
Green Deep Learning: Comparative Study of
Road Object Detectors between Jetson Boards

and PC

Fabio Sánchez-Garćıa, Felipe Arango, Carlos Gómez-Huélamo, Manuel Ocaña,
Pedro Revenga, and Luis M. Bergasa

RobeSafe research group, Electronics Department, Universidad de Alcalá, Spain
fabio.sanchezg@edu.uah.es

{juanfelipe.arango, carlos.gomezh, manuel.ocanna, pedro.revenga,
luism.bergasa}@uah.es

Abstract. Recent advancements in deep learning have provided power-
ful tools for intelligent vehicle tasks, particularly in the field of percep-
tion. However, achieving real-time performance with low power consump-
tion remains a challenge included in the hot research topic known as green
deep learning. In this paper, we present a comparative analysis of various
YOLOv5 weights trained on the KITTI and SHIFT datasets using two
platforms with different power consumption profiles: the NVIDIA Jet-
son AGX Xavier and a desktop computer equipped with a NVIDIA GTX
1080 Ti. Our analysis focuses on the average inference time and precision
metrics for road objects detection, a key task for intelligent vehicles. Ad-
ditionally, we apply TensorRT to optimize and accelerate the architecture
on both platforms, resulting in significant speed improvements, particu-
larly on the low-power Jetson AGX Xavier (30W). Our ultimate goal is
to implement our whole autonomous driving architecture on several Jet-
son AGX Xaviers connected to a PC where the hyper-realistic CARLA
simulator, is replicating the real-world autonomous vehicle environment.
We obtain compelling validation results on KITTI and CARLA, achiev-
ing real-time performance on a lightweight Jetson AGX Xavier with a
powerful object detector such as YOLOv5m.

Keywords: green deep learning, algorithm acceleration, embedded sys-
tems, TensorRT

1 Introduction

Deep learning (DL) has suffered huge agitation in the last decade thanks to
the introduction of new techniques that improve the precision of detections,
classifications or semantic segmentation from sensor data. However, these new
techniques usually require massive computations during model training and in-
ference, which have a surprisingly large energy consumption, with its corre-
sponding carbon footprint, as well as having negative effects on the deployment
on real-world applications. Green deep learning [2] is an increasingly hot topic



2 Fabio Sánchez-Garćıa et al.

Fig. 1. Work baseline. Inference process summary of platforms and used models.

that appeals to researchers to pay attention to energy usage and carbon emis-
sions during models implementation. The target is to yield competitive results
with lightweight and efficient technologies. This paper focuses on energy-efficient
DL inference in the context of intelligent vehicles.

Energy conservation is critical in electric autonomous vehicles, as their bat-
teries must maximize the number of kilometres driven. However, reducing power
consumption often entails limitations in computational capability. While state-
of-the-art DL algorithms prioritize complexity and outcomes, they frequently
overlook some practical aspects: achieving real-time performance in real appli-
cations and in an energy-efficient way. Having an extensive driving architecture
that runs at 30 FPS on a high-powered device is futile if it cannot be imple-
mented on a vehicle’s embedded system. Introducing large GPUs like Nvidia’s
high-end clusters (DGX) is impractical due to their high power consumption and
size, necessitating the exploration of alternative embedded platforms for running
inference models in automotive applications.

Taking advantage of acceleration techniques can narrow the barrier between
hardware with different power consumption, carrying the battle of efficiency to
common ground. Thanks to tools such as TensorRT we can increase the FPS
of a model running on a Jetson AGX Xavier to unimaginable numbers able to
compete on equal terms with more powerful and power-consuming hardware in
an efficient way.

In this work, we bring two devices face-to-face with each other to analyse
their performances on running different YOLOv5 weights for object detection in
autonomous driving environments. To center the focus in autonomous vehicles,
the used weights are trained and evaluated using the KITTI [3] and SHIFT [4]
datasets. The acceleration is performed using TensorRT (v8.4.1), which requires
of CUDA (v12.0).



Green Deep Learning 3

With that in mind, our contribution lies in providing a comprehensive anal-
ysis of weights and hardware platforms that can be beneficial for energy efficient
intelligent vehicle design. This analysis highlights the potential to achieve model
throughput across diverse devices with varying power consumption, through the
implementation of acceleration techniques based on TensorRT. As a result, we
present a study that assesses the feasibility of utilizing lightweight Jetson boards
in automotive applications onboard vehicles. Comparative results are obtained
over two public datasets (KITTI and SHIFT) and while our whole autonomous
driving stack [5] is moving in the hyper-realistic CARLA simulator environ-
ment [6] (Fig. 1).

2 Background

2.1 Nvidia Jetson AGX Xavier

JAGX is an embedded device designed to be used on autonomous machines.
It excels in high-performance DL tasks, thanks to its multiple data-parallel ac-
celerators. Powered by an octa-core Nvidia Carmel ARMv8.2, it has a Volta
architecture GPU with 512 Nvidia CUDA cores and 64 Tensor cores and two
DL accelerators (DLA). These DLAs are fixed-function accelerators that tar-
get deep learning operations supporting typical DL layers such as convolution,
pooling, activation or fully connected.

JAGX has a shared memory between GPU and CPU, which leads to faster
access between processing units. This board also allows to switch among different
power modes (10W, 15W and 30W) or even turn on and off different CPU cores,
giving total freedom to the user when it comes to power management. However,
the reduction in power consumption entails a diminution of performance, which
is a trade-off that always needs to be considered.

2.2 Nvidia TensorRT

TensorRT (TRT) is a SDK (Software Development Kit) for high-performance
DL inference on Nvidia devices. It is capable of performing different runtime
optimisations lowering the latency and enhancing the throughput. When a model
is accelerated, a hardware-dependant engine is created. Afterwards, the engine is
used to perform the inference. This engine is created using five different strategies
offered by Nvidia:

– Precision reduction. This technique, also called quantization, consists of
transforming the precision of the model in a smaller size (FP32, FP16 or
INT8). The reduction allows the GPU to perform operations faster, which
generally speeds up the inference.

– Kernel auto-tuning. TRT is capable of choosing the best data layers and
algorithms depending on the GPU platform where the acceleration is taking
place. This is one of the reasons why TensorRT applications are hardware
dependant, meaning that the same model will have different engines in dif-
ferent hardware architectures.



4 Fabio Sánchez-Garćıa et al.

– Layer fusion. TRT can fuse layers vertically or horizontally, so that when
repeated structures are found, they are fused in a single operation, improving
the inference speed of the engine. This is useful since most models consist
of repeating an specific structure (such as convolution, batch normalisation
and activation) several times.

– Buffer reutilization and tensor dynamic memory. TensorRT allows to
reuse memory localisation on some embedded systems to reduce the memory
footprint of the model.

– Multi-stream execution. TRT allows the execution of several inferences
asynchronously in multiple streams. This enhances the performance since
the threads executed in a single CUDA core are increased.

3 Related Work

Acceleration methods are some of the most used green technologies and have
reunited increasing attention in recent years due to their immense potential.
TensorRT emerged onto the scene in 2018, increasing its popularity gradually.
However, it was in 2019 when its importance started to rise. Researchers are
increasingly focusing their efforts on integrating TRT into their models, leading
to an exponential growth of this instrument.

TRT has a remarkable versatility, making it applicable across a wide range
of DL implementations, from tasks like image classification to semantic segmen-
tation and object detection, being this last the main focus of this work. Fur-
thermore, multiple researchers have dedicated their efforts to integrate theses
acceleration techniques with Jetson devices for efficient model deployment.

3.1 Acceleration and speed-up

A research on the acceleration effect is performed in [7], where a first approach to
the optimisation and its explanation are exposed. The results observed support
the speeding up. In [8], the methodology behind the acceleration is analysed while
exploring PyTorch, ONNX and TensorRT for various ResNet and SqueezeNet
models, obtaining accelerations by a factor of 2. In [9], a two-stage facial direction
detection is proposed, where they compare the different results on accelerating
the first stage, the second or both, which is an interesting option for multi-stage
models.

In [10], they present a modified YOLOv5 architecture obtaining around 47
FPS, but losing some accuracy in the process, which does not happen when using
TensorRT. They also implement their network in CARLA.

3.2 Deployment on embedded devices

In [11], they propose a real-time approach for lane detections using ResUNet++,
CARLA simulator and NVIDIA Jetson Nano, obtaining inference times around
22 ms. [?] implements different MOT algorithms such as DeepSORT in RTX
2080Ti, Jetson TX2 and JAGX, with FPS around 46, 10 and 16 respectively.
This shows again how embedded systems are far behind GPUs in workstations.



Green Deep Learning 5

3.3 Acceleration and deployment on embedded devices

This is the primary focus of state-of-the-art research. Accelerating a model for
a high-end device is not as impactful as optimizing it for a low-power system.
Hence, many researchers are trying to enhance classical or custom architectures
to achieve real-time performance in embedded systems.

An end-to-end methodology to optimise DL inference models on Jetson boards
is analysed in [13]. This work consists of a long procedure to improve and in-
crease performance of some different YOLO versions. A detection system for
dirty-eggs based on a YOLOv4 accelerated with TensorRT is proposed and de-
ployed in a Jetson Nano in [14], with impressive results for such a low consuming
device reaching 2.3 FPS. An evaluation of YOLOv3-tiny and EfficientDet-Lite
is performed in [15], where the hardware used is a Jetson TX2 and the results
are evaluated on the KITTI dataset, aiming for real-time vehicle detection, with
FPS between 21.5 and 36.9 for 640x640 images. A review on the possibility to in-
troduce deep neural networks on single board computers (such as Jetson Nano)
is investigated in [16], where they obtain around 25 FPS using YOLOv4-tiny
thanks to the addition of TensorRT.

To the best of our knowledge, so far, there has not been any project that
has studied the performance of YOLOv5 on a JAGX operating on the CARLA
simulator.

4 Methodology and Comparison

4.1 Hardware Platforms

Since the acceleration is hardware-dependant, hardware is crucial when using
TensorRT. As previously mentioned, our comparison focuses on two platforms:
a PC desktop with a NVIDIA GTX 1080 Ti and the Jetson AGX Xavier. In
Table 1, we observe that the GPU is twice as fast, but it drops down when it
comes to FP16 performance. On the contrary, JAGX works better with quantized
models, while the GPU copes better with generalist models, typically generated
using FP32 data. It is worth noting that the power consumption of the GPU
is between eight and nine times higher compared to the Jetson module. These
results, along the power consumption data, highlight the importance and poten-
tial of the JAGX as an embedded system for autonomous vehicles. These factors
significantly impact the final results.

4.2 Comparison Metrics

Evaluation metrics play a crucial role in giving significance to the results. In
this case, we consider two key metrics: mean Average Precision (mAP) and
inference time. This first metric can be evaluated depending on the chosen con-
fidence intersection over union (IoU) thresholds. On the one hand, we evaluate
50 % IoU, commonly known as mAP@0.5, and a compound mAP, denoted as



6 Fabio Sánchez-Garćıa et al.

Table 1. Hardware Comparison. Power consumption, and TFLOPs in FP32 and FP16
of the hardware studied.

Perform. (TFLOPs)

Platform Power GPU Clock FP32 FP16

PC (GTX 1080 Ti) 250 W 1481 MHz 11.3 0.177
Jetson AGX Xavier <30W 854 MHz 1.4 2.8

mAP@[0.5:0.95], which provides an average across different IoU thresholds rang-
ing from 0.5 to 0.95 in increments of 0.05.

Furthermore, the inference time, another critical factor, is also measured.
To obtain accurate measurements, we use CUDA Events, since CUDA is asyn-
chronous and all operations are performed in GPU. The inference time is calcu-
lated as an average of multiple iterations measured in milliseconds. The inverse of
the inference time is commonly referred to as frames per seconds (FPS) of hertzes
(Hz), providing a practical measure of the system’s real-time performance.

4.3 Inference Methods

The main source used in this work is the ultralytics repository from YOLOv5
[17]. This allows us to perform different export options, such as a TensorRT
engine, controlling several parameters like image size, precision, IoU thresholds
or configuration file among others. The repository also contains validation files
that enable the evaluation of the model’s performance on certain dataset.

To adapt the detectors to the work environment, we fine-tune the original
pretrained COCO weights of YOLO on KITTI, a dataset that focuses on offering
real-world computer vision benchmarks for autonomous driving, and on SHIFT,
a synthetic dataset which contains CARLA images. In this context, we perform
50 epochs utilizing the 7481 training images from KITTI and 7000 images from
SHIFT, with both datasets split into 70% training images and 30% validation
images. The labeled classes consist of car, pedestrian and cyclist. Additionally,
Table 2 shows the features of the weights.

To cover a wide range of possibilities, we utilized various weight configura-
tions. The original checkpoints include YOLOv5s, YOLOv5m and YOLOv5x,
which represent small, medium and large variations, respectively. Naturally,

Table 2. Weights comparison. Number of layers, parameters and operations required
of the weights studied.

Weights Layers Parameters GFLOPs

YOLOv5s 157 7018216 15.8
YOLOv5m 212 20861016 47.9
YOLOv5x 322 86186872 203.8



Green Deep Learning 7

larger weight configurations tend to obtain better results. This will be demon-
strated in the final section of the work.

After retrieving the pretrained weights, we proceed with fine-tuning them and
creating accelerated models for both platforms, utilizing quantization in both
FP32 and FP16. This step is important as it is crucial to note that the model
accelerated for the GTX 1080 Ti is not compatible with the Jetson AGX, and
vice versa. Once this process is completed, the following steps involve performing
validation across all weights configuration in both datasets.

Following the validation phase over open-source datasets, which offers valu-
able and noteworthy results, we take a step further by integrating our au-
tonomous vehicle architecture into the Robot Operating System (ROS) [18].
This integration allows us to visualize the ego vehicle, cameras, and other agents
in the simulated environment using the RVIZ simulator [19]. With this in mind,
we conduct an experiment by running our stack’s architecture with YOLOv5 un-
der two distinct conditions. To achieve a better domain adaptation in CARLA,
we utilize the fine-tuned weights with the SHIFT dataset.

1 Whole architecture and simulator launched on PC.

The initial phase of developing an autonomous driving architecture involves
simulating its functionality under ideal conditions. In this stage, all layers of
the architecture, including perception layer where the YOLOv5 operates, are
executed on the PC. However, it is important to notice that this setup is far
from deployment on an actual autonomous vehicle, because incorporating a PC
into a vehicle is inefficient. Nonetheless, it is essential to study this preliminary
phase for drawing conclusions that can guide the next steps of the project.

2 Perception layer executed on JAGX and simulator launched on
PC.

This approach is more efficient and realistic, resembling a real-world scenario.
The architecture of our modular autonomous driving architecture consists of
various layers, including the perception layer. In this last layer, sensors gather
information about the surrounding environment and transmit it to their respec-
tive processing units. In this configuration, the simulated world and sensors in
CARLA are executed on the PC, while the collected information (i.e. images) is
transmitted to the perception processing unit, running in a Jetson. The Jetson
processes this information and retrieves the bounding boxes of detected objects
in the environment. In our final version, the whole layers will be running on
several JAGXs.

The CARLA scenario used in this additional experiment is based on Euro-
NCAP [20] protocols. Specifically, we have implemented Car to Pedestrian Far-
side (CPF) scenario, in which a pedestrian crosses the street at a predetermined
speed. To ensure consistency, all experiments have been performed under iden-
tical conditions within the CARLA Town 4 environment for maintaining unifor-
mity across all the results.



8 Fabio Sánchez-Garćıa et al.

Once this has been made, we measure the inference time of both conditions
using CUDA Event, to compare it with the times obtained in the validation.
The results obtained are thoroughly analysed in the following section.

5 Results

This section presents the inference results for the different experiments con-
ducted in this study, regarding the validation in KITTI and SHIFT, and the
test with CARLA simulator.

– Validation with KITTI and SHIFT.

Table 3 provides a comprehensive review of all the obtained results. It is
worth noting that these results were generated using images of size 640x640,
ensuring consistency across all the experiments.

The observations from the table confirm the initial hypothesis of this study.
One crucial finding is that the accelerated models (TRT) demonstrate negligible
accuracy loss regarding to not accelerated ones (GPU). This is important be-
cause if the precision was significantly compromised, the acceleration would have
limited practical value. The fine-tuned weights achieve mAP@0.5 scores around
0.9 in KITTI and 0.85 in SHIFT, while mAP@0.5:0.95 scores range between 0.6
to 0.7 in KITTI and 0.55 to 0.65 in SHIFT. The slight loss of performance on
SHIFT is attributed to the challenging nature of this dataset, which includes
day and night data and various weather scenarios. As expected, YOLOv5x, with
its heaviest weights, achieves the highest accuracy results. These findings vali-
date the effectiveness of the acceleration techniques employed while maintaining
satisfactory levels of precision. It is also important to note that, since we are
performing 640x640 image size inference, the inference times do not vary for the
same weights. This demonstrates that the inference time is independent of the
dataset when the input data is resized to the same size.

Furthermore, the fastest inference times of each model are observed on the
PC. In this case, FP32 inference is slightly faster than FP16 in the PC. The
gap between FP32 and FP16 inference times is not significant, contradicting
the theory that FP16 should be faster. However, as demonstrated in Table 1,
the PC is not optimized for FP16 inference since its general usage typically
involves FP32. Therefore, in this specific hardware configuration, the acceleration
to FP16 does not involve significant improvements in terms of inference speed.

On the contrary, the Jetson boards exhibits inference times that are approx-
imately five times slower compared to the PC. This outcome is anticipated due
to the disparity in power consumption and GPU clock frequency between the
two devices. However, the results are astonishing when we consider the inference
times in FP16. The gap between the PC and JAGX is significantly reduced,
thanks to the specialized nature of the JAGX in FP16 inference. The JAGX
system is designed specifically for FP16 acceleration, resulting in rapid infer-
ence speed that can rival a powerful GPU like the 1080 Ti. Additionally, it is
worth noting that the JAGX is much more energy efficient and is smaller in size,
making it a viable option for integration into a real vehicle.



Green Deep Learning 9

Table 3. Validation of all the different weights used in the work in both datasets:
KITTI and SHIFT.

PC KITTI Inference

GPU TRT - FP32 TRT - FP16

Weights
Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

YOLOv5s 6.8 147.1 0.895 0.608 3.9 256.4 0.894 0.608 3.9 256.4 0.894 0.608
YOLOv5m 10.5 95.2 0.918 0.666 7.1 140.8 0.917 0.662 7.4 135.1 0.917 0.661
YOLOv5x 26.9 37.2 0.929 0.697 22.5 44.4 0.927 0.696 22.6 44.2 0.927 0.694

Jetson AGX KITTI Inference

GPU TRT - FP32 TRT - FP16

Weights
Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

YOLOv5s 30.9 32.4 0.895 0.608 20.3 49.3 0.894 0.608 16.8 59.5 0.894 0.608
YOLOv5m 51.5 19.4 0.918 0.667 40.4 24.8 0.917 0.662 19.4 51.5 0.917 0.661
YOLOv5x 149.0 6.7 0.929 0.697 141.2 7.1 0.927 0.696 45.9 21.8 0.927 0.694

PC SHIFT Inference

GPU TRT - FP32 TRT - FP16

Weights
Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

YOLOv5s 6.9 161.3 0.806 0.566 3.8 263.2 0.805 0.566 4.0 250.0 0.805 0.566
YOLOv5m 10.4 96.2 0.855 0.637 7.3 137.0 0.854 0.634 7.6 131.6 0.854 0.633
YOLOv5x 26.7 37.5 0.881 0.666 22.1 45.2 0.879 0.665 22.9 43.7 0.879 0.664

Jetson AGX SHIFT Inference

GPU TRT - FP32 TRT - FP16

Weights
Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

Validation
Inference
Time (ms)

FPS
mAP
@0.5

mAP
@.5:.95

YOLOv5s 31.0 32.3 0.806 0.566 20.2 49.5 0.805 0.566 17.0 58.8 0.805 0.566
YOLOv5m 51.3 19.5 0.855 0.637 39.9 25.1 0.854 0.634 19.3 51.8 0.854 0.633
YOLOv5x 149.6 6.7 0.881 0.666 141.8 7.1 0.879 0.665 46.5 21.5 0.879 0.664



10 Fabio Sánchez-Garćıa et al.

YOLOv5s YOLOv5m YOLOv5x

Weights

0

50

100

150

200

F
P
S

YOLOv5 FPS comparison in CARLA simulation - PC vs Jetson

Fig. 2. FPS for CARLA. FPS obtained in the experiments with the CARLA simu-
lator. The dashed line marks a strict real-time in 30 FPS.

– Additional experiment in CARLA.

As previously mentioned, we perform an additional experiment in both con-
ditions explained in Section 4. In this situation, Fig. 2 shows the FPS obtained
in CARLA for the different weights on each platform using the SHIFT fine-
tuned weights for a better domain adaptation. It is important to note that the
FPS obtained are very similar to the ones obtained in SHIFT validation, since
we are measuring YOLOv5 inference. This figure provides valuable insight for
understanding the accelerations achieved.

For each weight, the first three bars represent the PC, while the last three
bars represent the JAGX. It is evident from the graph that the PC achieves the
highest FPS in all cases. Another worthy observation is that both devices achieve
real-time performance with YOLOv5s. However, when it comes to YOLOv5m,
the JAGX lags behind. Nevertheless, thanks to the FP16 acceleration, the JAGX
is able to handle the same weights in real-time. A similar trend is observed with
YOLOv5x, where the accelerated FP16 version matches the unaccelerated FPS
of the previous weight. This indicates that accelerations allows us to use higher-
order weights without sacrificing speed or accuracy, potentially resulting in an
improvement of over 0.06 mAP@0.5:0.95, which can be significant depending on
the application.

The observed accelerations are remarkable, achieving acceleration factors of
up to 2 times the base speed. This indicates that both PC and JAGX exhibit sig-
nificant over-performance, competing with more expensive, powerful and power-
consuming hardware. This can be viewed as a hardware upgrade, as TensorRT
effectively enhances model performance through hardware-specific optimizations
which play a crucial role in embedded systems where efficiency is key.



Green Deep Learning 11

6 Conclusions and Findings

In this work, we proposed a comparative analysis of inference time and accuracy
between different YOLOv5 weights executed on two different platforms with
different power consumption and throughput: GTX 1080 Ti and Nvidia Jetson
AGX Xavier. To adapt the weights to the real world and the environment in the
CARLA simulator, we fine-tuned the pretrained weights using the KITTI and
SHIFT datasets.

First, we obtain temporal and accuracy metrics performing validation over
both datasets in both their accelerated and unaccelerated versions. YOLOv5m,
which is the model with the best balance between inference time and accuracy
metrics, obtains 0.918 mAP@0.5 in KITTI and 0.855 in SHIFT. When it comes to
inference time, YOLOv5m reaches around 95 FPS in the GPU, but only achieves
19.5 FPS in the JAGX. However, this changes after applying acceleration, with
YOLOv5m reaching 51.5 FPS in FP16 precision in the Jetson module.

After evaluating the results, we have used the simulation-oriented weights
fine-tuned in SHIFT in our autonomous driving architecture in two different
scenarios: on a PC running CARLA and on a Jetson AGX Xavier connected
to a PC running the simulation. In this situation, the inference times observed
are closer to a real implementation. We demonstrate that the FPS obtained are
similar to the datasets validation inference times, with only a small deceleration
attributed to computational overload in the hardware due to other processes.

In summary, our CARLA implementation showcases the performance of the
JAGX platform for efficient deployment of embedded systems in autonomous
vehicles. Results show the promising capability of YOLOv5m with TensorRT
acceleration, achieving nearly 50 FPS without compromising accuracy. Results
also highlight the potential of JAGX embedded system enabling accurate and
efficient inference for autonomous driving tasks with impressive real-time results
and high accuracy. The combination of these findings underscore the importance
of deploying embedded systems alongside accelerated inference to ensure efficient
and accurate behaviour in autonomous driving, conclusions aligned with the
green DL deal.

References

1. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J.
Mol. Biol. 147, 195?197 (1981). doi:10.1016/0022-2836(81)90087-5

2. J. Xu, W. Zhou, Z. Fu, H. Zhou, and L. Li, “A survey on green deep learning,”
arXiv preprint arXiv:2111.05193, 2021.

3. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” International Journal of Robotics Research (IJRR), 2013.

4. T. Sun, M. Segu, J. Postels, Y. Wang, L. Van Gool, B. Schiele, F. Tombari, and
F. Yu, “Shift: a synthetic driving dataset for continuous multi-task domain adap-
tation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 21 371–21 382.



12 Fabio Sánchez-Garćıa et al.

5. C. Gómez-Huélamo, A. Diaz-Diaz, J. Araluce, M. E. Ortiz, R. Gutiérrez, F. Arango,
Llamazares, and L. M. Bergasa, “How to build and validate a safe and reliable
autonomous driving stack? a ros based software modular architecture baseline,” in
2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 1282–1289.

6. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open
urban driving simulator,” 2017.

7. Z. Song and K. Shui, “Research on the acceleration effect of tensorrt in deep learn-
ing,” Scientific Journal of Intelligent Systems Research Volume, vol. 1, no. 01, 2019.

8. Y. Zhou and K. Yang, “Exploring tensorrt to improve real-time inference for deep
learning,” in 2022 IEEE 24th Int Conf on High Performance Computing & Com-
munications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart
City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Ap-
plication (HPCC/DSS/SmartCity/DependSys). IEEE, 2022, pp. 2011–2018.

9. H.-L. Chen, K.-H. Chen, Y.-T. Hwang, and C.-P. Fan, “Acceleration study of two-
stage and deep-learning based facial direction detection on gpu-based edge device,”
in 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech),
2022, pp. 429–430.

10. T.-H. Wu, T.-W. Wang, and Y.-Q. Liu, “Real-time vehicle and distance detection
based on improved yolo v5 network,” in 2021 3rd World Symposium on Artificial
Intelligence (WSAI), 2021, pp. 24–28.

11. R. Yousri, M. Mostafa, R. Yasser, M. Shawki, A. Khaled, Z. Mostafa, A. Soltan,
and M. S. Darweesh, “A real-time approach based on deep learning for ego-lane de-
tection,” in 2021 9th International Japan-Africa Conference on Electronics, Com-
munications, and Computations (JAC-ECC). IEEE, 2021, pp. 9–13.

12. G. Chen, Y. Lin, M. Sun, and T. Ik, “Managing edge ai cameras for traffic monitor-
ing,” in 2022 23rd Asia-Pacific Network Operations and Management Symposium
(APNOMS), 2022, pp. 01–04.

13. E. Jeong, J. Kim, and S. Ha, “Tensorrt-based framework and optimization method-
ology for deep learning inference on jetson boards,” ACM Trans. Embed. Comput.
Syst., vol. 21, no. 5, oct 2022. [Online]. Available: https://doi.org/10.1145/3508391

14. X. Wang, X. Yue, H. Li, and L. Meng, “A high-efficiency dirty-egg detection sys-
tem based on yolov4 and tensorrt,” in 2021 International Conference on Advanced
Mechatronic Systems (ICAMechS). IEEE, 2021, pp. 75–80.

15. T.-H. Wu, T.-W. Wang, and Y.-Q. Liu, “Real-time vehicle and distance detection
based on improved yolo v5 network,” in 2021 3rd World Symposium on Artificial
Intelligence (WSAI). IEEE, 2021, pp. 24–28.

16. R. Ildar, “Increasing fps for single board computers and embedded computers in
2021 (jetson nano and yovov4-tiny). practice and review,” 2021.

17. G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, K.
Michael, TaoXie, J. Fang, imyhxy, Lorna, Yifu), C. Wong, A. V, D. Montes, Z.
Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, V. Sonck, tkianai, yxNONG, P.
Skalski, A. Hogan, D. Nair, M. Strobel, and M. Jain, “ultralytics/yolov5: v7.0 -
YOLOv5 SOTA Realtime Instance Segmentation,” Nov. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7347926

18. Stanford Artificial Intelligence Laboratory et al., “Robotic operating system.” [On-
line]. Available: https://www.ros.org

19. H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “Rviz: A toolkit for real domain
data visualization,” Telecommun. Syst., vol. 60, no. 2, p. 337–345, oct 2015. [Online].
Available: https://doi.org/10.1007/s11235-015-0034-5

20. M. van Ratingen, The Euro NCAP Safety Rating, 08 2017, pp. 11–20.


