global feature, a
convolution layer is utilized after each pyramid level to
reduce the dimension of context representation to 1/N of
the original one if the level size of the pyramid is N. As
for the situation in Fig. 3c, the level size N equals to 4
and we decrease the number of feature maps from 128
to 32. Subsequently, the low-dimension feature maps are
directly up-sampled to obtain the same size features as the
original feature map through bilinear interpolation. Overall,
Fig. 3 contains a depiction of the feature maps generated
by each of the block in our architecture, from the RGB
input to the pixel-level class probabilities and final predicted
segmentation map.



(a) (b) (c) (d)
Fig. 3. The proposed architecture. From left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

IV. EXPERIMENTS

Experiments setup. Datasets for evaluation include the
challenging large-scale Mapillary dataset [12], and two real-
world egocentric datasets [6], [8] captured at urban intersec-
tions in Hangzhou, China and in Trento, Italy. The metrics
reported in this paper correspond to Intersection-over-Union
(IoU) and Pixel-wise Accuracy (P-A) that are prevailing in
semantic segmentation challenges, and two recall values in
terms of stripe-level for crosswalk detection and instance-
level for pedestrian crossing light detection.

Real-time performance. The total computation time of
a single frame at the resolution depicted in Fig. 3/Table I
is 13ms, mostly on semantic segmentation. In this sense,
the computation cost is saved to maintain a reasonably
qualified refresh-rate of 76.9FPS on a processor with a
single cost-effective GPU GTX 1050Ti. This inference time
demonstrates that it is able to run our approach in real-time,
while allowing additional time for acoustic feedback [10].
In addition, on a embedded GPU Tegra TX1 (Jetson TX1)
that enables higher portability while consuming less than
10 Watts at full load, our approach achieves approximately
22.0FPS. When comparing the real-time performance with
traditional detectors that focused on specific objects, our
approach is the fastest as displayed in Table II, along with the
forward passing time of state-of-art efficient architectures.
At 320×240, our approach is slightly faster than ENet [18],
even though LinkNet [19] is not able to be tested due
to the inconsistent tensor sizes at down-sampling layers.
At 640×480, our approach is also super fast. Still, our
network achieves significantly higher accuracy than ENet and
LinkNet, which will be detailed in the following subsections.

Training setup. The challenging Mapillary Vistas
dataset [12] is chosen as it consists of many navigation-
related and intersection-centered object classes, spanning
a broad range of outdoor scenes on different roadways
or sidewalks, which corresponds to the usage scenario of
the smart glasses. In addition, it attains vast geographic
coverage, containing images from different continents. This
is important to enhance reliability because zebra crosswalks
and pedestrian crossing lights are not exactly the same in dif-

TABLE II
REAL-TIME PERFORMANCE ANALYSIS.

Approach Processing time
Crosswalk detection

MSER and ERANSAC [3] 1.43s on Intel Core i7-3770
Bipolarity-based algorithm [5] 0.73s on Intel Core i7-3770

AECA algorithm [6] 33-67ms on Intel Atom x5-Z8500
Pedestrian crossing light detection

Traffic light detection pipeline [7] 100-200ms on Nokia N95
PCL algorithm [8] 47ms on Intel Atom x5-Z8500

Semantic segmentation
Networks are tested on a cost-effective GPU GTX1050Ti

ENet [18]: 15ms at 320×240, 24ms at 640×480
LinkNet [19]: Unable to be evaluated at 320×240, 32ms at 640×480

Our ERF-PSPNet: 13ms at 320×240, 34ms at 640×480

ferent countries. In total, we have 18000 images for training
and 2000 images for validation with pixel-exact annotations.
To provide awareness regarding the scenes that VIP care the
most during self-navigation, we use 27 classes for training,
including the most frequent classes and some assistance-
related classes. These 27 classes cover 96.3% of labeled
pixels, which still allows to fulfill semantic scene parsing. To
robustify the model against the varied types of images from
real world, a group of data augmentations are performed
including horizontally flipping with a 50% chance, jointly
use of random cropping and scaling to resize the cropped
regions into 320×240 input images. Random rotation by
sampling distributions from the ranges [−20o, 20o] and color
jittering from the ranges [-0.2, 0.2] for hue, [0.8, 1.2] for
brightness, saturation and contrast are also applied. Our
model is trained using Adam optimization, initiated with
a batch size of 15, and a learning rate of 5×10−5 that
decreases exponentially across epochs. Following the weight
determining scheme in [18] and the pre-training setup in [11],
the training of the full network reaches convergence when
focal loss [21] is used as the criterion:

Focalloss =
W∑
i=1

H∑
j=1

N∑
n=0

(1−P(i,j,n))
2L(i,j,n)log(P(i,j,n)) (1)

where P is the predicted probability and L is the ground
truth. The scaling factor (1 − P(i,j,n))

2 suppressed heavily
the loss contribution of correctly-segmented pixels (when
P(i,j,n) = 0.9, (1−P(i,j,n))

2=0.01). However, it suppressed
lightly the loss contribution of wrongly-segmented pixels
(when P(i,j,n) = 0.1, (1 − P(i,j,n))

2=0.81). In this fash-



TABLE III
ACCURACY ANALYSIS.
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ENet [18] 24.97% 71.16% 82.54% 57.20% 32.95% 75.97% 32.60% 96.39% 81.13% 52.85% 50.99% 59.89% 33.59%
LinkNet [19] 34.55% 74.41% 83.95% 58.22% 37.06% 78.16% 42.27% 97.16% 83.25% 54.88% 51.87% 63.25% 39.39%
ERF-PSPNet 37.06% 75.92% 85.92% 65.14% 42.92% 80.52% 49.93% 96.47% 84.06% 60.09% 59.97% 67.09% 48.85%

(a) On Mapillary dataset [12] using Intersection-over-Union (IoU).
“Mean-11”: mean IoU value of 11 navigation-related classes, “Mean-27”: mean IoU value of all 27 classes used for training.

Scenario Bipolarity-based [5] AECA [6] ENet [18] LinkNet [19] Our approach
IoU P-A Recall Recall IoU P-A Recall IoU P-A Recall IoU P-A Recall

Scenario 1 64.48% 67.99% 45.00% 36.52% 87.24% 94.76% 75.00% 74.83% 96.59% 78.04% 88.87% 95.82% 91.52%
Scenario 2 33.05% 34.37% 16.78% 33.56% 75.70% 86.36% 69.13% 71.57% 89.80% 78.52% 81.14% 94.02% 85.23%
Scenario 3 15.83% 17.73% 17.19% 33.26% 69.87% 85.11% 70.31% 54.63% 86.11% 72.54% 80.15% 90.39% 87.72%
Scenario 4 9.16% 9.44% 9.09% 55.84% 66.07% 94.07% 100.0% 65.24% 86.78% 98.70% 77.62% 93.25% 100.0%
Scenario 5 0.00% 0.00% 0.00% 67.74% 42.05% 42.50% 48.39% 55.58% 75.82% 77.42% 70.60% 73.56% 90.32%
Scenario 6 52.94% 69.37% 63.64% 50.00% 57.01% 58.19% 69.09% 35.25% 52.53% 72.73% 81.52% 85.43% 98.18%
Scenario 7 25.96% 26.95% 27.34% 57.55% 72.14% 76.75% 66.91% 69.92% 87.59% 84.89% 79.90% 84.05% 92.09%
Scenario 8 0.00% 0.00% 0.00% 29.41% 88.97% 96.64% 64.71% 87.34% 96.67% 88.24% 89.16% 97.97% 88.24%
Scenario 9 73.92% 83.30% 95.63% 58.52% 64.64% 98.35% 98.25% 67.04% 93.93% 94.32% 81.02% 96.59% 99.56%

In total 50.38% 55.87% 38.73% 42.47% 70.86% 88.70% 75.90% 64.08% 88.63% 80.12% 82.50% 92.83% 91.87%
(b) On real-world Crosswalk Navigation dataset [6]. “P-A”: Pixel-wise Accuracy.

ion, the focal loss concentrates the training on wrongly-
segmented pixels or hard pixels. We found this setting
yields better results than conventional cross-entropy loss on
Mapillary dataset, as it contains some far less-frequent yet
important classes such as traffic lights and hazardous curbs.

Segmentation accuracy. The accuracy of semantic seg-
mentation is firstly evaluated on the challenging Mapillary
dataset [12] by comparing the proposed ERF-PSPNet with
deep neural networks in the state of the art including
ENet [18] and LinkNet [19]. Table III(a) details the accuracy
of 11 frequent navigation-related classes and the mean IoU
values. It could be told that the accuracy of most classes
obtained with the proposed ERF-PSPNet exceeds the existing
architectures that are also designed for real-time applications.
Our architecture has the ability to collect rich contextual
information without major sacrifice of learning from textures.
Accordingly, only the accuracy of sky is slightly lower
than LinkNet, while most important classes for intersection
navigation are apparently higher including traffic light, car,
person and crosswalk. For other less frequent vehicles/traffic
participants, our approach also yields decent accuracy, e.g.,
truck (58.12%), bicycle (36.22%), motorcycle (39.79%), bus
(61.35%) and rider (40.50%).

Real-world crosswalk detection. The crosswalk detec-
tion is evaluated on the Crosswalk Navigation dataset [6],
which has 191 images with pixel-wise ground truth
across 9 different scenarios for testing available at
http://wangkaiwei.org/projecteg.html. This allows us to com-
pare our approach with traditional approaches including
the bipolarity-based algorithm [5], Adaptive Extraction and
Consistency Analysis (AECA) algorithm [6], as well as state-
of-art networks including ENet and LinkNet. Considering the
sharp contrast in the boundaries of black-white stripes, [5]
detected crosswalks by analyzing bipolarity of gray-scale
histogram. However, the performance of the algorithm is
sensitive to the pre-determined segmenting size of patches.
Therefore, the crosswalks at far distances fail to be detected
(see Fig. 4d), resulting a low accuracy and stripe-level

recall as observed in Table III(b). Comparatively, AECA
only extracts bright stripes of zebra crosswalks, thus its
pixel-wise accuracy and IoU are unable to compare fairly
with other approaches. It claimed to surpass bipolarity-
based algorithm in terms of frame-level precision and recall.
However, it is noticeable that not all of crosswalk stripes are
included in detection results as displayed in Fig. 4e. Due to
the incomplete detection, the close crosswalk stripes whose
features are less consistent with most stripes may miss, which
results in delivering confusing feedback as pointed out in [6].

As far as the deep learning based approaches are con-
cerned, they have the crucial advantages by exploiting a
significant amount of data, thus eliminating the dependen-
cies on assumptions. Intriguingly, although LinkNet exceeds
ENet on Mapillary dataset, only the recall is higher than
ENet on the real-world dataset. ENet applied multiple di-
lated convolution by taking a wider context into account,
while LinkNet only performed fixed ones. Accordingly, ENet
outperforms LinkNet in terms of IoU, because close-range
stripes’ sizes vary greatly when crossing the roads, which
requires the model to learn rich contextual information and
these stripes cover most pixels. However, LinkNet has larger
capacity and it surpasses ENet in terms of recall, which
are largely contributed by relatively farther stripes. Still,
our ERF-PSPNet excels on both metrics, although in some
scenarios the pixel-wise accuracy are slightly lower than
ENet/LinkNet because they sometimes tend to over-segment
crosswalks, e.g., classify general road markings as zebra
crosswalks, leading to inferior real-world performance. Fig.
4 exhibits the montage of detection results generated by our
approach, bipolarity-based algorithm and AECA approach.
Qualitatively, our approach yields longer and more consis-
tent segmentation which will definitely benefit the assistive
awareness at urban intersections.

Real-world pedestrian crossing light detection. For
another critical task, pedestrian crossing light detection is
evaluated on the real-world dataset [8]. This dataset contains
several video clips captured in China (4867 images) and Italy



(a) RGB image (b) Segmented masks (c) Annotation (d) Bipolarity-based (e) AECA algorithm (f) Our approach
Fig. 4. Qualitative examples of the zebra crosswalk detection on real-world images produced by our approach compared with ground-truth annotation,
bipolarity-based approach [5] and AECA algorithm [6]. From left to right: (a) RGB image, (b) Segmented masks of ERF-PSPNet, (c) Annotation, (d)
Bipolarity-based, (e) AECA algorithm, (f) Our approach.

TABLE IV
INSTANCE-LEVEL RECALL

ON REAL-WORLD PEDESTRIAN CROSSING LIGHTS DATASET [8].
Approach China dataset Italy dataset In total

PCL algorithm [8] 46.77% 64.71% 59.53%
ENet [18] 51.61% 83.67% 74.42%

LinkNet [19] 64.52% 93.84% 82.33%
Our approach 75.81% 96.08% 89.77%

(12913 images). A real-time PCL algorithm [8] detects lights
based on HOG and SVM. It only segments bounding-box
pedestrian region of the lights, relying on the HOG descriptor
to classify candidates. In contrast, our approach detects
not only pedestrian crossing lights but also other kinds of
traffic lights, which arguably supports more comprehensive
upper-level analysis and assistance. In order to facilitate
fair comparison, we collected the instance-level recall as
itemized in Table IV, which is a very important parameter
for time-critical blind assistance, relaxing the requirements
of temporal analysis that hinders real-time feedback. We
counted the pedestrian traffic lights for images at an interval
of 100 frames of the datasets, having 62 lights in 48 frames
of the China dataset and 153 lights in 129 frames of the
Italy dataset. Numerically, the recall of our approach is
the highest among these real-time algorithms. As far as
the color signal is concerned, our approach achieves decent
precision of more than 90% for red lights and more than
95% for green lights by setting thresholds in HSV space,
given that the red and green PCL gather around specific
values of Hue and Value [8]. To further improve the precision
in future time, we aim to implement illumination-invariant
image pre-transformation, as well as to incorporate near-

infrared spectral information. It is also worthwhile to note
that the recall values in Italy dataset are all higher than the
results of China dataset. First, intersections in China dataset
are more crowded and complex as shown in Fig. 5, which
are inherently more difficult than images in Italy dataset.
Second, in spite of being with a global reach, the Mapillary
dataset for training contains more images from Europe than
from Asia, which may slightly bias the appearances of
objects to be analyzed. This explains the recall gap between
two countries, even though our approach is already able to
generalize far beyond its training data, manifesting qualified
detection results across various scenarios.

V. CONCLUSIONS

Navigational assistance at urban intersections for Visually
Impaired Pedestrians (VIP) is a necessary step to reach an
optimal level of traffic safety, which is one major focus
of Intelligent Transportation Systems (ITS). In this paper,
we derive achievability results for unifying intersection-
centered perception tasks by utilizing real-time semantic
segmentation, which is able to render a comprehensive set
of assistive awareness without incurring a long latency.
The proposed approach has been evaluated on a large-
scale challenging dataset and two egocentric datasets across
different countries, demonstrating the effectiveness in real-
world assistance on the wearable navigation system. Future
works will involve FPGA-based semantic segmentation and
multi-modal sensory perception to constantly enhance the
navigation assistive framework.



(a) RGB image (b) Segmented masks (c) PCL algorithm (d) ENet (e) LinkNet (f) Our approach
Fig. 5. Qualitative examples of the pedestrian crossing lights detection on real-world image produced by our approach compared with ground-truth
annotation, PCL algorithm [8], ENet [18] and LinkNet [19]. From left to right: (a) RGB image, (b) Segmented masks of ERF-PSPNet, (c) PCL algorithm,
(d) ENet (e) LinkNet, (f) Our approach.

ACKNOWLEDGMENT

This work has been partially funded by the Zhejiang
Provincial Public Fund through the project of visual assis-
tance technology for the blind based on 3D terrain sensor
(No. 2016C33136) and cofunded by State Key Laboratory
of Modern Optical Instrumentation.

This work has also been partially funded by the Span-
ish MINECO/FEDER through the SmartElderlyCar project
(TRA2015-70501-C2-1-R), the DGT through the SERMON
project (SPIP2017-02305), and from the RoboCity2030-III-
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