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Abstract. Data collection and scene understanding have become crucial
tasks in the development of intelligent vehicles, particularly in the con-
text of autonomous driving. Deep Learning (DL) and transformer-based
architectures have emerged as the preferred methods for object detec-
tion and segmentation tasks. However, DL-based methods often require
extensive training with diverse data, posing challenges in terms of data
availability and labeling. To address this problem, techniques such as
transfer learning and data augmentation have been adopted. Simulators
like CARLA have gained popularity in the autonomous driving domain,
enabling the evaluation of architectures in realistic environments before
real-world deployment. Synthetic data generated by simulators offers sev-
eral advantages, including cost-effectiveness, access to diverse scenarios,
and the ability to generate accurate ground truth annotations. In this
paper, we focus our investigation on evaluating the performance and do-
main adaptation capabilities of a 3D object detection pipeline based on
depth estimation using a stereo camera in the CARLA simulator. Our
main objective is to analyze the results of the depth estimation stage us-
ing two different approaches: CoEx and SDN. The different experiments
will be performed on real and synthetic scenarios from the KITTI and
SHIFT datasets.

Keywords: Deep Learning, Transfer Learning, 3D object detection, KITTI,
CARLA.

1 INTRODUCTION

Data collection and scene understanding have become one of the main tasks in
intelligent vehicles developed in recent years. Through multiple sensors such as
cameras, LiDAR, or radar, they obtain the necessary information to make deci-
sions depending on the surrounding scene. Specifically, for autonomous driving,
knowing and monitoring other vehicles, pedestrians, or traffic signals is essential
to ensure safety and respect traffic rules. Almost all current methods are based
on Deep Learning (DL) because it has shown impressive results in object de-
tection, semantic segmentation, and instance segmentation tasks. Convolutional
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Fig. 1: Representations of three different stages in the pipeline. The first image is
an example from CARLA simulator, the second is the corresponding estimated
depth and the last is the projected poincloud and detected objects.

Neural Networks (CNN) have become the preferred DL method due to their
ability to learn complex representations of images and detect objects with high
accuracy. The main inconvenience of this methods is the necessity of an extensive
training process that usually requires a large amount of diverse data. To address
this problem, techniques such as transfer learning or data augmentation have
emerged, which help to accelerate the different training processes. In the case
of autonomous driving, the use of simulators such as CARLA [1] has increased
in order to evaluate the robustness of architectures in realistic environments be-
fore being deployed in real life, allowing simulated data to be used as synthetic
sources.

The use of this type of data offers several advantages over using real-world
data alone. First, collecting and labeling real-world data can be time-consuming,
expensive, and sometimes dangerous. Training an object detector for autonomous
vehicles requires a large amount of labeled data covering a wide range of scenar-
ios, such as different weather conditions, lighting, and traffic situations. Collect-
ing such data through real-world testing would be time-consuming and expen-
sive. Second, synthetic data and simulators can provide access to a larger and
more diverse set of scenarios, which is difficult to achieve in real-world data col-
lection. This allows for more efficient training of DL detectors, leading to faster
and more accurate results. Third, simulators and synthetic data can be used
to generate ground truth annotations directly, which are necessary for training
object detectors. This can be done with a high degree of accuracy, unlike manual
labeling of real-world data, which can be prone to human error.
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In this paper, we introduce a modular architecture designed to generate depth
information from a stereo image and perform 3D object detection. We aim to
quantify the adaptability of the different stages within this multi-stage 3D detec-
tion architecture (Figure 1) to both real and simulated environments. In addition,
we explore the potential of using synthetic data as a baseline in real-world sce-
narios. We emphasize the importance of evaluating how effectively the detection
architecture adapts to synthetic data, with a specific focus on the depth estima-
tion stage, which lacks a published comparative analysis in CARLA. To facilitate
this assessment, we employ the KITTI and SHIFT datasets for the training and
evaluations. The results, which include both CoEx and SDN in terms of depth
estimation, are presented, along with an evaluation of the detection performance
of the complete architecture. These findings aim to provide comprehensive in-
sights into the system’s capabilities and its potential applications in real-world
scenarios.

2 RELATED WORK

In this section, we review previous research and approaches related to our pro-
posed object detection pipeline and performance in CARLA. We examine various
methods and techniques for depth estimation and stereo camera-based detection,
highlighting their strengths and limitations.

2.1 2D object detection

The goal of 2D object detection is to accurately locate objects of interest within
an image, typically by drawing bounding boxes around them, and classify them
into different categories. It is one of the most explored tasks in perception sys-
tems. Detectors such as Single Shot MultiBox Detector (SSD) [2] or YOLO
(v5 and v8) [3] are preferred over other two-stage detectors such as Faster-
RCNN[4] for applications that require real-time processing and low computa-
tional resources. These detectors use a single-stage architecture that allows them
to perform detection and classification in a single feedforward pass, as opposed
to two-stage detectors, which first propose regions of interest and then perform
classification within these regions. This makes lightweight detectors faster and
more efficient, ideal traits for autonomous driving tasks. Studies in 2D detection
such as [5] show that the use of synthetic data can help in the training and
performance of these models in real scenes.

2.2 3D object detection

Several deep learning-based 3D monocular camera object detection methods
have been proposed in recent years. DeepMANTA [6] attempts to associate the
vehicle with a series of templates based on 2D object detections and keypoints.
SMOKE [7] uses a hierarchical layer fusion network (DLA-34) as a backbone and
estimates object keypoints and 3D bounding box parameters. ImVoxelNet [8]
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accepts an arbitrary number of input images, extracts features from the images
using CNN, and projects them into 3D (voxels) for feature fusion. MonoDTR
[9] proposes to use Depth Aware Feature Enhancement (DFE) via auxiliary
supervision to feed a transformer encoder-decoder architecture with positional
information generated by Depth Positional Encoding (DPE). The use of stereo
cameras allows to maintain depth information that can be used to generate
more accurate detections in the 3D world. Most techniques employ an approach
in which depth information is estimated from the two stereo images and utilized
for performing detection in a 3D space. For instance, DSGN [10] or PLUMENet
[11] create a 3D depth information volume and carry out detections within a
single network. When using three-dimensional point clouds instead of images,
there are specialized object detectors such as SECOND [12] or CenterPoint [13]
that can detect objects with a higher spatial context. Typically, these techniques
are associated with sensors such as LiDAR or radar. However, it is also possible
to use point clouds generated by cameras.

For CARLA applications, works such as [14] or [15] use simulated LiDAR data
to detect objects in the environment, proving that the performance achieved is
lower than real data due to the difference in the quality of the point clouds. On
the other hand, [16] proposes the use of synthetic data as an additional source
for improving performance in real-world scenarios of a LiDAR 3D detector.

2.3 Camera depth estimation

Depth estimation systems can provide a significant amount of information about
the environment around a system. For this reason, approaches have emerged that
focus on estimating the depth of pixels in an image and then performing a 3D
reconstruction of the environment. Similar to object detection techniques, depth
estimation methods can use both monocular and stereo cameras. Stereo cameras
offer an advantage over monocular cameras by providing more 3D information,
allowing for more accurate depth estimation in long range scenarios. Methods,
such as SDN [17], CoEx [18] or Google HITNet [19] focus on executing stereo
matching for obtaining depth or disparity information from stereo images. For
monocular camera there are techniques such as DepthFormer [20] that employ
an encoder-decoder architecture using convolutions to extract local information
and transformers for handling long-range dependencies or NeW CRF [21] that
uses windows with fully-connected CRFs. In our experiments, we use CoEx due
to its recognized speed and efficiency in the field. In addition, we use SDN to
compare with the modular architecture proposed by the authors to ensure that
the results are consistent. It’s important to note that the authors did not provide
depth metrics, while our approach includes this evaluation.

3 ARCHITECTURE

To evaluate the impact of the simulation environment on each stage of the
pipeline, we conducted a multi-stage analysis of our proposed architecture (Fig.
2), which is explained in the different parts of this section.
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Fig. 2: Proposed 3D detection pipeline. The different images correspond to the
output of the different stages of a KITTI scene.

3.1 Image 2D object detection

The first step in the pipeline involves performing the 2D object detection of all
objects of interest within the scene. This is a critical step in many computer
vision applications, as it serves as the starting point for the next stages in the
pipeline. In our specific case, we have decided to use a detector from the YOLOv5
family [3], which has proven to be effective in detecting a wide variety of object
classes in real-time scenarios. By taking advantage of the capabilities of this
detector, we are able to efficiently and accurately identify objects of interest
within the scene belonging to three different classes: car, pedestrian and cyclist.
Depending on the required specifications, one of the five YOLOv5 models can be
selected, which vary in terms of performance and inference time. For each object
we define a 2D bounding box B2D ∈ R1×4 with the maximum and minimum
values in each image axis.

3.2 Depth estimation and point cloud projection

The two RGB images from the stereo camera Istereo ∈ R2×H×W×3 are fed
into a neural network to determine the disparity of the pixels D ∈ RH×W . In
our experiments, we choose to evaluate two state-of-the-art (SOTA) models for
depth/disparity estimation: Stereo Depth Network (SDN) [17] and CoEx [18].
The SDN model directly optimizes the depth loss and has a higher computational
cost compared to CoEx.

To perform the necessary transformations, knowledge of parameters from the
camera’s intrinsic matrix (equation 1) is required, such as the focal lengths in
each axis of the image (fx, fy) or the optical center (cx, cy).

K =

fx s cx
0 fy cy
0 0 1

 (1)

To work in an equivalent space to the real scenario, depth values Z ∈ RH×W

should be obtained from the predicted disparity image D. The transformation
from disparity to depth values is performed using Equation 2a, where the baseline
distance B and the horizontal focal length fx of the camera must be known.

To reduce the probability of getting detections in the wrong positions, the
depth image is applied only over to bounding boxes detected by Yolo (Fig. 3a).
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With this approach, the point cloud represents only the frustums containing the
objects to be detected, eliminating undesired elements and a large amount of
noise introduced by depth estimation at objects edges and the sky.

Once filtered, the depth map is projected using the Equations in 2b into the
3D environment to generate a point cloud PCL ∈ Rn×3 similar to a LiDAR sen-
sor point cloud (Fig. 3b). However, unlike LiDAR or radar, the camera-generated
point cloud is much denser as it concentrates H ∗W points only in the camera’s
field of view (FoV). The disadvantage compared to LiDAR or radar point clouds
is that depth information is obtained through estimation rather than measure-
ment with the corresponding sensor and there is no additional information such
as intensity or doppler.

a) Z(u, v) =
fx ·B
D(u, v)

b) x =
(u− cx) · z

fx
, y =

(v − cy) · z
fy

, z = Z(u, v) (2)

10 20 30 40 50 60

Fig. 3: a) Filtered depth image. b) Generated point cloud from predicted depth.
Full data in gray and filtered data in yellow. Both from the same scene as Figure
2.

3.3 3D object detection

Once the point cloud has been generated and filtered from the camera informa-
tion, we perform 3D object detection. Since data is a point clouds from other
sensors, LiDAR detection techniques can be applied to obtain the present ob-
jects in the scene. As discussed in the experiments section, it is important to
note that the intensity channel normally present in LiDAR is not present in the
camera. Therefore, when training and inference are performed, it is important
to either eliminate it or fix it to a known value to avoid introducing noise into
the detector. Specifically, we decided to use PointPillars [22], working with the
input data as if it were a LiDAR point cloud, even though their distribution is
different.
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4 EXPERIMENTS

In this section we present the results of our experiments, conducted using real
world data from autonomous driving datasets such as KITTI and data from
CARLA simulator using SHIFT dataset [23]. We evaluate the performance of
our pipeline under various conditions and different types of objects and obstacles.

4.1 Datasets

KITTI dataset [24] is a popular benchmark in computer vision and robotics
for tasks such as object detection, tracking and depth estimation. The dataset
consists of 7481 high-resolution (1242x375) stereo images with a baseline of 0.54
meters, 3D Velodyne HDL-64E point clouds and sensor data captured from a
moving platform mounted on a vehicle. The dataset includes a variety of real-
world scenarios, such as urban and rural driving, and is often used to train and
evaluate algorithms for autonomous driving and KITTI has played a significant
role in advancing research in computer vision and robotics, and continues to be
an important resource for the development of new algorithms and techniques.
SHIFT dataset [23] provides data from the CARLA simulator for our experi-
ments. The amount of labelled information and the variety of scenarios is much
greater than open-source available real world datasets, since it collects data gen-
erated entirely in CARLA. Specifically, this dataset collects data from a 128
channel LiDAR and a multi-camera system that includes a stereo pair with a
0.2 meter baseline and a 1280x800 resolution. It provides labeled data for both
2D and 3D objects, as well as depth information for all pixels in the images.
In the experiments in this paper, a subset of sequences with a similar number
of frames (7500) and split to KITTI is selected. It should be noted that the
intensity provided by the simulated LiDAR point clouds differs from a real sen-
sor. Therefore, when performing domain adaptation, we only use the coordinate
information to train the 3D object detector.

4.2 Metrics

Two different sets of metrics for depth estimation and object detection are used in
the experiments. Firstly, standard metrics were used to measure the performance
of the depth estimation networks following the KITTI benchmark. All depth
values are in meters except in iRMSE:

– Root Mean Squared Error (RMSE): squared difference between the pre-
dicted depth value and the ground-truth value.

RMSE =

√∑
i,j(Ẑ

i,j − Zi,j)2

N
(3)

– Inverse Root Mean Squared Error (iRMSE): squared difference between the
inverted predicted depth value and the ground-truth value, both in Km.
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iRMSE =

√∑
i,j(

1

Ẑi,j
− 1

Zi,j )2

N
(4)

– Relative Absolute Error (absErrorRel): percentage of error relative to the
ground-truth value.

absErrorRel =
1

N

∑
i,j

|Ẑi,j − Zi,j |
Zi,j

(5)

– Logarithmic Root Mean Squared Error (RMSElog): squared difference be-
tween the natural log of the predicted depth value and the natural log of the
ground-truth value.

RMSElog =

√∑
i,j(log(Ẑ

i,j)− log(Zi,j))2

N
(6)

– Threshold n (δn):

max(
Ẑi,j

Zi,j
,
Zi,j

Ẑi,j
) < 1.25n (7)

For object detections we decided to use AP or Average Precision, one of the
most common metrics in detection tasks, to measure how well the model is able
to detect and locate objects in an image or 3D environment. The correspond-
ing AP11 (Average Precision) is calculated for each class and represents the area
under the Precision-Recall curve, which shows the relationship between the num-
ber of true positives, false positives, and false negatives generated by the model.
The Precision-Recall curve is generated by varying the detection threshold of
the model.

We also use average orientation similarity (AOS) to measure each object
orientation. Following the KITTI 3D object detection benchmark, we calculate
three different mAP:

– 2D detections on each image: a true positive is considered if the overlap
between the ground-truth and the detected 2D object is more than a 70%
for cars class objects or 50% if they are pedestrians.

– Bird Eye View (BEV): the overlap of the projected BEV between the
ground-truth and the predicted object must be greater than 50% for cars
and 25% for pedestrians.

– 3D detections: a true positive is considered if the tridimensional intersec-
tion of the 3D bounding boxes of the ground-truth and detected objects is
greater than 50% for cars and 25% for pedestrians.

4.3 Procedure and results

Due to the modular nature of our architecture, we measure the performance
on two main tasks in real and simulated scenarios: depth estimation and object
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detection. All experiments are performed on a desktop computer with a GPU
NVIDIA GTX 1080 Ti.

Depth evaluation: we train and evaluate two state-of-the-art stereo depth
estimation methods: Stereo Depth Network (SDN) [17] and CoEx [18]. In both
cases, the initial weights for training are obtained from SceneFlow, followed
by transfer learning on KITTI or SHIFT datasets. This approach allows us to
evaluate the domain adaptation capabilities from a similar starting point. All
training processes consist of 50 epochs with an initial learning rate of 0.001. It
is worth pointing out that in the case of SDN, the obtained metrics quantify
the performance of depth estimation complementing the study conducted by the
authors of the paper, who only provide detection metrics.

Table 1: Depth error metrics on different training and validation subsets with
the two methods.

Method Train Set Eval. Set RMSE ↓ iRMSE ↓ RMSElog ↓ Rel. abs. error (%) ↓

SDN
KITTI KITTI 3.3366 13.6359 0.1498 9.6186
SHIFT SHIFT 4.6104 16.3160 0.1855 8.2246
SHIFT KITTI 3.9165 21.2901 0.1914 11.9913

COEX
KITTI KITTI 3.5426 15.6604 0.1607 10.3993
SHIFT SHIFT 4.3414 17.4171 0.1769 7.2447
SHIFT KITTI 6.2974 18.8357 0.2073 15.0839

Table 1 and Table 2 show the different metrics obtained by training and
evaluating on both datasets. In both cases, the transition from a real to a virtual
environment when training and evaluating in the same dataset has a noticeable
effect, resulting in a degradation of performance in SHIFT for most metrics, with
the exception of Relative Absolute Error, which can be attributed to the fact
that the ground truth in SHIFT is a complete image with depth values, unlike
KITTI, which consists of the LiDAR projection, leaving some pixels unlabelled.
This increase in error may be magnified due to a smaller baseline in the stereo

Table 2: Delta thresholds values on different training and validation subsets with
the two methods.

Method Train Set Eval. Set δ1 ↑ δ2 ↑ δ3 ↑

SDN
KITTI KITTI 0.9581 0.9753 0.9856
SHIFT SHIFT 0.9396 0.9667 0.9785
SHIFT KITTI 0.9294 0.9624 0.9766

COEX
KITTI KITTI 0.9567 0.9741 0.9843
SHIFT SHIFT 0.9383 0.9690 0.9805
SHIFT KITTI 0.9275 0.9612 0.9743

camera setup, which leads to greater errors at long distances from the vehicle.
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When training on SHIFT and evaluating on KITTI, both networks show only
a slight degradation in performance, confirming that training on CARLA can
achieve acceptable performance in real-world scenarios.

Object detection: the final stage of the system is responsible for performing
object detection using the projected and filtered point cloud generated from the
depth estimation at each pixel of the image. It is important to point out that
SHIFT does not provide difficulty categories in its labeling, as KITTI does. To
ensure a fair comparison, the results on KITTI are averaged across all three
difficulties (Easy, Medium, and Hard). We conduct multiple training runs of
PointPillars, consisting of 15 epochs and an initial learning rate of 0.001. In the
first stage, we train the detector using LiDAR point clouds from both datasets
to establish a baseline for comparison. Subsequently, we train PointPillars using
the depth estimations from SDN and CoEx on both datasets, enabling us to
quantify the performance difference between real and simulated environments.
It is important to note that due to the multi-stage nature of the system, the error
of the different stages is propagated to the next component of the architecture.
All results are summarised in Table 3. Training directly on LiDAR gives the best

Table 3: Training results on both datasets (AP11 with Filtered PseudoLidar) of
PointPillars only on LiDAR and our modular architecture.

Car Pedestrian
2D BEV 3D AOS 2D BEV 3D AOS

KITTI
LiDAR 89.674 91.658 91.589 89.240 61.942 68.725 68.456 44.463
SDN 85.917 85.369 83.865 83.553 39.563 37.098 36.675 22.950
CoEx 77.733 76.912 73.975 75.930 32.053 33.455 33.255 17.493

SHIFT
LiDAR 62.346 96.733 96.679 30.420 57.075 60.209 60.210 22.050
SDN 61.294 89.567 85.545 28.540 15.711 11.091 11.091 7.980
CoEx 60.889 85.707 80.829 31.530 8.128 9.071 9.070 3.389

results in both datasets and classes for all objects in the camera FoV. In the case
of KITTI, the use of the heavier depth estimation network achieves results that
are quite close to LiDAR for the car class, but there is a significant drop in
performance for pedestrians. Similar effects are observed in the SHIFT dataset,
specifically for cars, where LiDAR achieves the best results and both SDN and
CoEx fall slightly behind. However, the drop in performance for pedestrians is
even more pronounced, with AP values as low as 10, which is significantly lower
than the drop observed in KITTI.

Figure 4 shows three qualitative examples in KITTI and SHIFT. As observed
in the generated depth metrics, SDN produces more accurate depth images, par-
ticularly for smaller objects like traffic lights. On the other hand, CoEx struggles
with such objects, resulting in larger errors and pointclouds with more noise.
Despite this limitation, our system demonstrates reliable detections at short dis-
tances, typically within the range of 10-20 meters, with both depth estimation
architectures.
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a) b) c)

Fig. 4: Cualitative results with PointPillars as the 3D object detector. a) SHIFT
using SDN. b) SHIFT using CoEx. c) KITTI using SDN.

5 CONCLUSIONS

A modular 3D detection system was designed and implemented to perform com-
prehensive evaluations. The depth estimation evaluation aimed to quantify how
well the system could estimate the distances of objects in a real and simulated
environment. On the other hand, the object detection evaluation focused on an-
alyzing the system’s ability to accurately detect and localize objects using data
from the different depth estimation systems. By conducting these evaluations,
a thorough review of the system’s performance in both the depth estimation
and object detection domains was achieved, providing valuable insight into the
system’s ability to operate in different environments.

From the experiments conducted, it can be concluded that depth estimation
is more accurate in real data compared to a rendered simulator and that the
synthetic data can be used as a baseline in real environments in which labeled
data is more limited. The use of pseudo-LiDAR techniques without rectification
gives results close to the use of LiDAR for large objects in the image, such as
cars. However, there is a noticeable drop in performance for less visible objects
such as pedestrians, and this drop is amplified in synthetic images.
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