Real-time Road Tracking using Templates Matching
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Abstract

This paper describes a vision-based system for
autonomous navigation in outdoor environments. Road
tracking tasks are performed in the context of templates
matching. In order to achieve a high performance several
templates of road edges are precomputed and correlated
with the incoming image in real time. The resulting points
found by the algorithm are filtered using a least-squares
approach.

1 Introduction

One of the most challenging issues in the field of
autonomous navigation is road tracking in outdoor
environments. For many years, researchers building
mobile robots have concentrated on applications involving
hazardous environments. It has been clearly stated in the
last years that one of the most hazardous environments is
the automobile expressway. The problem is to control
speed and steering using a single video camera so that the
vehicle remains on the road. There are two main
requirements for road following for autonomous vehicles.
First, the road following behaviour must be able to
operate on very different types of roads. Second, road
following must be fast enough to drive the vehicle at
normal speeds (e.g., 80 km/h on highways). That’s the
main rationale for the real-time approach using templates
matching. This requirement puts severe constraints on the
type of algorithms used for road following.

2 Previous work

Previous work apply vision-based tecniques for detecting

certain characteristics in the image, like for instance,
lanemarks (Dickmanns et al., 1994). Others are based on
colour (Turk et al., 1988) or texture (Thorpe, 1990)
features. An alternative approach considered in the
NAVLAB project in the Carnegie Mellon University
combines vision and learning tecniques (neurally inspired)
to compute the characteristics that properly describe the
path along the road (Pomerleaun, 1993). Included in the
Prometheus III project (EUREKA programme) of the
European Community (Dickmanns et al, 1994), a
Mercedes 500 SEI car (VaMoRs-P) was equipped with a
complex sensor system (4 colour cameras, three inertial
sensors,etc) and a sophisticated processing system (60
transputers and several PC 486's) with the aim of driving
the vehicle along motorways at high speed. Within the
PATH programme in the American State of California,
with the support of the Institute of Transportation Studies
of the University of California in Berkeley, extensive
work has been carried out since 1986 on autonomous
vehicles steering. Magnetics sensors buried under the road
are used to facilitate lateral control of the vehicle along
with a radar for obstacles avoidance.

3 Vision System

The MEP tracking colour vision system manufactured by
FUJITSU is designed for real-time tracking of multiple
objects in the frames of a NTSC video stream running on
VxWorks. It is able to track over 100 templates at video
frame rate (30 Hz for NTSC). The formula for the
distortion D indicating how well a template fitted the
video image is shown in equation 1 where Size is the
template size (8 or 16), RGB is 3 and stands for the three
colour components, g,(x,y) is the grey value of the pixel
in the Red, Green or Blue component in the last frame, m,
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Figure 1. Two layered road tracking system.

and m, are the magnifications of the template in X
and Y direction and o, and o, are the offsets in the frame.
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To track the template of an object it is necessary to
calculate the distortion not only at one point in the image
but at a number of points within the search area. To track
the motion of an object the tracking module finds the
position in the search window where the template matches
with the lowest distortion. By moving the search window
along according to the tracking results any object can be
easily tracked. This method works perfectly for templates
representing objects that do not significantly change their
appearance or shade.

4 Feature tracking

Pose estimation is strongly interconnected with robust
feature tracking. Obviously pose estimation depends
completely on the ability of the system to track certain
road features reliably. But the feature tracking itself is
error-prone  without verification and using forward
estimation based on higher level information. Features can
become temporarily occluded or distorted and they may be
ambiguous making the position recovery more difficult
after a tracking failure. Even the decision of whether a
feature is tracked correctly or not can not be made reliably
without making use of higher-level information. Using
correlation data only is insufficient. Thus, the information
flow from top to bottom is crucial for the robustness of a
road lanemark tracking system. The approach used in this
work is a two layered system illustrated in figure 1. On the

lowestlevel the vision system performs bitmap correlation
in hardware. The results are the measured feature
positions that may contain tracking errors. The measured
positions are

forwarded to the 2-D model based on a least squares
approach, which takes geometric constraints into account
in the image plane and the correlation distortion to
generate an estimate of the road edge equation. This layer
is implemented as a Weighted Recursive Least-Squares
Filter with Exponential Decay ( Schneiderman. H, 1994).
The estimated positions of features determine the location
within the next image frame of the hardware search
windows. All two layers run at 30Hz. The system achieves
fast and robust performance by combining fast template
tracking and real-time adaption of geometric constraints
by 2-D pose estimation.

5 2-D Model of the road for lane
marker tracking

The tracking algorithm requires that lane markings be
present in the image. There exist two sucessive stages of
computation.

1. Edge Extraction and Data Association. Extracting edge
point position and determining likely groupings of edge
points for the lane of travel.

2. Model update. Updating the lane marker models.

These sequence of operations is repeated for each new
image. Lane markers representations are maintained in 2D
with respect to the image plane throughout all
computations in this algorithm. Only the right lane
markings are modelled. These markings correspond to the
white or yellow lines painted on the road.



5.1 Representation of lane markers

The lane marker boundary is modelled by a second order
polynomial in the image plane.

j=aji*+asi+a, (2)

where j is the column and J is the row, a;, a, and a,
determine the position and shape of the edge model. A
second order model was chosen to provide adequate
representation of shape within the real time constraints
required for autonomous navigation.

5.2 Initial Conditions

The algorithm requeres initially an aproximate model of
the lane markings before tracking can start. In order to
solve this problem an operator should provide the system
with the initial model according to the position of the real
lane markings in the road image.

5.3 Edge Extraction and Data Association

In this step edge extraction is performed on each image. A
sufficiently representative set of 16 different 16x16
templates of road edge are off-line stored on memory.
They are used to search for the possible edge points in the
current image. Each template is correlated with a reduced
surrounding environment of the last lane markings. The
resulting point where the distortion is minimum is
annotated as a raw edge point, for each template.

A data association algorihm is used to determine which of
these raw edge points are likely to be associated with the
lane marker, discarding the rest of points. The algorithm
compares each edge pixel to the current model of the lane
marker. An edge pixel must satisfy two criteria to be
associated with a lane marker. The first criterion is two-
dimensional spatial proximity of the edge point to the
model. The second criterion is low distortion value after
the correlation is performed. For all raw edge points
falling within the window of interest around the previous
lane model, the two data association criteria are applied on
a point by point basis.

5.4  Model updating

Several principles are followed to obtain robust lane
marker updates.

1) More Data Improve the Estimate: In general, an
estimate can be improved by using more data. It can be
shown that if a measurement consists of a sum of a
stationary signal and unbiased noise, the estimate of the
signal will improve, i.e, the variance in the estimate will
decrease, as more measurements are averaged. To achieve
higher robustness all the visible portions of the lane
marker in the image must be used to compute edge points.

2) Uncertainty in Road Change: The lane markers are not
strictly stationary signals across successive images. They
change relatively slowly assuming a nominal vehicle
speed. A trade-off must be achieved between robustness
of the estimate, by using data over a large temporal span,
and responsiveness to actual changes in the lane marker.
This compromise is solved by the relative weighting of
new data with respect to older data in the estimate,
governed by an exponential decay factor, where the
weight contributed by the exponential decay, A, for each
edge point is A*°, where 0.0<A<1.0, ¢ is the current time
and /, is the time the image was sampled.

3) Uncertainty in Lane Marker Visibility. In each image,
lane marker visibility is measured by the number of edge
points matched to the lane marker model. This measure of
visibility can also be used as an additional weight. So, for
instance, when a small gap of lane markers is present in
the image the data association algorithm finds few edge
points and these images will therefore carry relatively less
weight on the estimates and do not greatly perturb the
estimated lane marker model.

The following cost function is minimized for updating the
model:

t N,
y ; . , 2
JR ) prd N Pi []Pﬂ N (a3 +a2lp,a ra lpz,a)] (3)

¥4 a=1

where ¢ corresponds to the current image and N, is the
number of edge points encountered in the image p. The
influence of each term in equation 3 is given by the
number of edge points obtained for that image. On the
other hand, the cost function also accounts for previous
images to achieve a robust estimate. An exponentially
decreasing parameter A, varying between 0 and 1, is
incorporated to weight the influence of past images on the
final model. Small values of A minimize the influence of
previous images, decreasing the robustness of the model
and making it more sensitive to changes. A dynamic
adjustment of A is essential to avoid the problem of
saturation on straight stretches. A is governed by the



following expression:

A=ajaihy, 4)

On straight stretches g, is practically 0 providing the
algorithm with the ability to detect curves. The model is
recursively updated in the state space, in three consecutive
calculations.

a) The edge points estimated by the model are computed:

2(m)=H(n)x(n-1) 5)

b) Estimated covariance updating:

P(n)=[P(n=1)~K(D H(mP(n-D)] 6)

where

K(n)=P(n-DH'(n)(M+Hm)Pn-DH' () (7)

c) State updating:

x(n)=x(n-1)+K(n)[z(n)-2(n)] (8)
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x(n-1) represents the estimated state at instant #-1. P(n-1)
represents an estimate of the states covariance. This filter
is known as Weighted Recursive Least-Squares with
exponential decay.

6 Experimental results

The road tracker was tested with recorded video
sequences to evaluate the performance and robustness of
the system. Several practical tests were performed with
10, 15 and 20 different templates (16x16 pixels) of road
lanemarks obtained along a 3 km road strech. They were
precomputed and stored in memory before starting the
real-time tracker. Eventually it was empirically
demonstrated that 15 different templates were sufficient
to achieve good tracking results without losing real time
performance. Figure 2 shows a sequence of images
computed by the system, in which it can be clearly seen
that the road edge is being tracked by the algorithm in a
curved section. After the state model is updated the new
search windows are located around the current edge points
encountered by the least squares filter. Parameter A, was
empirically set to 0.2 while o takes the value 0.8/a, .,
where a, ..., is the maximum value found for parameter a,
after several practical trials.

7 Conclusions and future work

We have designed a real-time templates-based road
tracker in the context of state space filtering. Two aspects
have been emphasised in this work. One is the real-time
capability of the vision system to track the road edge and
the other is the robustness of the tracking to tolerate
occlusions of the lanemark for short intervals of time,
because of its filtering nature.

This road tracking technique is intended to be tested in
future on the real carlike robot shown in figure 3. The
vehicle will carry out missions in a real environment
achieving a global navigation behaviour by performing
local navigation tasks (connected to a global planner).
One of those tasks will be tracking a road based on
computer vision.
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Figure 2. Sequence of road images.
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