
Voice assistant for an autonomous vehicle
aimed at elderly

José Berriales-Mateos, Pablo Pardo-Decimavilla, Santiago Montiel-Marı́n, Miguel Antunes,
Ángel Llamazares, Luis M. Bergasa.

Abstract—In an era where autonomous vehicles are becoming
increasingly relevant, older age groups often encounter significant
technological barriers. This paper outlines the design of a voice
assistant tailored for an elderly audience, implemented within
an autonomous vehicle in view of the facilities provided by a
voice control method for elderly people. The system features
a modular structure composed of four key components: audio
capture using Voice Activity Detection (VAD) algorithms, audio
transcription and processing through Speech To Text (STT)
engines, response generation using a text generation engine based
on data obtained from the vehicle through Robot Operating
System (ROS) and various APIs that provide the car with
external information, and finally, a Text-To-Speech (TTS) engine
in charge of generating an auditory response. Additionally, a
user interface (UI) has been developed to further reduce the
generational digital barrier. Furthermore, the research includes a
comprehensive comparative review of current text generation and
speech synthesis technologies, with the proposed design validated
through simulations and tested by real users.

Index Terms—Voice Assistant, VAD, STT, text generation, TTS,
ROS, API, autonomous vehicles, user interface.

I. INTRODUCTION

NOWADAYS, the digital revolution has brought with it
a number of challenges for elderly. Older people often

face difficulties in controlling electronic devices, which can
lead to neglect and disinterest in acquiring new technological
skills. In many cases, this results in giving up the use of elec-
tronic devices and subsequent frustration [1]. In an age where
digitisation and automation are transforming all aspects of life
at an exponential rate, this disconnection with technology can
lead to an isolation of the older generations from the younger
ones.

This paper will focus on autonomous vehicles, benchmark
of current technologies advancements. The main objective is
to make the vehicle’s decisions explainable to the occupants,
regardless of their age, by simply asking verbal questions. In
this way, we aim to bring the elderly closer to this technology,
giving them a sense of control and security that would other-
wise be difficult to achieve. In addition, our solution would not

This work has been supported by the Spanish PID2021-126623OB-
I00 project, funded by MICIN/AEI and FEDER, TED2021-130131A-I00,
PDC2022-133470-I00 projects from MICIN/AEI and the European Union
NextGenerationEU/PRTR, PLEC2023-010343 project (INARTRANS 4.0)
from MCIN/AEI/10.13039/501100011033, and ELLIS Unit Madrid funded
by Autonomous Community of Madrid.

P. Pardo-Decimavilla, S. Montiel-Marı́n, M. Antunes, Ángel Llamazares
and L.M. Bergasa are with the Electronics Departament, University of
Alcalá (UAH), Spain.{pablo.pardod, santiago.montiel, miguel.antunes, an-
gel.llamazares, luism.bergasa} @uah.es

require any effort or training on the part of the users, which
will facilitate their adoption.

On the one hand, we will ensure that vehicle occupants
can receive useful information about the vehicle’s status, such
as speed, range, destination and upcoming decisions. On the
other hand, we will enable the occupants to obtain non-vehicle
related information, such as weather conditions or road status,
among others.

To achieve these goals, we will use a voice recognition
system that will convert questions asked verbally into text.
We will analyse the questions in search of a key word that
indicates the reference to launch the voice assistant. We will
generate an answer based on data obtained from the car and
various APIs that provide the car with external information.
Finally, through a TTS engine, we will generate an audio
response with the greatest possible speed and naturalness. The
main contributions of this work are:

• Development of a lightweight voice assistant for
resource-limited environments with real-time car commu-
nication and based on four main modules.

• Development of an operative user interface for car occu-
pants.

• Study and comparison of the main commercial solutions
for each module of the proposal in order to identify the
optimal ones.

• Testing of the developed voice assistant in a simulated en-
vironment with real users obtaining subjective feedback.

II. RELATED WORKS

A. Chat Bots
A chatbot is a conversational agent that interacts with users

in a given domain or on a given topic with natural language
phrases [2].

Recent studies indicate that text-based user interaction is no
longer attractive compared to other types of interaction such
as voice [3]. Over the last few years, voice chats have evolved
dramatically. Many chatbots have been deployed on Internet
for the purpose of education, customer service, site guidance,
or even entertainment functions. Existing famous chatbot
systems include Gemini, ChatGPT, Cleverbot or ALICE [4].

The operation of these systems is mainly based on four
stages. The first stage involves voice collection using voice
activity detection strategies. The second stage is responsible
for transcribing the voice to text. The third stage generates a
response in text to the user’s answer. Finally, the fourth stage
converts the answer text to audio. Next, a review of the state
of the art for each of these four stages will be conducted.



B. Voice Activity Detection (VAD)

A VAD is a key component in the field of speech signal
processing. Its primary function is to discern the presence of
speech activity within an auditory signal by classifying time
segments as speech or silence.

A large number of VAD algorithms have been proposed
over the years, among them, we can highlight those based
on periodicity [5] or those based on entropy [6], as they are
quite simple and efficient in terms of time. As a drawback,
these algorithms have to be adjusted for particular situations,
resulting in systems that do not adapt well to day-to-day
variable noise conditions.

Several systems based on complex statistical approaches
have been proposed to solve this problem: VAD using long-
term speech information [7], VAD based on a statistical am-
plitude distribution [16] and low-variance spectrum estimation
and adaptive threshold VAD [8], among others. The problem
found in these algorithms based on statistical models is that
they need to estimate the background noise and the configura-
tion of some parameters, making them a more flexible solution
than those mentioned at the beginning, but far from what we
would consider an ideal VAD.

In recent years, studies have been published with the aim of
solving the problem described in the previous paragraph from
the machine learning point of view [9].

C. Speak To Text (STT)

STTs are a key part of today’s technological ecosystem,
enabling the automated conversion of acoustic signals into
written text with increasing accuracy. This process involves
a complex amalgam of signal processing, language modelling
and machine learning algorithms, which have been the subject
of extensive study.

Based on this, several approaches to language comprehen-
sion have been given:

• Template-based: In this approach a collection of speech
patterns stored in a word dictionary [20].

• Rules-based: Based on linguistic, phonetic and spectro-
graphic information [10].

• Based on neural networks: Superior performance in
situations where training data is available and vocabulary
is limited is.

• Based on Dynamic Time Warping (DTW): Applied to
speech transcription, it is an algorithm that allows finding
the optimal match between two given sequences by time
warping them to match [11].

• Based on statistical modelling: In this approach, varia-
tions in speech are modelled statistically (e.g. based on
HMM) using training methods [14].
The main current commercial STT solutions are divided
into two categories: local and online. Locally, Whisper
[28] (from OpenAI) is a neural network-based solution
that provides high-quality transcription and offers five
different models. Vosk [26] is an engine designed for
embedded systems, while Kaldi is a toolkit for developing
such engines. In the cloud, there are solutions from main
cloud providers, Deepgram [27], a company focused on

developing these technologies, and OpenAI also offers an
API for Whisper.

D. Text Generation

The main objective of text generation is to automatically
learn an input-output mapping from the data to build a com-
prehensive solution with minimal human intervention. The first
approaches usually make use of statistical language models to
model the probability of the words [12].

Problems related to this approach led to the emergence of
deep learning techniques, which have dominated the main text
generation methods with great success. Despite their success,
they suffer from major performance problems, so in recent
years foundation pre-trained linguistic models as BERT or
GPT [13] have become more and more important. The basic
idea of these models is based on pre-training the models
in unsupervised environments and then tuning them to fit a
particular task.

A key point of these systems is their ability to provide
real-time information about the vehicle’s status or external
information of interest to the occupants. This topic will be
addressed in this project using the Robot Operating System
(ROS) and various APIs.

E. Text to Speak (TTS)

Speech synthesis consists of converting natural language
text into sound by faithfully imitating a human voice. Main
methods for speech synthesis are:

• Concatenative synthesis: Based on the general combi-
nation of pre-recorded audio segments, achieving high
quality voices [21].

• Formant synthesis: Phonation, frequency and noise are
varied over time by this model to generate an artificial
voice, resulting in a robotic voice [22].

• HMM Synthesis: the frequency spectrum, the funda-
mental frequency and the speech duration are modelled
simultaneously based on HMM [14].

• Deep learning-based synthesis: By combining natural
language processing techniques and deep neural net-
works, high quality audios are obtained [15].

Main modern architectures of TTS engines are:
• WaveNet: This architecture is based on dilated convolu-

tional layers, which allow capturing long-term temporal
relationships in the audio signal by gradually expanding
the receptive field without exponentially increasing the
number of parameters. It is an autoregressive model,
meaning it predicts the next audio sample conditioned on
the previously generated samples, allowing it to capture
long-term dependencies and generate high-fidelity audio
[23].

• Tacotron: Consists of two main components: an encoder
that converts the input text into a latent context represen-
tation and a decoder that generates the audio waveform
based on this representation [24].

• Deep Voice: This architecture consists of two main
stages: text encoding and audio synthesis. In the text



encoding stage, a recurrent neural network is used to
convert the input text into a latent representation that
encapsulates the semantic and contextual information of
the text. Subsequently, this representation is fed into a
generative network, such as a convolutional or recurrent
network, in the audio synthesis stage, with the aim of
generating the audio waveform corresponding to the given
text [25].

III. METHOD

A. Problem Formulation

Our voice assistant is part of the HMI(Human Machine
Interface) module of an Autonomous Driving (AD) stack
architecture developed by the Robesafe research group [19]

Majority of its communications are through ROS, and also
has a 4G module in the vehicle providing it with Internet
connectivity.

The goal is to develop a car-user voice communication
system capable of reading and writing to the relevant ROS
nodes, and receiving information from external APIs to pro-
vide the answers to the user’s questions with as much quality
information as possible in the shortest possible time, imitating
a natural conversation and using state-of-the-art techniques.

B. Our Approach

The aim of the system is to allow vehicle occupants to make
a spoken request to the car at any time and for it to respond
appropriately by voice. To make this possible we propose the
architecture depicted in Fig.1.

The audio inside the vehicle will be continuously analysed
with a machine learning VAD and the audio will be collected
only when voice is detected. After the audio is extracted, it will
be processed to obtain its associated transcript and validate the
existence of a keyword that triggers the rest of the system.

Once a predefined keyword has been detected, the assistant
will extract information from the car’s sensors, such as speed,
steering wheel angle or the status of the decision-making
module via ROS (the architecture’s main communications
protocol). In addition, through various APIs (TomTom, Open
Street Map and Open Weather), non-vehicle information such
as nearby incidents, road information or weather status is
obtained.

All this information is placed at the disposal of a powerful
text generation engine that will interpret and generate a natural,
coherent and relevant response to the user’s question with the
information provided.

The initial audio input will be processed by an STT engine
to be able to work with it in text format, and the text output
from the text generation model will be fed into a TTS model
that converts the text into an audio file that can be played by
the vehicle’s multimedia system.

Given that this is a real-time system that forms part of a
vehicle, in the study of possible solutions for each of the
modules presented in the next section, the speed, the resources
necessary for their operation and the quality/naturalness they
offer will be highly valued, these being key factors in provid-
ing the user with the best possible experience.

C. prompt Engineering

Prompt engineering is a challenging yet crucial task for
optimizing the performance of large language models on
customized tasks [16]. The quality of prompts is crucial
to maximise the potential of these models, influencing the
accuracy, relevance, efficiency and safety of the generated
responses.

In our context of a voice assistant for an autonomous
vehicle, Prompt Engineering is essential to properly inter-
pret user responses, sensor data and APIs. By using well-
designed prompts, the system can better understand the user’s
instructions, process information from the vehicle’s sensors
and access external data through APIs to make informed
decisions.

In the proposed architecture, this type of practice is of great
importance due to the large amount of information that will be
fed to the text generation engine. As mentioned above and as
will be discussed in later sections, the selected text generation
engine will be as close to the state of the art as possible and
prompt engineering will be a key factor in the tuning of the
system so that it only displays the desired responses. The
next section will outline how have been implemented these
techniques in a combined way to the selected text generation
engine.

IV. EXPERIMENTS

This section will detail the various experiments to which
the different alternatives available for the modules of the
architecture detailed above have been subjected.

A. Speak To Text (STT) Engine

For speech capture from inside the vehicle cabin, the parallel
execution of a microphone and a VAD has been developed.
This means that the speech transcription engine does not have
to process audios periodically but will only process audios
when speech is detected and for the duration of the speech,
drastically reducing the load and allowing us to opt for less
powerful engines that do not have the ability to detect speech
in the audio fragment.

TABLE I
AVERAGE RESPONSE TIMES IN SECONDS OBTAINED TESTING SELECTED

SPEECH TRANSCRIPTION ENGINES AS DESCRIBED.

Model Variant Results Results
Clean audios Noisy audios

Whisper Tiny 0.257 0.255
Base 0.291 0.299
Small 0.310 0.293

Medium 0.515 0.520
Large 0.728 0.714

Google Cloud STT API 1,199 1,313

Deepgram API 1,554 1,444

Vosk US Model 0.603 0,749

On this basis, VOSK, Whisper (in all its variants), Google
Cloud STT and Deepgram APIs have been tested for this
purpose. They have been subjected to 100 samples of clean



Fig. 1. Proposed architecture

audio and another 100 samples of the same audio but with
white noise simulating the possible noise in the passenger
compartment of the moving vehicle. In both cases, the re-
sponse time and the resources required for each of them have
been measured.

The local engines (Vosk and Whisper) have been tested
on two different setups, in order to see the variation of
the response time depending on the available computational
power. A first setup consisting of an AMD Ryzen 7 5800X3D
CPU, 32GB of RAM and a Nvidia RTX 4070 GPU with 12GB
of VRAM and a second, more basic setup with an Intel I7-
10500U CPU, 32GB of RAM and a MX330 GPU with 2GB
of VRAM.

In local tests, it has been observed that Whisper’s resource
consumption is very high in terms of VRAM, to the point that,
in the larger models, running a process in parallel is unfeasible.
It is impossible to run Whisper medium and large on the setup
with the MX330. Meanwhile, VOSK, being oriented towards
embedded devices, offers slightly worse performance at the
cost of minimal resource consumption exclusively on the CPU.
Given that the audio transcription process will be repeated
multiple times during the execution of the program, it has been
considered that it would be optimal to incorporate an engine
with a low response time and low resource consumption.
In addition, the local execution of the programme has been
positively valued in order to provide answers and warn the
user even when there is no internet connection. With the results
obtained in Table I, it has been decided to implement VOSK
as it offers a very high transcription quality at a good response
speed and with much less resources than Whisper [29].

B. Text generation
In order to be able to generate complex answers to any type

of user question, the implementation of large LLMs is being
studied. To find the optimal implementation, two approaches
have been studied: locally or through an API of a cloud
service.

For the local models, Falcon 7b, Wizard 7B, 13B snoozy
and mistral 7B have been tested. For the cloud-hosted models,
all the models supplied by OpenAI have been tested. Unfor-
tunately, they could not be compared with Gemini as it is not
yet available in the region where this study was carried out.

In a similar way as described in the previous section (200
continuous questions), each of the solutions proposed above

has been tested to get a clear view of the resource consumption
of each model and the average response time.

Table II shows the results obtained with the setup consisting
of the Ryzen 7 and the RTX 4070. It should be noted that
when making a large number of requests to the free OpenAI
API, this imposes a delay between requests due to a maximum
number of tokens available; to overcome this, a premium tier
of the API has been used to obtain the real result without
restrictions.

TABLE II
AVERAGE RESPONSE TIMES IN SECONDS OBTAINED TESTING SELECTED

TEXT GENERATION ENGINES AS DESCRIBED.
L: LOCAL C: CLOUD API

Model Type Results

Gpt 4o C 2.46

Gpt 4 Turbo Preview C 11.60

Gpt 4 Turbo C 8.32

Gpt 3.5 Tubo C 2.17

Mistral7b L 13.89

Falcon 7b L 16.97

Snoozy 13b L 25.04

Wizard 7b L 29.46

As can be seen from the results, the response time of the
local systems is too slow compared to the APIs, showing a
significantly lower response maturity. Based on this, an API
has been implemented and to overcome the possible problem
of lost connectivity and not leaving the user without feedback,
a series of predefined messages will be created to warn the
user of the status of the vehicle while trying to recover the
connection.

The selected OpenAI API model is GPT-4o for its incredible
message understanding and naturalness of response despite
being slightly slower than its predecessor GPT-3.5-turbo.

When using an engine of considerable power, the prompt
engeening becomes very important. A prompt has been de-
signed that will divide the input of our text generation system
into three different stages and configure two types of outputs
enabling the engine to execute pre-programmed functions.

Input:
• CAR DATA: Contains in json format all the information

related to the vehicle sensors.



• EXT DATA: Contains information external to the vehi-
cle, obtained through APIs.

• USR QST: Contains the transcription of the request
made by the user.

Output:
• ANS: The answer generated by the text generation engine

is received.
• ./: Similar to a bash command, a pre-programmed func-

tion execution pattern is established. It makes sense in
the interaction with the vehicle in the user-to-car sense
(e.g.: ./start route).

C. Text To Speech (TTS) Engine

Two solutions have been considered for voice synthesis,
the inclusion of a local TTS engine or the use of an API
in the cloud. Based on the studies carried out in the previous
sections, the solutions that are really implementable in the
vehicle must necessarily be very light in terms of requirements
for their execution. The only possible local solution resides in
Festival [17]. In case of APIs, any of them can work perfectly
well over a 3G/4G/5G connection due to their low resource
usage. However, these implementations mean that in situations
where the connection is unreliable the system can be severely
affected.

Based on the decision taken with respect to the text gen-
eration engine, in times of disconnection of this engine, the
inputs will not be received, so no response will be generated,
making there is no text to synthesise. To solve this problem,
it has been proposed to use WaveNet hosted in the Google
Cloud to synthesise the voice, providing the assistant with
great realism. In disconnection situations, as the STT runs on
the system’s hardware, it is able to detect that the user has
asked a question, and a standard response indicating the lack
of connection will be played by Festival without cutting off
communication with the user.

Festival offers a far from ideal experience, which is why it
will only be used in emergency situations when the connection
is lost.

D. User interface

In addition, a user interface inspired by instant messaging
applications has been developed to give the user the ability to
have a conversation history at a glance.

As shown in Fig. 2, the assistant is able to acquire values
from both the vehicle’s sensors and external sources through
APIs, responding to the user in a coherent and relevant manner.

E. Data recollection and system implementation

As described before, the communication of the vehicle
modules is done through ROS. For the communication our
system will have a process in charge of subscribing to the
different ROS topics and refreshing some shared memory slots
which will be used by a function that generates the json
described above.

The sending of messages, in a similar way, is done at the
request of the speech generation engine. When it generates the

Fig. 2. User interface

specific command, a code function is executed that publishes
the data specified by the text generation engine. In this way,
real-time communication with all sensors in the vehicle is
achieved.

The implementation of the AD architecture developed by
the RobeSafe group is based on containers and virtualised
networks. Each module runs in a separate container inter-
connected by a virtualised network. This allows the voice
assistant as such to run in a separate container connected to
the virtualised ROS network, making it easy to activate and
deactivate without affecting the rest of the system.

The container in turn will have a multiprocess structure,
one process will be dedicated to the collection of data from
the car sensors at (10Hz) with the rospy library. Given the
high frequency at which the sensor variables will be refreshed,
it has been decided to raise the voice assistant code in a
different process. The communication between both is done
through shared memory slots generated with the multiprocess-
ing library. Furthermore, the architecture (see Fig. 3) has been
designed in this way to be able to perform as many tasks in
parallel as possible in order to optimise the response time.

The process in charge of the voice assistant is divided
into several threads as it is depicted in Fig. 3. The first
thread is in charge of recording and storing the voice data.
This thread stores in a temporary folder the audio results
that are processed by the STT engine in order of arrival.
A second thread contains the STT engine, which remains
loaded but always inactive as long as a semaphore does not
enable it. This second semaphore is enabled by a third thread
that thanks to the watchdog library monitors the temporary
folder activating the semaphore when there are files to be
processed. In this way, no resources are wasted maintaining
a constant polling on the folder and the maximum possible
speed is practically maintained. This second thread, once it
has correctly processed the audio, generates a transcript that
is directly forwarded to the text generator engine. The text
generator engine, although not defined within a thread, has
been defined within an environment of the decorator timeout
library limited to 4 seconds. In this way it executes the function
inside a thread that when exceeding 4 seconds generates a
timeout exception. Since in Python the main thread is the
only one that can receive signals, this second thread has been



Fig. 3. Implementation diagram.

established as the main thread. Finally, when the response from
the text generation engine has been obtained, a request is made
to the Google Cloud TTS API, which returns the audio with
the synthesized response. To play the audio, a subprocess is
started that executes the command aplay audio.wav so that the
audio can be played through ALSA, a framework of drivers
and software utilities for managing audio on Linux systems,
and the user can continue listening to it at the same time.

F. Simulation results

The CARLA (Car Learning to Act) simulator [18] is an
open source simulation platform for research and development
in the field of autonomous vehicles.

The complete AD architecture developed by the RobeSafe
group is perfectly integrable with this simulator and with the
Rviz software to show results. To test the developed voice
assistant, it has been incorporated into the simulator as a
module of the architecture. Through this, the destination of
the route to be taken by the vehicle can be established. Figure
5 shows a view of Rviz, where the ”way points” (blue points)
generated by the planner between the vehicle’s current location
and the final position provided by the voice assistant are
displayed.

In order to test the voice assistant in a holistic way, 10 users,
aged between 50 and 80 years, had the opportunity to use it
by establishing a route and asking questions while the vehicle
moved autonomously in the simulator. After the test, each
of them answered a questionnaire to evaluate the subjective
performance of the tool. Results are shown in Table III.

The results are really good, obtaining an overall satisfaction
value of 7.8 and some really high scores when it comes to
assessing the naturalness and ease of adaptability. The results
are also remarkably good when it comes to evaluating the
quality of the feedback information.

TABLE III
AVERAGE SCORES FROM USER FEEDBACK ON VOICE ASSISTANT

PERFORMANCE.

Question Average Score

How would you rate the voice assistant’s
comprehension? 6.8

How would you rate the answers to the
formulated questions? 8.0

In terms of speed, how much does it
resemble a conversation between two people? 4.2

How natural does the voice of the
assistant sound? 9.4

If you have tried to set a destination,
has the destination been set correctly? Yes (100%)

How complex was your process of
adapting to the voice assistant? 2.7

Would you implement a voice assistant
like this in your own vehicle? Yes (90%)

How do you rate the quality of the
non-vehicle-related information
provided by the voice assistant? 7.25

How do you rate the quality of the
vehicle-related information provided
by the voice assistant? 7.6

Do you consider a voice assistant
necessary in autonomous vehicles? Yes (100%)

Overall satisfaction with the
voice assistant 7.8

Fig. 4. Rviz Software

The lowest result is obtained when the user is asked to
compare the speed of the assistant with that of a normal
conversation, making it clear that this is an area where further
progress can be made.

V. CONCLUSION

A modular architecture of a voice assistant has been de-
veloped for interaction with the occupants of an autonomous
vehicle, targeting an elderly audience in order to reduce the
acceptance barrier of this technology. The interaction method
has been established as purely oral, making it close to a natural
conversation between humans making it significantly easier to
interact with the vehicle for the target audience.



The developed system consists of 4 distinct stages that have
been carefully designed to provide the best user experience.

Initially, all the audio produced inside the vehicle is pro-
cessed. Specifically, thanks to a VAD algorithm, the audio
coming from the voice of the vehicle occupants can be
discerned from other sounds. The next stage carries out the
transcription of the audio and its processing. As this stage
is performed for each audio sample that is recorded, it has
been chosen to implement a fast and lightweight solution that
runs locally to save processing time. The chosen solution
is the STT VOSK engine for its speed, accuracy and low
requirements. Once the audio transcript is obtained, it is
analysed for a keyword indicating that the user is conversing
with the vehicle’s HMI.

After processing the audio, a stage of data collection and
generation of a response to the user input is launched. Through
ROS the system is able to communicate with all the vehicle’s
sensors and by making use of certain APIs it is able to obtain
information external to the vehicle through the Internet via
a mobile phone connection. The generation of the response
is handled by a text generation engine. After an in-depth
study of the available alternatives, it was decided to use the
GPT 4o model of the OpenAI API due to its great natural-
ness, maturity of the responses and speed. This model, when
properly configured, allows the generation of very precise
text responses and even interacts with the code by executing
previously developed functions that allow actions such as the
establishment of routes, etc., to be executed.

Finally, in the same stage, the text response is processed
in a TTS engine generating an audio reproducible through
the vehicle’s multimedia system. For this module, several
alternatives have been considered and several algorithms have
been studied, but taking advantage of the fact that our text
generation engine is in the cloud, we have finally opted for a
TTS based on wave-net that offers a voice indistinguishable
from a real one through an API in Google Cloud.

The proposed assistant is a robust, accurate and fast system
that interacts with the user orally in times very close to those
of a normal conversation. In addition, it allows access to
vehicle information and even external information of interest
to vehicle occupants.

It has been configured so that routes can be established
completely orally. In addition, speed and resource consump-
tion have been prioritised to make it lightweight and provide
the best possible experience. In this way, the aim is to improve
the acceptance of the technology by the general public and the
elderly in particular.

The system has been validated in a simulator while the
vehicle drives autonomously in an urban environment. The
opinion of several users on the functionality of the tool has
been collected by means of a questionnaire and the results
obtained have been provided, achieving a 7.8 out of 10 in the
degree of satisfaction with the voice assistant in general.

REFERENCES

[1] D. Segarra Las nuevas tecnologı́as, ¿nuevo factor de exclusión social?
Cuenta y razón del pensamiento actual, ISSN 0211-1381, Nº 135, 2004,
pags. 33–37

[2] Huang, Jizhou and Zhou, Ming and Yang, Dan ”Extracting Chatbot
Knowledge from Online Discussion Forums.” Ijcai, 2007, pags. 423–428

[3] A. A. Kurniawan, W. E. Fachri, A. Elevanita, Suryadi and R. D.
Agushinta, ”Design of chatbot with 3D avatar, voice interface, and facial
expression,” 2015 International Conference on Science in Information
Technology (ICSITech), Yogyakarta, Indonesia, 2015, pp. 326-330, doi:
10.1109/ICSITech.2015.7407826. ,

[4] Wanda Dann, Stephen Cooper, and Donald Slater. 2013. ”Alice 3.1
(abstract only)”. In Proceeding of the 44th ACM technical symposium on
Computer science education (SIGCSE ’13). Association for Computing
Machinery, New York, NY, USA, 757.

[5] Tucker, R. (1992). ”Voice activity detection using a periodicity measure.”
IEE Proceedings I (Communications, Speech and Vision), 139(4), 377-
380.

[6] Renevey, P., & Drygajlo, A. (2001, September). ”Entropy based voice
activity detection in very noisy conditions.” In INTERSPEECH (pp. 1887-
1890).

[7] Ramırez, J., Segura, J. C., Benıtez, C., De La Torre, A., & Rubio, A.
(2004). ”Efficient voice activity detection algorithms using long-term
speech information.” Speech communication, 42(3-4), 271-287.

[8] Tanyer, S. G., & Ozer, H. (2000). ”Voice activity detection in nonsta-
tionary noise”. IEEE Transactions on speech and audio processing, 8(4),
478-482.

[9] Zhang, X. L., & Wu, J. (2012). ”Deep belief networks based voice
activity detection.” IEEE Transactions on Audio, Speech, and Language
Processing, 21(4), 697-710.

[10] Al-Issa, Suhad & Alshboul, Mohammad & Al-Ayyoub, Mahmoud.
(2023). ”Enhanced Neural Speech Recognizer for Quranic Recitations.”
62-66. 10.1109/MCNA59361.2023.10185668.

[11] Gaikwad, Santosh & Bharti, W.Gawali & Yannawar, Pravin. (2010).
”A Review on Speech Recognition Technique.” International Journal of
Computer Applications. 10. 10.5120/1462-1976.

[12] Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek,
F., Lafferty, J., ... & Roossin, P. S. (1990). ”A statistical approach to
machine translation.” Computational linguistics, 16(2), 79-85.

[13] Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). ”Pre-
trained models for natural language processing: A survey.” Science China
technological sciences, 63(10), 1872-1897.

[14] Kireev, N., & Ilyushin, E. (2020). ”Review of existing text-to-speech
algorithms.” International Journal of Open Information Technologies,
8(7), 84-90.

[15] Kumar, Y., Koul, A., & Singh, C. (2023). ”A deep learning approaches
in text-to-speech system: a systematic review and recent research per-
spective.” Multimedia Tools and Applications, 82(10), 15171-15197.

[16] Ye, Q., Axmed, M., Pryzant, R., & Khani, F. (2023). ”Prompt engineer-
ing a prompt engineer.” arXiv preprint arXiv:2311.05661.

[17] Festival Official Website: https://www.cstr.ed.ac.uk/projects/festival/
[18] CARLA Official Website: https://carla.org//
[19] Gómez-Huélamo, Carlos and Diaz-Diaz, Alejandro and Araluce, Javier

and Ortiz, Miguel E and Gutiérrez, Rodrigo and Arango, Felipe and
Llamazares, Ángel and Bergasa, Luis M. (2022) ”How to build and
validate a safe and reliable Autonomous Driving stack? A ROS based
software modular architecture baseline.” 2022 IEEE Intelligent Vehicles
Symposium (IV), 1282–1289.

[20] , Naima Zerari , Bilal Yousfi and Samir Abdelhamid. (2016) ”Automatic
Speech Recognition: A Review ”. 63-68.

[21] Khan, R. A., & Chitode, J. S. (2016). ”Concatenative speech synthesis:
A review.” International Journal of Computer Applications, 136(3), 1-6.

[22] Lukose, S., & Upadhya, S. S. (2017, January). Text to speech
synthesizer-formant synthesis. In 2017 International Conference on
Nascent Technologies in Engineering (ICNTE) (pp. 1-4). IEEE.

[23] A. van den Oord, Y. Li, I. Babuschkin et al., Parallel WaveNet: Fast
High-Fidelity Speech Synthesis, 2017. arXiv: 1711.10433

[24] Y. Wang, R. Skerry-Ryan, D. Stanton et al., Tacotron: Towards End-to-
End Speech Synthesis, 2017. arXiv: 1703.10135

[25] W. Ping, K. Peng, A. Gibiansky et al., Deep Voice 3: Scaling Text-to-
Speech with Convolutional Sequence Learning, 2018.

[26] Vosk official Website, https://alphacephei.com/vosk/.
[27] Deepgram official website, https://deepgram.com/.
[28] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey e I. Sutskever,

Robust Speech Recognition via Large-Scale Weak Supervision, 2022.
[29] Rostislav Kolobov and Olga Okhapkina and Olga Omelchishina and

Andrey Platunov. ”MediaSpeech: Multilanguage ASR Benchmark and
Dataset”. 2021


