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Abstract— Traversability perception constitutes an important
task for robotics and visually impaired people, which aims to
detect obstacle-free paths that allow individuals to ambulate
with suitable navigation assistance. However, approaches that
help prevent stepping into water areas are scarce in the state of
the art. To address water hazard detection, this paper proposes
a pRGB-D-SS perception framework, which incorporates: Po-
larization imaging (p), RGB-D sensory awareness and real-time
Semantic Segmentation (SS). More specifically, as large water
areas and small water puddles exhibit different characteristics,
the detection of these two kinds of hazards pursue different
pipelines. In our contribution, large water areas are detected
together with traversable areas through pixel-wise semantic
segmentation. Comparatively, the detection of water puddles
extends the convolutional neural network based segmentation
by using polarized RGB-D information as the primary cue.
Beyond enhanced traversability awareness, it enables a unified
framework of water hazard detection, which proves to be
with qualified accuracy and speed for real-world assistance
by experiments on two wearable systems including a pair of
commercial smart glasses and a customized prototype.

I. INTRODUCTION

Robotic vision have been widely leveraged to aid navi-
gation in visually impaired individuals, creating a variety of
personal assistive systems [1][2][3] to promote the awareness
of traversability, which constitutes the backbone of mobile
robotics [4] and blind assistance [5]. Beyond the proof-of-
concepts established in these researches, the community has
been motivated to provide more independence by integrating
stairs detection [6] or crosswalk detection [7] at the basis
of traversability analysis. In spite of the impressive strides
towards higher mobility of the visually impaired, none of
the approaches covers the perception of water areas that
represent hazardous situations in everyday scenarios.

In the literature, a series of approaches addressed wa-
ter hazard detection for robotics or self-driving vehi-
cles [8][9][10]. Along with this research line, possibilities
were investigated to leverage the developed techniques for
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Fig. 1. Overview of the proposed pRGB-D-SS perception approach: (a)
Original images from the sensor; (b) pRGB-D-SS perception module; (c)
Wearable pRGB-D sensor; (d) Detection results for traversability awareness
and water hazards avoidance.

robots [6] or autonomous cars [3][11], and transfer them
into assistive technology for the visually impaired. However,
almost all approaches produce intolerable side effects or rely
on incompatible assumptions across application domains.
For traversability awareness, underlying assumptions were
frequently made such as the ground plane is the biggest
part [1]. For water hazards detection, the ground was as-
sumed to be horizontal and the incident light was assumed
to be unpolarized in [9]. Moreover, variant versions of
Manhattan World [3] or Stixel World assumptions [11] limit
the flexibility in real-world applications. In the absence of
these assumptions, water hazard detection is an ill-posed
problem, forcing navigation systems into the trade-off be-
tween effectivity and accessibility, such as the method in [8],
which requires mechanically rotating the linear polarizing
filter and taking images at different angles.

Nowadays, unlike traditional approaches which detected
water areas based on multi-feature fusion [9], Convolution
Neural Networks (CNNs) learn and discriminate between
different features directly from the input data by using a
deeper abstraction of representation layers [5]. Notoriously,
remarkable progress in most vision-based tasks have been
fueled by the recently emerged deep learning pipelines and
architectures. Semantic segmentation, as one of the chal-
lenging tasks that aims to partition an image into several



coherent semantically meaningful parts, is the key enabler
to cover navigation-related perception needs in a unified
way [12]. Intuitively, the detection of traversable area and
water area could benefit from semantic segmentation because
it directly leads to pixel-wise understanding and allows to
exploit their inter-relations and contexts without imposing
any assumptions. However, deep learning is data hungry and
has not been integrated well with prior knowledge [13]. As
far as water hazard is concerned, existing large-scale scene
parsing datasets [14][15][16] only contain the classes of large
water areas such as sea, river, lake and pool while annotated
water puddles are lacking.

Apart from color and depth, polarization and its imaging
extend information dimension to be used for material dis-
crimination and target detection [17]. Given that light with
different polarization states behave differently at the interface
of objects surface, surface characteristics are coded implicitly
as for materials, geometry structures and roughness. In this
point of view, polarization attributes provide description of
complementary surface features that can not be offered by
color images. Light reflected from water surfaces is also
polarized [10], so the utilization of polarization information
for detecting it has obvious appeal, as perception systems
should match natural human capacity to reach higher level
of assistance for pedestrians with visual disability.

Based on above analysis, we propose the pRGB-D-SS
perception framework (see Fig. 1), where Polarization imag-
ing (p), RGB-D sensory awareness and real-time Semantic
Segmentation (SS) are incorporated, creating pipelines to
detect traversable areas and water hazards simultaneously.
This paper considerably extends what was presented in [18],
where we made the first attempt to detect water puddles
for visually impaired pedestrians. Beyond the traversability
awareness, we include novel contributions that reside in the
following main aspects:
• A wearable pRGB-D sensor for navigational assistance

in visually impaired individuals.
• A pRGB-D-SS perception framework which unifies the

detection of water hazards including large water areas
and small water puddles.

• A real-time semantic segmentation architecture to learn
both local textures and global scene contexts without
imposing any assumptions.

The remainder of this paper is structured as follows. In
Section II, the framework is fully described in terms of
the pRGB-D sensory awareness and the SS architecture. In
Section III, the approach is evaluated and discussed as for
real-time and real-world performance. Section IV draws the
conclusions and gives an outlook to future work.

II. APPROACH

A. Polarized RGB-D sensory awareness

The overview of the pRGB-D-SS perception is depicted
in Fig. 1, where the wearable pRGB-D sensor comprises a
stereo camera, which is retrofitted by attaching horizontal
and vertical polarization filters on the left and right camera

Fig. 2. The light reflection and refraction for water hazards with particles
and ground bottom.

respectively. The stereo camera captures real-time RGB-D
streams and transfer them to the processor, while the RGB
images are fed into the segmentation network to obtain
pixel-wise semantic information. A guided filter introduced
in previous work [2] is utilized to enhance the original
depth image to deliver large-scale depth information. After
that, we warp the right image to the left image to produce
point correspondences by using the disparity information
that can be directly generated from the dense depth image.
To construct a representation of polarimetric information,
the polarized stereo pair is exploited to calculate a pixel-
wise brightness difference image that indicates the degree
of polarization resulting from reflection. For our purpose,
this biologically inspired polarization-difference technique
could be leveraged to aid navigation in visually impaired
individuals, allowing us to form a pRGB-D-SS perception
module as shown in Fig. 1(b), which supposes a very
rich source of processed information, including semantic
information, polarimetric information and enhanced depth
information.

While this module could be utilized in many applications
such as target detection [17], we focus on the study of hazard
awareness. For water puddle detection, the primary cue is the
polarization effect as specular reflection on water is known
to polarize light [10]. The specular reflection from the water
surface Rreflect is the sum of two polarization components
Rreflect,⊥ and Rreflect,‖, perpendicular and parallel respec-
tively to the plane formed by the incident and reflected rays
as given in (1) and (2). As marked in Fig. 2, nair and nwater

are the refractive indexes of air and water respectively and
θ is the reflection angle at the water surface.
Rreflect,⊥(nair, nwater, θ) =[

nair cos θ − nwater

√
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2 θ
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√
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−nwater cos θ + nair
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The polarized light from the air is supposed to comprise
energy component ES

⊥(θ) and ES
‖ (θ) for perpendicular and

parallel components respectively as functions of reflection
angle. The total energy entering the water can be calculated
using (3). However, part of the energy FS is scattered by
suspended particles and ground bottom while the rest is
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Fig. 3. Reflection and refraction energy components from water as function of degree and direction of polarization: (a) Unpolarized light; (b) Light is
three quarters polarized in perpendicular direction with the water plane; (c) Light is a quarter polarized in perpendicular direction with the water plane.

absorbed by both particles and the ground as explained
through (4) where µparticles and µbottom are the scattering
coefficients of particles and the ground bottom respectively,
and µabsorption is the absorption coefficient.
FS = ES

⊥(θ)[1−Rreflect,⊥(nair, nwater, θ)]+

ES
‖ (θ)[1−Rreflect,‖(nair, nwater, θ)] (3)

µparticles + µbottom + µabsorption = 1 (4)

Light in water can be considered as highly unpolarized
light with random scattering and internal reflection. With
part of the scattered light coming out of the water through
refraction, the total light energy component coming out of the
water is the summation of reflection and refraction for each
polarization component, which can be calculated through (5)
and (6) where θ′ is the refraction angle from water to air.
ER

⊥(θ) = ES
⊥(θ)Rreflect,⊥(nair, nwater, θ)+

0.5FS [µparticles + µbottom]Rrefract,⊥(nair, nwater, θ
′ = θ)

(5)ER
‖ (θ) = ES

‖ (θ)Rreflect,‖(nair, nwater, θ)+

0.5FS [µparticles + µbottom]Rrefract,‖(nair, nwater, θ
′ = θ)

(6)
For illustrative purposes, in Fig. 2, the water refractive

index nwater is set to 1.33 as in most situations and the
absorption coefficient µabsorption is set to 60%. Fig. 3 shows
that in both conditions, the polarization difference between
perpendicular and parallel components is large enough to
provide a strong cue for water hazards at reflection an-
gles above 70 degrees or at distances above the minimum
detection range. Based on this notion, it is able to detect
water hazards by appropriate thresholding of the polarization
difference with point correspondence from left color image
to right color image. Following the rationale, water puddles
are adaptively detected out of the traversable area by using
the scheme presented in previous work [18]. In this regard,
such fusion of polarimetric and semantic information is
straightforward, which extends the CNN-based semantic seg-
mentation by integrating the prior knowledge that hazardous
puddles are encompassed by traversable areas.

B. Real-time semantic segmentation architecture

Up until very recently, pixel-wise semantic segmentation
was not usable in terms of speed. However, a fraction of
networks has focused on the efficiency by proposing architec-
tures that could reach near real-time segmentation [19][20].
These advances have made possible the utilization of full
scene segmentation in time-critical cases like blind assis-
tance. To leverage the success of segmenting a variety
of scenes and maintaining the efficiency, we design the

architecture according to the SegNet-based encoder-decoder
architectures like ENet [19] and our previous ERFNet [20].
In FCN-like architectures, feature maps from different layers
need to be fused to generate a fine-grained output. As
indicated in Fig. 4, our approach contrarily uses a more
sequential architecture based on a encoder producing down-
sampled feature maps and a subsequent decoder that up-
samples the feature maps to match input resolution. In
addition, Table I gives a detailed description of the integrated
architecture. Currently, the residual layer adopted in state-
of-art networks has two instances: the bottleneck version
and the non-bottleneck design. In our previous work [20],
“Non-bottleneck-1D” (non-bt-1D) was proposed, which is a
redesign of the residual layer to strike a rational balance
between the efficiency of the bottleneck and the learning
capacity of non-bottleneck, by using 1D factorizations of the
convolutional kernels. Thereby, it enables an efficient use of
minimized amount of residual layers to extract feature maps
and achieve semantic segmentation in real time.

However, for robust segmentation of traversable areas and
water regions, we attach a different decoder with respect
to the previous work. This critical modification aims to
collect more contextual information while minimizing the
sacrifices of learning textures. Global context information
is of cardinal significance for navigational assistance in
order to prevent delivering confusing feedback. To detail
this, if the network mis-predicts a safe path in front of
a large water area, the visually impaired would be left
vulnerable in the dynamic environments. These risks could
be mitigated by exploiting more context and learning more
relationship between categories. With this target in mind, we
reconstruct the decoder architecture. In this reconstruction,
the decoder architecture follows the pyramid pooling module
as introduced by PSPNet [21]. This module is applied to
harvest different sub-region representations, followed by up-
sampling and concatenation layers to form the final feature
representations. For this reason, it carries both local and
global context information from the pooled representations
at different locations. Since it fuses features under a group of
different pyramid levels, the output of different levels in this
pyramid pooling module contains the feature map from the
encoder with varied sizes. To maintain the weight of global
feature, we utilize a convolution layer after each pyramid
level to reduce the dimension of context representation to
1/N of the original one if the level size of the pyramid is
N. As for the situation in Fig. 4c, the level size N equals
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Fig. 4. The proposed architecture. From left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

to 4 and we decrease the number of feature maps from
128 to 32. Subsequently, the low-dimension feature maps
are directly up-sampled to obtain the same size features as
the original feature map through bilinear interpolation, such
that the final per-pixel semantic predictions are fused with
the polarization-based segmentation results at decision level
to detect water puddles out of traversable paths.

TABLE I
LAYER DISPOSAL OF OUR PROPOSED NETWORK.

“OUT-F”: NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT,
“OUT-RES”: OUTPUT RESOLUTION FOR INPUT SIZE OF 640×360.

Layer Type Out-F Out-Res

E
N

C
O

D
E

R

0 Scaling 640×360 3 448×256
1 Down-sampler block 16 224×128
2 Down-sampler block 64 112×64

3-7 5×Non-bt-1D 64 112×64
8 Down-sampler block 128 56×32
9 Non-bt-1D (dilated 2) 128 56×32
10 Non-bt-1D (dilated 4) 128 56×32
11 Non-bt-1D (dilated 8) 128 56×32
12 Non-bt-1D (dilated 16) 128 56×32
13 Non-bt-1D (dilated 2) 128 56×32
14 Non-bt-1D (dilated 4) 128 56×32
15 Non-bt-1D (dilated 8) 128 56×32
16 Non-bt-1D (dilated 2) 128 56×32

D
E

C
O

D
E

R

17a Original feature map 128 56×32
17b Pooling and convolution 32 56×32
17c Pooling and convolution 32 28×16
17d Pooling and convolution 32 14×8
17e Pooling and convolution 32 7×4
17 Up-sampler and concatenation 256 56×32
18 Convolution C 56×32
19 Up-sampler C 640×360

III. EXPERIMENTS AND DISCUSSION

Experiments setup. The experiments are performed in
public spaces around Westlake, the Zijingang Campus, the
Yuquan Campus, the City College at Zhejiang University
in Hangzhou and Venice Beach in Los Angeles. We cap-
tured real-world scenes wearing two navigation assistance
systems including the smart glasses commercially available
at http://krvision.cn and the customized pRGB-D prototype
with 3D-printed shell which holds the sensors. In this fash-
ion, two large-scale egocentric vision datasets are collected
that can be accessed at http://wangkaiwei.org/projecteg.html
including the terrain awareness dataset and the pRGB-
D dataset. The metrics reported in this paper correspond

to Intersection-over-Union (IoU), Pixel-wise Accuracy (P-
A), Frame-level Accuracy (F-A) and Expansion Error (E-
Error) that are prevailing in semantic segmentation chal-
lenges [14][15] and navigation tasks [1][2][10][18].

Real-time performance. The total computation time of a
single frame at the resolution of 640×360 is 31ms, while the
image acquisition takes 3ms, and the time costs for pRGB-D
sensory awareness and SS are respectively 12ms and 16ms.
In this sense, the computation cost is saved to maintain a
reasonably qualified refresh-rate of 32.3FPS on a processor
with a single cost-effective GPU GTX 1050Ti and a Core
i7-7700HQ CPU. This inference time demonstrates that it
is able to run our approach in real time, while allowing
additional time for acoustic feedback [1][2][18] in navigation
assistance or closed-loop control [4] in mobile robotics. Our
ERF-PSPNet inherits the encoder design but implements a
quite efficient version of decoder. Accordingly, the speed is
even slightly faster than our previous approach with ERFNet,
which runs at 29.4FPS on the same processor. In addition,
on a embedded GPU Tegra TX1 (Jetson TX1) that enables
higher portability while consuming less than 10 Watts at full
load, our approach achieves approximately 14.1FPS.

Training setup. The challenging ADE20K [14] is chosen
as it contains traversability-related classes and different water
areas. To enrich images of different scenarios, we add 8733
images from PASCAL-Context [15] and 8132 images from
COCO-Stuff [16] to obtain 37075 images in total. Addition-
ally, we have 2000 images for validation from ADE20K.
The most frequent 22 classes of terrains or objects are
exploited for training while the water, sea, river, pool and
lake are merged into a class of water hazards. To robustify the
model against the real world, a group of data augmentations
are performed including horizontally flipping with a 50%
chance, jointly use of random cropping and scaling to resize
the cropped regions into 448×256 input images. Random
rotation by sampling distributions from the ranges [−20o,
20o] and color jittering from the ranges [-0.2, 0.2] for hue,
[0.0, 2.0] for sharpness, [0.8, 1.2] for brightness, saturation
and contrast are also applied. Our model is trained using
Adam optimization, initiated with a batch size of 12, and a
learning rate of 5×10−5 that decreases exponentially across
epochs. Following the weight determining scheme in [19]



and the pretraining setup in [20], the training of the full
network reaches convergence when cross-entropy loss is used
as the criterion.

Segmentation accuracy. The accuracy of semantic seg-
mentation is firstly evaluated on the challenging ADE20K
dataset [14] by comparing the proposed ERF-PSPNet with
deep neural networks in the state of the art for real-
time segmentation including ENet [19] and our previ-
ous ERFNet [20]. Table II(a) details the accuracy of
traversability-related classes including floor, road, grass,
sidewalk, ground, the water areas and the mean IoU value.
Since the classification of sky and water areas has the chance
to be misled by the network that mainly relies on the
local textures, the IoU of sky is analyzed together with the
navigation-related classes. It could be told that the accuracy
of most classes obtained with the proposed ERF-PSPNet
exceeds the existing architectures that are also designed for
real-time applications. Our architecture builds upon previous
work but has the ability to collect more contextual infor-
mation without major sacrifice of learning from textures.
Accordingly, only the accuracy of sky is slightly lower than
ERFNet.

TABLE II
ACCURACY ANALYSIS.

“P-A”: PIXEL-WISE ACCURACY, “F-A”: FRAME-LEVEL ACCURACY.

N
et
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W
at

er

M
ea

n

ENet [19] 89.7% 72.4% 69.4% 56.5% 38.2% 75.0% 67.3% 66.9%
ERFNet [20] 93.2% 77.3% 71.1% 64.5% 46.1% 76.3% 67.9% 70.9%
ERF-PSPNet 93.0% 79.6% 75.6% 70.1% 51.3% 79.0% 78.7% 75.3%

(a) On ADE20K dataset.
Approach IoU P-A 0-2m 2-3m 3-5m 5-10m

3D-RANSAC-F [1] 50.1% 67.2% 53.9% 91.8% 85.2% 61.7%
ENet [19] 62.4% 85.2% 79.9% 84.3% 89.7% 93.1%

Our ERF-PSPNet 82.1% 93.1% 96.0% 96.3% 96.2% 96.0%

(b) On terrain awareness dataset in terms of traversability awareness.
Accuracy Sky Traversability Ground Sidewalk Water

IoU 88.0% 82.1% 72.7% 55.5% 69.1%
P-A 95.3% 93.1% 81.2% 93.1% 86.3%
0-2m N/A 96.0% 76.9% 95.0% 96.2%
2-3m N/A 96.3% 81.7% 96.5% 82.3%
3-5m N/A 96.2% 87.4% 94.5% 76.9%
5-10m N/A 96.0% 86.6% 93.6% 84.3%

(c) ERF-PSPNet on terrain awareness dataset.

Approach F-A of
traversability

F-A of
water E-Error

3D-RANSAC-F [1] 79.6% N/A 41.5%
3D-RANSAC-E [2] 93.8% N/A 65.2%
3D-Tracking-P [10] N/A 86.5% N/A
FreeSpaceParse [3] 94.4% N/A 60.6%

FreeSpaceParse-P [18] 94.4% 89.2% 7.3%
Our RGB-D-SS 98.9% N/A 69.7%
Our pRGB-D-SS 98.9% 92.4% 8.1%

(d) On pRGB-D dataset in terms of traversability and water puddle detection.

Real-world performance. To analyze the major concern
of detection performance for real-world assistance, we collect
results over several depth ranges: within 2m, 2-3m, 3-5m
and 5-10m on the terrain awareness dataset, which contains
120 images for testing with fine annotations of 7 important
classes for navigation assistance including: sky, ground, side-
walk, stairs, water hazards, person and cars. This adequately
considers that in navigational assistance, the short-range of
ground area detection helps to determine the most walkable

direction while superior path planning could be supported by
longer traversability awareness [2]. Table II(b) shows both
the IoU and the pixel-wise accuracy of traversability aware-
ness, which is the cornerstone of navigational assistance. We
compare the traversable area detection of our ERF-PSPNet
to a state-of-the-art architecture ENet and a depth based
segmentation approach 3D-RANSAC-F [1], which estimates
the ground plane based on RANSAC and filtering techniques
by using the dense disparity map. As the depth information of
the ground area may be noisy and missing in high dynamic
scenarios, we implemented a RGB image guided filter [2]
to fill holes before random sampling of the 3D point cloud.
In this way, the traditional 3D-RANSAC-F achieves decent
accuracy ranging from 2m to 5m and it excels ENet from
2m to 3m as the depth map within this range is quite dense
thanks to the active stereo design of the smart glasses. Still,
our ERF-PSPNet outperforms ENet and 3D-RANSAC-F in
both ranges.

For the visually impaired, it is preferred to know that there
are water areas in some direction even if the segmented shape
is not exactly accurate. This demand has been well satisfied
as inferred from Table II(c) that the mean value of pixel-wise
accuracy for traversable/water areas across different ranges
is 90.5% and it achieves more than 96% within 2m in terms
of water hazards. For the segmentation of water puddles vs.
traversable areas, a distinction that is hard for humans to
make consistently, we follow the metric in [1][2][10][18]
to evaluate on a sequence of 1285 frames from the pRGB-
D dataset. As illustrated in Table II(d), our pRGB-D-SS
approach delivers high detection accuracy of traversabil-
ity and puddles compared with respect to other works.
Moreover, the expansion error is relatively low, illustrating
the reliability of our approach, which seldom recognizes
hazardous obstacles or water puddles as safe traversable area.
It is worth mentioning that FreeSpaceParse [3], a proce-
dure that renders Stixel-level segmentation with the original
purpose for representing traffic situations, has been applied
successfully thanks to the sensor fusion [18] by utilizing
attitude angles and our polarization information. However,
the procedure tailored to the problem relies on additional
IMU observations and cannot handle large water areas.
Our vision-based approach pursues the unified detection
without requirements for attitude estimation, and achieves
higher detection accuracy and competitive expansion error.
Intriguingly, both the FreeSpaceParse and our pRGB-D-SS
approach prove that polarimetric information are extremely
important for water hazard avoidance and safety-critical
traversability awareness, which cannot be guaranteed by
RGB-D-based approaches. Fig. 5 exhibits the montage of
pixel-wise results generated by our pRGB-D-SS approach,
ENet, FreeSpaceParse and 3D-RANSAC-F. Qualitatively,
our approach not only yields longer and more consistent
segmentation which will definitely benefit the traversability
awareness, but also retains the outstanding ability to unify
the detection of large water areas and small water puddles
within this framework.



(a) Prototype (b) RGB image (c) Depth image (d) Annotation (e) 3D-RANSAC-F (f) FreeSpaceParse (g) ENet (h) Our approach
Fig. 5. Qualitative examples of the segmentation on real-world images produced by our approach compared with ground-truth annotation, 3D-RANSAC-F
[1], FreeSpaceParse [3] and ENet [19]. From left to right: (a) Wearable navigation systems including the commercial smart glasses and our customized
prototype, (b) RGB image, (c) Depth image, (d) Annotation, (e) 3D-RANSAC-F, (f) FreeSpaceParse, (g) ENet, (h) Our pRGB-D-SS approach.

IV. CONCLUSION AND FUTURE WORK

In this contribution, we introduce a pRGB-D-SS percep-
tion module that incorporates polarized imaging, RGB-D
sensor and real-time semantic segmentation. Based on this
novel concept of perception, we unify the detection of water
hazards including large water areas and small water puddles,
and promote the awareness of traversability to aid navigation
in visually impaired individuals. The proposed approach has
been integrated in two wearable navigation systems, as well
as evaluated on a large-scale challenging dataset and two
egocentric real-world datasets, demonstrating the effectivity
and applicability for navigation assistance.

Future works will involve the prediction of depth and
polarization information from monocular images, as well as
closed-loop field tests with real visually impaired users.
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