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Abstract—Automated vehicle detection is a research field in
constant evolution due to the new technological advances and
security requirements demanded by the current intelligent trans-
portation systems. For these reasons, in this paper we present
a vision-based vehicle detection and tracking pipeline, which
is able to run on an iPhone in real time. An approach based
on smartphone cameras supposes a versatile solution and an
alternative to other expensive and complex sensors on the vehicle,
such as LiDAR or other range-based methods. A multi-scale
proposal and simple geometry consideration of the roads based on
the vanishing point are combined to overcome the computational
constraints. Our algorithm is tested on a publicly available road
dataset, thus demonstrating its real applicability to ADAS or
autonomous driving.

I. INTRODUCTION

In 2014, more than 25, 700 people died on the roads of

the European Union [1]. Studies about accident causation,

like NHTSA’s [2], attribute 94% of accidents to driver-related

reasons, such as distraction or inattention. Therefore, research

and development of prevention measurements focused on

drivers is essential for reducing fatality on the roads.

In this direction, researchers and manufacturers have sig-

nificantly progressed in the development of algorithms and

systems that are able to perceive the vehicle environment with

inference capabilities that are close to human ones. On the one

hand, systems that learn about the static environment (i.e. road

markings, traffic signs) have been studied in the state of the art

with remarkable results [3]. On the other hand, the dynamic

environment (i.e. pedestrians, vehicles) is still a challenging

aspect, due to the high variability of the objects to be avoided.

Over the last decades, sensors like RADAR and LiDAR

have been widely studied as a solution to this problem.

However, the high cost and space constraints of these sensors

have situated computer vision as one of the most common

alternatives [4]. Cameras have become cheaper, smaller and

of higher quality than ever before. In addition, computational

costs associated with computer vision have been reduced due

to the improvements in processing units.

Specifically, today smartphones have the computing capabil-

ities of a full computer from few years ago and a high market
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Fig. 1. DriveSafe App running in a real environment.

penetration. These devices provide good embedded units to

solve computer vision problems because of their integrated

cameras and their powerful processing and communication

capabilities. That is why in the last years there has been an

active work on using smartphones as a low-cost platform for

monitoring and assisting drivers.

In previous work [5], authors introduced DriveSafe, a smart-

phone app that detects and alerts inattentive driving behaviours

by making use of the camera, microphone, GPS, and inertial

sensors. This supposes an affordable way to provide safety

features that are normally only available in top-end vehicles.

With the aim of expanding the analysis about dangerous

behaviours (e.g. tailgating), we present an algorithm for ahead

vehicle detection and tracking that is integrated in DriveSafe

application (see Fig. 1). Our proposal is based on a multi-

scale approach that takes into consideration the road geometry

to overcome the computational constraints. The algorithm

is evaluated on a publicly available motorway dataset [6],

demonstrating its viability for Advanced Driver Assistance

Systems (ADAS) and autonomous driving applications.

II. RELATED WORK

Vision-based object detection has been widely studied over

the last years. One of the key works that supposed a break-

through is the Viola-Jones algorithm [7], which is based on a

sequential classifier with Haar-like features that demonstrated

real-time performance on the face detection problem. Since

then, researchers have proposed several approaches based on

multiple classification algorithms (SVM [8], AdaBoost and

variants [9], [6]) and varied features (Haar [10], LBP [6],

HOG [8], ICF [9] and ACF [11]).
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On the specific research area of vehicles, detection in static

images is a widely studied topic. The recent appearance of

vehicle-annotated motorway datasets (i.e. LISA [12] and TME

Motorway [6]) has allowed to evaluate detection performance

on real driving environments. Thus, performance is measured

not only as a theoretical amount of true positives in a set

of images but as real execution in a dynamic motorway

environment, where tracking and filtering techniques are as

important as detection.

In this way, there have been several recent works that have

focused on developing improved tracking algorithms by mak-

ing minimal changes to the Viola-Jones detection framework.

Particle Filtering (PF) has been a widely used technique. An

example based on PF is [13], which proposes a full integration

between lane and vehicle tracking modules to complement

each other. In [6], an algorithm based on Flock of Trackers

and a Learn and re-detect module is implemented following

TLD method (Tracking-Lerning-Detection). The work in [14]

proposes the use of a Probability Hypothesis Density (PHD)

filter to track features detected within the bounding box of the

vehicle, with some pruning techniques to counteract the high

computational requirements of the filter.

Additionally, the motorway environment allows to apply

expert knowledge from the road. Several works focus on

applying geometrical constraints, mostly to satisfy real-time

requirements by pruning the detection search window. For

instance, methods like [8] implement an adaptative coarse-

to-fine object search to restrict possible scan-ROI positions.

This work also applies a multi-scale feature preprocessing

stage to award more resolution to distant ROIs and reduce

processed pixels over 50%, similarly to what is done in the

present work. The approach in [9] proposes reducing scales

per octave depending on uncertainty from tracked object and

giving computation priority to near vehicles. Both works use

variants of AdaBoost that early reject regions with low object

probability: Boosted Cascade in [8] and Soft-Cascade in [9].

With the aim of satisfying both computational and detection

requirements, we combine multi-scale approaches with low-

computational tracking methods. Simple considerations of the

road geometry are taken into account by means of a lane

detector. The result is an efficient algorithm that is suitable

for smartphones. At the end of the document, it is evaluated

on a motorway dataset to prove its performance on a real

environment.

III. SYSTEM DESIGN

This work is focused on developing a vehicle detection

and tracking algorithm suitable for smartphones. Hence, a key

aspect in the system is the computational efficiency. As seen

in the state of the art, scanning a full image with a classifier

is an expensive operation. Thus, applying knowledge from the

road geometry to prune the search window is more efficient

than scanning the image by brute force. Considering any road

environment, vehicles in the scene may either appear from

behind as near vehicles (if they move faster than us) or either

be approached from far (if they move slower than us or they

Fig. 2. Full system diagram. DA, OF, and EKF stand for Data Association,
Optical Flow, and Extended Kalman Filter respectively.

are in the opposite direction lane). With this assumption, we

propose a multi-scale approach that optimizes the discovery of

new vehicles by making use of different detection windows.

The detection can be divided into three main stages, as can

be seen in Fig. 2. They are based on an AdaBoost classifier.

Firstly, a large image patch with low resolution is scanned

by the detector to mainly discover near vehicles (Sec. III-A).

Secondly, a small image patch in the surroundings of the

vanishing point is scanned at a higher resolution in order to

discover far vehicles (Sec. III-B). Thirdly, the detector scans

specific image patches corresponding to previously discovered

vehicles in order to reaffirm detections and to cover those that

do not fit in the near nor the far scan windows (Sec. III-C).

Fig. 3 shows a video-frame where each of the stages is relevant

to perform the detection of a specific vehicle in the scene.

Data association between detections in each frame and their

corresponding tracked candidates is decided by a simple over-

lapping formula (Sec. III-D). Position estimation is enhanced

with Optical Flow (Sec. III-E). Tracking is performed by an

Extended Kalman Filter (Sec. III-F). Lane detection (Sec.

III-G), which is performed by DriveSafe App, is seized to

enhance the detection by providing estimated distance to the

car and road vanishing point.

The whole implementation is oriented towards simplicity in

order to fulfil real-time constraints. Thus, the input image is

reduced to 640x480, from which all detection windows are

extracted. All stages are performed in every frame.

A. Detector 1: Near window

In this stage, the image resolution is resized to a half

resolution (320x240). This extremely reduces computational

cost in the AdaBoost detector, although it has two negative

consequences. Firstly, the detector recall rate is reduced for

vehicles that are farther than a distance (≈30m), as the lower

resolution diffuses the vehicle features. Secondly, the training

process is done with a fixed model size (20 pixels in our case),

so the objects with a pixel width lower than this threshold will

not be detected by the classifier. Therefore, the function of this

detection ROI is only to detect near vehicles, leaving those that

are further than 30 meters to the intermediate or far window.
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Fig. 3. [Best viewed in color] Example of the three vehicle detection stages
working. Green boxes represent detections, blue the near-window, red the
far-window, yellow the intermediate window (vehicle-specific) and the points
depicted in blue in the vehicle of the left represent Optical Flow.

Additionally, the sky is filtered out to avoid unnecessary

computation. Considering that the camera will be perpen-

dicular to the ground, the horizon provided by DriveSafe is

approximately situated at half of the image. With the aim of

leaving a margin for near cars or trucks, only about 30% of

the top is removed. About 20% of the bottom of the image

is also removed in order to avoid the car bonnet (estimated

by DriveSafe) and a small part of the nearby road that does

not affect detection. Thus, a total of around 50% of the

vertical size of the image is removed, reducing considerably

the computation cost of this stage.

B. Detector 2: Far window (zoom)

The far window covers the deficits of the previous stage

for detecting distant vehicles. Thus, a small patch is extracted

from the input image in the neighbourhood of the vanishing

point, which is provided in our system by the lane detector

module of DriveSafe (Sec. III-G). This approach using the

vanishing point of the image supposes an improvement over

using a fixed window in the half of the image in cases of

curved roads.

The size of this window must be small enough to have

a light computational cost and large enough to fit most far

vehicles Therefore, this size is experimentally set to 500x110

pixels (see red rectangle in Fig. 3).

Considering that this far window is overlapped within the

near one, this region will be scanned twice by the detection.

Thus, some vehicles could be detected by both detectors. In

these cases, the score of the AdaBoost detector (a weighted

sum of the weak classifiers) is used to determine which of

both detections is predominant.

C. Detector 3: Intermediate window

Once a vehicle has been discovered by any of the previous

windows, a third detection is performed on the surroundings

of the last position of the car. This ensures re-detection

independently of road position, covering intermediate areas

where the other windows have deficiencies. Thus, it reaches all

those vehicles that have moved far enough to not be correctly

detected by the near window but are not far enough to fit inside

the far window.
The intermediate window is vehicle-specific. It is focused

on the surroundings of the previously known vehicle position.

An extra size is given by a margin of half the width and height

on each of the sides of the previously detected bounding box.

The image used to extract this window is the full 640x480

one. As it will be seen in Sec. IV-C, the computing cost of

this window is extremely low.

D. Data association
In order to associate new detections in the current frame and

tracked candidates, an overlap matrix is computed as follows:

overlap =
area(BBi ∩BBj)

area(BBi ∪BBj)
(1)

where BB is the bounding box of new vehicle i and tracked

candidate j. Vehicles are associated if the overlap is higher

than a certain threshold.
When a new vehicle is discovered and it does not overlap

with any previous candidate, it is saved as a new candidate if

it is detected by either the near-window or the far-window at

least twice in the last three frames. This significantly reduces

false positives and avoids that these detections are kept in the

system by the tracking algorithm. When a candidate does not

have a new detection associated in the current frame, this is

moved using optical flow of local features.

E. Optical Flow
Local features from detected vehicles are used to enhance

tracking. On detection, a small image patch containing the

vehicle is saved. This image patch is used to compute features

that are searched in the next frame in the proximity of the last

known position. Thus, corners are computed by Shi-Tomasi

method and are tracked using the optical flow obtained by

Lucas-Kanade algorithm [15]. The median of the flow from

all found points is used to compute the vehicle motion, which

is used to correct the previously known position of an unpaired

candidate in the current frame. When less than ten points have

been tracked by the algorithm, the candidate is considered not

valid and removed. This step has low computational cost, as

the corner search happens only in a reduced region.

F. Extended Kalman Filter
Tracking is performed with an Extended Kalman Filter

(EKF). The pinhole camera model is used to set the following

3D states of each candidate: lateral position, longitudinal

position (distance to camera), vehicle width (detection pattern

is square), and their respective derivatives. 3D measurements

are calculated by the lane detection module of DriveSafe.
This filter is essential to keep a stable detection and avoid

the flicker produced when the detection is noisy or when there

is a change between windows in the multi-scale approach.

G. Lane detection
Lane detection is carried out by DriveSafe App to enhance

vehicle detection by providing road information. Reader may

refer to [5] in order to learn more about implementation.
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IV. RESULTS

A Gentle AdaBoost classifier is trained based on LBP. Haar

was also tested and demonstrated much slower performance

with no significant improvement. HOG, ICF and ACF were

discarded due to computational constraints. The classification

is performed on 20x20 pixel patterns. This defines the model

size, and thus the minimum vehicle width that can be detected

in the image. This value affects at the image resolution

used by the detector (640x480). In the charts, pixel values

are translated to 1024x768 for comparison with the original

dataset, so the minimum vehicle width is shown as 32 pixels.

All images used for the training are publicly available and

they correspond to a mixture between public datasets. Positives

are only obtained from GTI dataset [16], corresponding to

3425 images of rears of cars and trucks. Negatives are obtained

from multiple datasets: GTI [16], KITTI [17], Caltech Cars

(Rear) background [18] and GRAZ-02 [19] (only images of

background without cars), forming a total of 13868 negatives.

To the best of our knowledge, there are only two pub-

licly available vehicle-annotated datasets for motorway video

sequences: LISA Vehicle Detection [12] and TME Motor-

way [6]. The first includes 2 motorway sequences for a

total duration of one minute, while the latter is formed by

28 motorway clips for a total of approximately 27 minutes

(30000+ frames). We present the results on the larger one

(TME), as it allows evaluating the performance in a real

motorway situation. Recent works on vehicle detection have

presented results on it: [6], [8], [9] and [14] (this one only

presents results about tracking error). It contains two subsets:

“Daylight”, which is larger and its light conditions might be

more common in daily situations, and “Sunset”, which was

recorded in challenging conditions where the sun is low and

its light significantly affects visibility, allowing the evaluation

of the algorithm robustness.

A. Detection performance

In Figs. 4 and 5 we present the evaluation statistics collected

for the algorithm performed on the dataset. As explained in

[6], the dataset’s approximate ground truth (GT’) was obtained

from laser scans, hence the reliability limitation beyond 60-70

meters, when less than 3 laser reflections per vehicle become

available. The results are presented in the same format and

evaluation process as the original paper, for comparison.

Results show that precision remains over 90% for both

dataset subsets (Daylight and Sunset). Recall rate is over 95%

for near cars and it remains very high until 60m. The difference

in performance between trucks and cars corresponds to the

lower proportion of truck samples that is used in the training

set. Ideally, cars and trucks should be detected by different

classifiers due to the remarkable model difference, but this

would not be a computationally efficient solution. Thus, both

are used together to train the same classifier, which results in

an acceptable overall performance.

Despite the fact that the GT’ is less reliable over 60m, the

algorithm detection rate decays over this distance due to the

low resolution that is kept for computational constraints. Our

work is focused on providing high detection rates within a

reasonable distance. Ahead vehicles under 60m have the most

impact on driving behaviour, and are the ones to be utterly

considered by ADAS or autonomous driving algorithms.

As can be seen in Fig. 5, detection performance remains

similar in the more challenging “Sunset” subset. This demon-

strates that the algorithm is robust against light variations.

Additionally, further tests in a real driving environment have

also demonstrated robustness under severe rain conditions,

although we cannot provide quantitative results due to the lack

of ground truth.

B. Comparison with related works

The objective of this work was not to improve the detection

performance of an existing system, but obtain similar results

with state-of-the-art works, considering the smartphone com-

putational constraints. In Fig. 6, we show our results compared

to state-of-the-art methods that made use of this dataset: [8]

(Boosted Cascade + Haar + LRF + Road constraints), [6]

(WaldBoost + LBP + FoT) and [9] (SoftBoost + ICF).

As can be seen in Fig. 6a and 6c, the precision of our

algorithm is slightly lower than other results because high

recall has been preferred in the trade-off between precision

and recall, as we give more importance to detect all cars in a

range and noisy detections are easier to filter with further lane

analysis. Fig. 6b and 6d show that recall rate is higher than

other state-of-the-art works until 60m. Additionally, the results

for “Sunset” show that our algorithm is the least affected by

bad light conditions.

C. Computing performance

Table I shows the computation time for each of the modules

of the detection algorithm for three different devices (iPhone5,

iPhone6, and iPhone Simulator). The most expensive stage is

the far-window due to its high resolution, even though it covers

a smaller region. This demonstrates the advantage of multi-

scaling, as a single full-resolution window would be inviable.

The detector runs inside our DriveSafe application, simul-

taneously with the rest of its ADAS modules. The hermetic

character of iOS does not allow to isolate the application

from other unrelated background processes, so it was not

possible to guarantee full CPU dedication to the algorithm.

This produces a slight decay in the expected performance.

Nevertheless, it supposes a more realistic evaluation, since the

results obtained correspond to an application running in the

smartphone OS along with other several routines (e.g. call

management), which is the case for the average user.

These results represent the total time needed by one CPU

core to process one frame. Considering the camera has a

rate of 30 fps, not all frames are processed. In DriveSafe

App, the detection algorithm runs as a medium-priority thread

providing detections. From experimental tests in a motorway

environment, we have inferred that 5-10 fps is enough for a

robust detection performance. Running the algorithm on the

TME dataset with lower frame rates (5 and 10 Hz) by skipping

frames has also produced similar results to those presented in
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(a) Precision in function of width (b) Recall rate in function of width (c) Recall rate in function of distance

(d) All detections, grouped by width (e) All detections, grouped by distance (f) Representative image from subset

Fig. 4. [Best viewed in color] Detection algorithm evaluated on the “Daylight” subset of the TME Dataset. A grey box is placed over the chart region where
the GT’ is not considered reliable due to a laser limitation. Vehicle pixel width corresponds to a resolution of 1024x768, for comparison with original charts.

(a) Precision in function of width (b) Recall rate in function of width (c) Recall rate in function of distance

(d) All detections, grouped by width (e) All detections, grouped by distance (f) Representative image from subset

Fig. 5. [Best viewed in color] Detection algorithm evaluated on the “Sunset” subset of the TME Dataset.

Fig. 4 and 5. The worst case scenario are vehicles that overtake

or brake suddenly near the camera sides, thus producing the

largest motion in image pixels. Even in these cases, the relative

speed between the detected vehicle and the camera carrier has

to be immensely high to produce a loss in the tracking process.

Results are also provided for an iPhone 6 simulator run by

an Intel Core i7@2.2GHz processor for comparison with other

works. Although the simulator supposes a significant computa-

tional overhead and the algorithm would achieve higher frame

rates as a standalone code, it doubles the standardized real-

time rate of 30 fps. This demonstrates its portability to other

devices such as in-vehicle computers.

V. CONCLUSION

We have presented a vehicle detector and tracker that can

run in real time on an iPhone, in parallel with other ADAS

AVERAGE COMPUTATION TIME [ms]
Module iPhone 5 iPhone 6 Simulator (i7)

Near-window 48 26 6
Far-window 70 41 8

Intermediate-win. 6 4 1
Optical Flow 3 2 <0.5

Extra operations 5 3 <0.5
TOTAL 132 76 16

FPS 7.6 13.2 62.5

TABLE I
AVERAGE COMPUTATION TIME FOR DETECTION MODULES.

processes such as a lane detector. A multi-scale approach and

geometrical considerations have been used to overcome the

computational constraint. The result is a versatile algorithm

that can be implemented on any smartphone and performs well

on motorway environments without the requirement of large

training sets. Experiments on a publicly available motorway

dataset demonstrate that our detection performance is similar
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(a) Precision in function of width (Daylight subset)

� �� �� �� �� ���

���

���

���

���

���

���

#���

����

����




������	
�

�
�����


	


�
�
��

(b) Recall rate in function of distance (Daylight subset)
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(c) Precision in function of width (Sunset subset)
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(d) Recall rate in function of distance (Sunset subset)

Fig. 6. [Best viewed in color] Comparative charts of state of the art results for “ALL” (cars and trucks) between our approach (“Ours”), results presented in
[8] (“Gabb”), in [6] (“Caraffi”) and in [9] (“Castangia”). Results of Sunset subset are not available in [9].

to state-of-the-art works and it is robust against light changes.

Its low computational cost allows an efficient integration in

ADAS or autonomous vehicles.

Future work will involve producing a higher-level of driving

behaviour analysis based on the vehicle detection and the

techniques applied in [5]. Improvements of the detection and

tracking algorithm could be based on a higher integration

of the lane and vehicle modules to complement each other

in a more complex way. In addition, other preprocessing

stages could be added for minimizing issues associated with

shadowing or sunset conditions in vehicle detection, such as

the illumination invariance techniques presented in [20].
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