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Abstract— Vision-based urban scene recognition is capable
of providing semantic information that will have a signifi-
cant impact for intelligent transportation systems. Semantic
segmentation can provide high-level information from images
of urban scenes, but we have discovered that existing mod-
els trained on public datasets often do not adapt well to
other environments. This work explores the transferability of
Convolution Neural Network (CNN) features by retraining
the network using a minimal dataset incorporating training
data specific to the local environment. A new local dataset is
manually annotated and used to train a neural network for
pixel-level semantic image information. Since data annotation
is time-consuming, we evaluate the transferability of CNNs
and the performance of different data augmentation methods
for dataset expansion. Small datasets are normally considered
not sufficient for training a neural network from scratch.
This paper presents an incremental fine-tunning algorithm to
update the pre-trained network. The experimental results shows
that it is possible to successfully transfer semantic features
to a different environment by incorporating a relatively small
number of local images.

I. INTRODUCTION

Autonomous cars need to be capable of recognizing the se-
mantic context of a local environment and navigating within
this environment. This ability relies heavily on vehicle-
mounted sensor systems including lasers, radars, cameras,
etc. Due to their low cost and high information content,
cameras have been widely used for object classification [1]
and scene understanding [2] in intelligent transportation
systems (ITS).

Convolutional Neural Networks (CNNs) [3] are increasing
in popularity for ITS applications. This is largely due to
the rapid increase in available computational power from
graphics processing units (GPUs) that enable the training
and real-time implementation of CNNs. Another factor is
the availability of very large annotated datasets such as Ima-
geNet [4] which has around one million images with bound-
ing box annotations. Models trained using these advances are
increasingly superior to most traditional algorithms for image
classification, detection, localization and other vision-based
tasks. Recent research in CNNs has explored pixel-level
semantic information to provide a high-level understanding
of a visual scene.
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the University of Alcalá (Madrid, Spain). E-mails: {roberto.arroyo,
bergasa}@depeca.uah.es.

Fig. 1: Project Flowchart. The SMART City campus project
involves data collection/processing, sensor fusion and electri-
cal vehicles self driving. This paper presents the first phase of
the project and demonstrates the challenges of understanding
local environment for autonomous vehicles.

Inspired by the compelling performance of CNN-based
feature classification, it is now possible for intelligent ve-
hicles to process camera images and provide essential in-
formation to advanced driver assistance systems (ADAS)
with the aim of giving alerts in the event of high risk
scenarios [5] and to provide some level of automation. Some
state-of-the-art methods such as SegNet [6], ResNet-38 [7]
and PSPNet [8] have dramatically improved segmentation
accuracy, and ENet [9] has claimed to achieve semantic
segmentation in real-time.

The performance of pixel-level semantic segmentation
is still restricted by a number of factors. As deep neural
networks rely heavily on a large amount of labeled data
to learn features and classify categories, the first challenge
is achieving acceptable results with the limited number of
segmentation datasets currently available. The most widely
used CamVid dataset [10], KITTI dataset [11] and Cityscapes
dataset [12] are far from complete in covering all traffic



Fig. 2: Semantic segmentation on University of Sydney
campus.

environments. Another challenge is to generate a model that
is compatible with other cities or regions that have local
variations which are not covered by the training datasets. As
the last few layers of the deep neural network architecture
are designed to learn specific features, a model trained
using data from a specific environment may not transfer
to a different environment that varies significantly from the
training data [13]. As a result of this, the performance of a
model may vary widely from city to city.

In this paper, we explore the transferability of CNN
features from publicly available datasets taken in other cities
to our local environment. The motivation behind this is the
measurably poor performance of using existing models for
ITS applications when used in other regions. We demonstrate
that a small amount of locally annotated images can be
expanded using data augmentation to improve the model per-
formance [3]. We also measure the influence of different data
augmentation algorithms and demonstrate the improvement
of neural network fine-tuned with a reasonably small dataset.

In collaboration with Ibeo Automotive Systems
GmbH [14], we have retrofitted a perception vehicle with
cameras and 360-degree LiDAR sensing for naturalistic
driving data collection. The first phase of our project
involves using this vehicle to prepare our own urban scene
dataset, train models and test these in real urban scenarios.
We are also working with a number of innovative electrical
vehicles fitted with sensors to demonstrate self-driving
algorithms and SMART city concepts at the University
of Sydney (USyd). The second phase will involve fusing
the available sensors information and finally implementing
vehicle safety applications and autonomous driving (project
flowchart shown in Fig. 1).

II. RELATED WORK

The purpose of urban scene semantic segmentation is to
help intelligent vehicles understand the high level semantic
meaning of objects in real-world traffic and assist in vehicle
control and safe driving applications. In this section, we
provide related works in these areas.

A. CNN Architectures for Semantic Segmentation

Recent semantic segmentation algorithms are almost ex-
clusively using deep neural networks. A basic strategy is
to use a deep convolutional encoder-decoder scheme to

classify a scene into a number of different categories and
retrieve a segmented image which has the same size with
the input image from a low-resolution encoder output. The
VGG16 [15] network is one of the most popular neural
networks used as an encoder to extract image features, while
decoder networks for upsampling have been demonstrated
using different architectures.

The encoder of the fully convolutional networks
(FCNs) [16] is a pioneering architecture based on the VGG16
network. The decoder combines an upsampled feature map in
the current layer with a feature map from the corresponding
encoder layer to produce a new input for the next layer. The
drawback of this network is the high demand of memory
to store all encoder feature maps, which also restricts real-
time implementations. SegNet [6], as another deep CNN
architecture, has the first 13 layers topologically identical to
the VGG16 network for the encoder and a symmetrical ar-
chitecture for the decoder. Instead of storing all feature maps,
SegNet uses max pooling indices obtained from the encoder
to upsample the corresponding feature maps for decoder,
which dramatically reduces the memory and computational
cost required for training.

ENet [9] claims to enable the implementation of se-
mantic segmentation in real-time. Adopting views from
ResNets [17], ENet is constructed with multiple bottleneck
modules which can be used for either downsampling or
upsampling images. Unlike SegNet’s symmetric architecture,
ENet has larger encoder than decoder as it is believed
the decoder is only required to fine-tune the details in
the image [9]. This simplified structure allows ENet to
dramatically reduce the number of parameters and save
additional processing time and memory costs. Considering
the real world application of intelligent vehicles, this project
follows the concept of the ENet architecture for semantic
segmentation.

B. Transferability of Features in Deep Neural Networks

Large annotated datasets are not always available for a
given application. Using recent techniques from transfer
learning [18], the CNN architecture can be first trained on a
large existing dataset and then enhanced with additional set
of images for a more specific task [19]. This technique was
first developed for object recognition [20] and then used for
both instance and semantic segmentation [21], [22].

There are two popular ways to make use of transfer
learning techniques. The first one is to freeze the network
as a feature extractor, remove the last fully connected layer
(classifier) and attach a new classifier to train on a new
dataset. The second strategy also removes the classifier, but
instead of freezing the structure, it fine-tunes all the weights
in the pre-trained model to better adapt to the new data. We
use the second strategy by fine-tuning models trained on the
publicly available datasets to fit our local environment.

C. Self-driving Cars with Deep Learning Algorithms

For vision-based autonomous driving, there are several
paradigms to make a control decision that have been pro-



posed. The mediated perception approach, which consists of
multiple image recognition tasks, involves parsing the cam-
era images and providing this information to other vehicle
systems for making driving control decisions [23].

Another paradigm is the behavior reflex approach which
allows vehicles to directly react to an input image [23].
As deep neural networks are capable of learning models
end-to-end, the system could learn to drive on local roads
after building a model from the reactions of a human driver.
NVIDIA Corporation [24] has trained a CNN model which
directly maps the input camera image to steering commands.

Our project is based on the first paradigm but uses more
precise pixel-level semantic segmentation to assign each
pixel with a corresponding scene category. The colour index
in Fig. 2 shows an example of the segmentation results for
each category. This information is then fused with other
sensors to improve the integrity of the perception process.

III. METHOD

Implementing real-time semantic segmentation is a trade-
off between accuracy and efficiency. A concise network
architecture with fewer parameters and sufficient labeled data
are fundamental to train a good model. The preparation
and process of training semantic segmentation models are
presented in this section.

A. CNN Architecture

We start exploration with ENet architecture [9] for seman-
tic segmentation. The crucial design insight of this network is
to downsample the input image at an early stage and use only
a small number of feature maps to save computational cost.
The network includes an initial block which combines the
results of an initial max pooling and convolution step. The
second main block consists of several bottleneck modules
adapted from ResNet [17]. Each bottleneck is designed to
have a projection to reduce the dimension, a convolution
layer and an expansion to match the dimension. The con-
volution layer could be regular, dilated or deconvolutional
depending on the purpose. The overall architecture is shown
in Fig. 3. The encoder has 22 bottlenecks and uses max
pooling to downsample the images. For the decoder, 5
bottleneck modules are designed and max pooling is replaced
by max unpooling to upsample the feature maps.

B. Data Preparation

We use publicly available datasets (Cityscapes [12] and
CamVid [10]) to train the primary models, benchmark the
performance and transfer CNN features to local areas in
Sec. IV. The original Cityscapes dataset has around 30
classes while not all of them are meaningful in our scenario.
Therefore, we combine and remap the original Cityscapes
dataset to 12 classes including ‘sky’, ‘building’, ‘pole’,
‘road’, ‘undrivable road’ (sidewalk, grass, etc.), ‘vegetation’
(tree, hedge, etc.), ‘sign symbol’, ‘fence’, ‘vehicle’ (car,
truck, bus, etc.), ‘pedestrian’, ‘rider’ (cyclist, motorcyclist,
etc.) and ‘void’.

Fig. 3: CNN Architecture for Semantic Segmentation

In addition to those two datasets, we have also recorded
some local traffic scenes around USyd campus. The data
collection vehicle is equipped with Point Grey Blackfly
cameras and 12.5mm industrial manual lenses. The selected
150 images are manually annotated using the on-line labeling
tool LabelMe [25] and the annotation follows the same rule
for Cityscapes category remapping. We keep the original
Cityscapes image ratio but reduce the resolution to 512x256
for the model training. The input image sizes can be arbitrary
since they will be rescaled during the training process.

Since data annotation is prohibitively expensive, some
commonly used data augmentation algorithms are used to
expand our local dataset and also minimize the occurrence of
overfitting [17], [3], [15]. In this paper, we employ four types
of image transformations: center cropping, left-right flipping,
additive noise and Gaussian blur (shown in Figure 4) to
augment the labeled data. These algorithms preserve the set
of underlying classes and introduce additional examples for
each class.

Instead of random cropping, we crop the center region
of images so that objects in the path of the vehicle can
be emphasized. Left-right flipping or mirroring changes the
image structures but maintains the number of classes in the
dataset. We also add Gaussian noise and apply Gaussian
blur respectively to our dataset since neural networks are
generally influenced by these two transformations [26].

C. Training

The original encoder and decoder of ENet were trained
separately. We combine the encoder and decoder so that
parameters for the entire network can be fine-tuned together
on our local dataset. We also improve the way to decay the
learning rate. In the original implementation, the learning rate
is set to decay after a certain number of training epochs.
This could induce some risks that the training stops at a
local minimum or the validation accuracy has not topped
off. Therefore, instead of setting a fixed number of epochs to
decay learning rate, we decay it when the validation accuracy
shows no improvement for N epochs. N is a hyper-parameter
which can be adjusted by different batch sizes, initial learning



(a) Original Image (b) Blurred Image (c) Cropped Image (d) Flipped Image (e) Additive Noise Image

Fig. 4: Data Augmentation on USyd Dataset

Custom Class Balancing Median Frequency Balancing Natural Frequency Balancing
Train Test Train Test Train Test

G C IoU G C IoU G C IoU G C IoU G C IoU G C IoU
SegNet n/a n/a n/a n/a n/a n/a 94.3 95.8 92.0 83.4 63.6 48.5 95.3 80.9 68.9 84.2 56.5 47.7
ENet* n/a n/a n/a n/a 68.3 51.3 89.0 89.9 64.8 80.8 69.8 48.3 91.1 51.5 45.9 85.9 46.8 40.8
ENetAug 93.8 90.5 76.5 86.9 72.3 57.2 91.2 92.7 71.3 83.4 75.5 53.6 94.6 82.5 75.3 88.7 63.0 55.1

TABLE I: Quantitative results trained and tested on CamVid dataset with different class balancing techniques described in
subsection III-C. Values in italics are original results from SegNet [6] and ENet [9]. ENetAug is trained on augmented
CamVid dataset. The performance is quantified by global accuracy (G), class average accuracy (C) and intersection over
union (IoU). The results are shown as percentages.

rates, the total number of training epochs, etc.
Considering different classes occupy different portions

of pixels in the dataset, both SegNet [6] and ENet [9]
networks use class balancing schemes to weight each class
in the loss function. The first technique is the custom
class weighing scheme introduced in ENet and defined as
wclass = 1

ln(c+pclass)
[9], where c is a hyper-parameter.

This hyper-parameter is set to be 1.02 for Cityscapes dataset
and 1.04 for CamVid dataset, therefore all class weights
are restricted in the interval of [1, 50] [9]. The SegNet
model uses median frequency balancing [27] where the per-
class weight is the median of all class frequencies divided
by each class’s frequency. They also use natural frequency
balancing which is equivalent to training without balancing
class weight. The accuracy varies when using different class
balancing techniques and the comparison results are shown
in Section IV.

IV. EXPERIMENTS AND RESULTS

The training is implemented using two NVIDIA GTX
1080 GPUs. With the image resolution of 512x256, it takes
around 40ms to learn a sample in USyd dataset and the model
can achieve an average of 20 fps without any optimization
during inference. The initial learning rate is set to be 5e-6,
the L2 weight decay is 2e-4 and the batch size keeps as 5
for all experiments. The training process adopts the idea of
5-fold cross validation and all fine-tuned results are averaged
in this section.

A. Class Balancing Techniques Analysis

The first experiment is to illustrate the influence of dif-
ferent class balancing techniques on segmentation accura-
cies using CamVid dataset [10]. The results in Table I
show slightly higher global accuracy when using natural
frequency balancing. This phenomenon can be explained
by the dominance of good estimation from large portion
classes such as ‘sky’, ‘tree’ and ‘road’. The class average

accuracies and the intersection of union (IoU) are improved
by using another two techniques as small portion categories
are balanced to have higher weights in the training set. The
accuracy can be further improved by augmenting the CamVid
dataset, which inspires us to evaluate the performance of
different data augmentations on our local dataset. The median
frequency balancing is utilized for the rest of the experiments
to eliminate the selection of hyper-parameter c in custom
class balancing.

B. Data Augmentation Analysis

The training dataset was expanded using data augmenta-
tion as illustrated in Figure 4. The model was firstly trained
on the Cityscapes dataset [12] and then fine-tuned on either
original USyd dataset or augmented USyd datasets.

From Figure 5, adding flipped or cropped images show
good improvements in most classes. These two algorithms
make considerable changes to the image structure so more
variations are introduced to the training set. Smaller im-
provements were observed for some of the blurred or noise
images, though in some cases the classifier performance
was worse. The ‘rider’ class was particularly affected by
the blur and noise, this was observed to be a result of
misclassification with the ‘pedestrian’ class. It is very chal-
lenging to distinguish cyclists from pedestrians after the
images are blurred or noised. The ‘fence’ category in our
specific local environment was often constructed as a solid
concrete wall, which was easily confused by the appearance
of buildings. This category shows significant improvement
after augmenting the dataset.

C. Qualitative Analysis of CNN Transferability

As shown in Figure 6, the primary model trained on
Cityscapes dataset is capable of performing an acceptable
level of classification for categories with common features
such as vegetations, roads, sky and vehicles. In our local
traffic environment however, there are more roundabout



Fig. 5: The influence of data augmentation algorithms on each class in USyd Dataset

(a) (b) (c) (d)

Fig. 6: Semantic segmentation results. Column (a) is selected image frames from several video sequences taken around
University of Sydney for testing. Column (b) is result images from model trained only on Cityscapes dataset. Column (c) is
fine-tuned results on USyd dataset with 150 images. Column (d) is fine-tuned on augmented USyd dataset with 750 images.
Red is for vehicles, white is for buildings, brown is for roads, green is for vegetations, blue is for sky, neon green is for
undrivable roads, yellow is for pedestrian and riders, cyan is for poles and sign symbols, gray is for fence and purple is for
misc or unlabeled pixels.

structures which are considered as ‘undrivable road’. Also,
pedestrians (students) usually appear in groups on/around
campus with their backpacks or handbags. The classification
of these two categories are enhanced after incorporating
USyd annotated data into our model. In addition, we had
a few frames from a nearby car park building. The results
show that even with a small amount of images (less than 10

car park images annotated), the segmentation accuracy can
be greatly improved.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a CNN architecture for se-
mantic segmentation trained for our particular urban environ-
ment. The performance of a neural network is task-specific



and models trained on publicly available datasets do not
always generalise for every scenario. Focused on our self-
driving vehicle application, we collected and annotated a
150-image dataset around University of Sydney to add train-
ing samples for features specific to our local environment.
With a small dataset, it is not sufficient to reliably train a
model from scratch. Therefore, we trained a primary model
on Cityscapes dataset and fine-tuned this model using our
local dataset.

Four data augmentation algorithms were implemented
to expand the training set. We measured the influence of
different data augmentation algorithms and found a greatly
improved classification performance for most classes. The
combination of multiple augmentation algorithms outper-
formed the single augmentation in most cases, though some
negative affects for certain algorithms were identified. In
general, it was determined that adding flipped or cropped
augmented images improved segmentation accuracy perfor-
mance much more than blurring or adding noise.

To optimize the process of training and fine-tuning, we
combined and modified the encoder and decoder of ENet
so that the fine-tuning can start and stop at any time. This
also reduced the computational cost for cross validation in
order to minimize the biased results towards any single
validation set. In general, by using transferred CNN features
and augmenting a small dataset, the accuracy of semantic
segmentation in local areas can be greatly improved.

For the next stage of this project, we plan to use the laser
point cloud data to constrain the accuracy of 2D semantic
segmentation and construct a 3D semantic map for local
areas. This will provide a robust information for navigating
and controlling our autonomous cars around University of
Sydney.
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