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Abstract—Semantic segmentation is a crucial task for the
development of autonomous vehicles. Autonomous Driving (AD)
stack is mainly classified into three subsystems, which are respec-
tively control, planning, and perception. This work deals with the
perception subsystem of AD systems. Indeed, on-road semantic
segmentation for the AD systems is addressed using deep-learning
algorithms. This paper proposes a deep learning approach based
on an enhanced U-Net model that exploits squeeze and excitation
(SE) networks. In order to demonstrate the efficiency of the
added SE blocks, we opted to use U-Net as our baseline. In
these experiments, the two models are trained from scratch on
the CamVid dataset. Compared with the U-Net baseline, the
mean class accuracy (mCA) and the mean intersection over union
(mIoU) of the proposed model are increased by 5.54% and 5.87%,
respectively. It achieves a mIoU of 59.88 % and a mCA of 84.15%
on the CamVid dataset. The achieved results reveal that the
improved U-Net reaches a better compromise between accuracy
and computational complexity than previous studies.

Index Terms—semantic segmentation, autonomous vehicles,
Enhanced U-Net, CamVid dataset, Squeeze and excitation.

I. INTRODUCTION

The ability of autonomous vehicles to operate effectively
and safely has been a widespread study issue in the past
few years, and several manufacturers and academic institutions
have been working to develop the first fully functional model.
It is an exciting sector with many potential advantages, includ-
ing enhanced safety, lower prices, more comfortable travel,
more mobility, and a smaller environmental impact. However,
developing self-driving vehicles with the ultimate level of
autonomy to the point that human intervention is not required
in any situation remains unresolved. The modular architecture

of self-driving vehicle is typically divided into three major
components: perception, planning, and control subsystems.

Accurate real time environment perception is a fundamental
component for any autonomous vehicle. The perception sub-
system handles a variety of tasks, including object localiza-
tion, semantic segmentation, and object recognition. Semantic
segmentation, called also scene parsing, particularly seeks to
categorize each pixel of the input image [1], being a classi-
fication task at the pixel level. For scenario comprehension
and eventual adoption of this novel technology, semantic
segmentation is extremely crucial. Therefore, it is employed
in wide range of sectors, including robots, medical imaging,
and autonomous vehicles. For a thorough understanding of
the operating condition, autonomous vehicles rely on the
data collected by sensors of the surroundings [2]. Semantic
segmentation is essential for interpreting scenes since the
visual signals are so rich within that type of information. The
more quickly and accurately we can perform the semantic
segmentation task, the more the autonomous vehicle will be
able to comprehend its environment and, as a result, make
the best decisions in the appropriate instant. In spite of this,
semantic segmentation is a challenging task because of the
complex relationships that exist between the pixels in each
frame of an image as well as between frames.

Although the rapid advancement of novel technologies like
deep learning [3], that have really enhanced the goal of
semantic segmentation, efficient real-time semantic segmen-
tation remains a huge issue in current research. In this paper,
we take advantages of deep learning techniques, Particularly



convolutional neural networks(CNNs), to develop an accurate
semantic segmentation approach. The key contributions of this
paper are:

• Utilizing the benefits of convolutional neural networks
to build a precise U-Net-based model with additional
squeeze and excitation blocks to perform an efficient
semantic segmentation task for autonomous driving.

• The developed approach is trained and evaluated using
the CamVid dataset,focused on semantic segmentation for
self-driving missions.

The remainder of this paper is structured as follows: Section
II presents the recent achievements in semantic segmentation.
We systematically cover a brief overview of the existing
methods. The proposed approach is described on Section III.
Then, Section IV and V present the evaluation metrics and
the experimental results on the CamVid dataset, respectively.
Finally, the conclusions are presented in Section VI.

II. RELATED WORK

The rapid developments in deep-learning research have led
to tremendous advancements in computer vision tasks [4]
[5]. The major contribution to this accomplishment was the
invention of CNNs, which significantly improved accuracy
and speed for perception tasks such as object detection and
recognition.

Autonomous vehicles ought to be fully aware and should
have a thorough understanding of their surroundings. Using a
set of item categories, such as pedestrians, cars, buildings, etc.,
semantic segmentation categorizes all images at the pixel level.
For instance, by examining the findings of semantic segmenta-
tion, vehicles will be able to identify the navigable area and the
surrounding obstacles. Additionally to CNNs, Auto-Encoders
were employed to create semantic segmentation algorithms
which are significantly more effective than previous models.
Several approaches for semantic segmentation techniques have
been introduced in recent years. These methods may be
classified based on their key contributions. Fully convolutional
networks (FCN) [6], encoder-decoder-based approaches such
as Segnet [7], ERFNet [20] and U-Net [8], and ESPnetv2 [9]
are a few examples of these types. Since images contain a
range of semantic information, it is crucial to develop simple
segmentation models without sacrificing accuracy since a huge
number of trainable parameters are required to fully represent
the complexity of potential images. Recent studies have fo-
cused on convolutional auto-encoders(CAEs), which are auto-
encoders that contain convolutional and deconvolutional layers
as their encoder and decoder components. The backbone of
CAEs conceived for semantic segmentation were thus based on
CNNs that were originally established for object detection and
recognition. Semantic segmentation was performed through
FCN [6] using a fully convolutional framework with a huge
number of parameters. It was a pioneering attempt to discard
fully connected layers.

The VGG architecture served as the backbone for both
SegNet [7] and SegNet-Basic [10] architectures. For the up-
sampling process in the decoder, it exploited the pooling
indexes of the encoder. To improve segmentation accuracy,
certain other systems, like U-Net [8], employed some sort of
skip connections between the encoder and the decoder as well
as other approaches, such as data augmentation. Real-time
semantic segmentation remains a growing field, especially
since some sectors, like autonomous driving and robotics,
involve extremely reliable semantic segmentation with a min-
imum amount of processing time. The models listed above
and some additional models, such Hyperseg [11], Dilated [12],
and DeepLab [13], increased the efficiency of state-of-the-art
techniques. Some models, like FPN, were designed with lower
computational complexity. The encoder architecture employed
in the original FPN model has a structure that is similar to
ResNets [14], which might pose issues when it is generalized
to operate in real-time scenarios even though it is effective in
the semantic segmentation missions. With fewer parameters,
super-lighter models like ESCNet [15], ApesNet [16], Enet
[17], ERFNet [20] and ESPNet [9] attempted to provide real-
time semantic segmentation. These models provide workable
solutions to meet the real-time need, but critical applications
like road scene interpretation in autonomous cars require
substantially higher segmentation accuracy.

III. PROPOSED ARCHITECTURE

In order to develop an efficient semantic segmentation
model for self-driving vehicles, two factors must be taken
into consideration. It must first be able to run under real
time situation. Second, it should be accurate enough for the
autonomous car to rely on the findings in order to interpret
its surroundings. Fig 1 shows the backbone of our proposed
network based on the U-Net architecture.

Encoder and decoder sub-networks constitute its two sub-
networks. The decoder sub-network up-samples the features
through using transposed convolution corresponding to each
down-sample Stage in the encoder sub-net. The obtained
feature maps from the encoder that have the same resolution
are fused with the up-sampled features. After each series of
consecutive 3 × 3 convolution layers with Leaky Rectified
Linear Unit activation functions, the encoder sub-network
performs a maximum pooling operation. The size of the
filters used in each layer distinguishes each layer in the sub-
network. Fig 1 depicts each convolution unit and the layer
it is connected with. The number of filters employed in the
next layer is doubled with each down-sampling step. Four
feature maps with different sizes are produced as a result of
repeating this cycle. The number of filters employed in each
level of the decoder sub-network is reduced by half before
being scaled up by a 2 × 2 transposed convolution. Then,
again a sequence of two 3×3 convolution followed by Leaky
ReLU operations is performed. The final segmentation mask is
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(a) U-Net Architecture

128128

256 256

512512

10241024

512512

256 256

128 128

6464 64 64

( Conv + Leaky ReLU ) Pooling Layer

32

Deconv  Layer ( Conv + Softmax )

SE

SE

SE

SE

SE Squeeze and Excitation Block

Seg M
ask

In
pu

t I
m

ag
e

SE

SE

SE

SE

(b) Enhanced U-Net Architecture

Fig. 1: Proposed Architecture based on U-NET Model

produced using a 1× 1 convolution operation with a Softmax
layer after this process has been repeated four times. In order
to tackle the shortcomings of U-Net in terms of accuracy, we
suggest a reformed skip-connected architecture that employ
squeeze and excitation blocks [18].The utilized module present
an architectural component that enables dynamic channel-
wise feature recalibration and is introduced to improve the
representational power of a network.
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Scale

X
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Fig. 2: Illustration of the squeeze and excitation Module

This block may be placed into a convolutional neural network
to enhance channel inter-dependencies across various feature
channels. Squeeze-and-excitation blocks incorporate a type of

self-attention on channels and accurately represent channel
connections and inter-dependencies. These additional modules
are based on two key principles:

• Channel-inter-dependencies modeling inside modules ex-
plicitly.

• Feature recalibration: Suppress ineffective features and
precisely accentuate those that are useful.

As illustrated in Fig 2, the squeeze phase in the SE block
consists on squeezing global spatial features into a channel
descriptor. In order to create channel-wise statistics, this phase
involves a global average pooling over the spatial dimensions.
Channel-wise dependencies are fully captured by the excitation
process. In order to rescale the feature maps, the excitation
step transforms the squeeze operation’s output into a vector of
activations.

IV. DATASET AND EVALUATION METRICS

Cambridge-driving Labeled Video Database (CamVid) [19]
is an image dataset comprising road scenes. It was first
captured as a video with five different scenes. It consists of
images with a resolution of 960×720, which are organized into
32 sets. Some of the most important categories to understand
Street View are children, signs, motorcycles, lanes, traffic
lights and traffic cones, buses, cars and street markings. The
CamVid dataset was used to train the model, and this was
followed by data augmentation. The model was trained using
randomly generated 512× 512 image cropping. With a batch
size of 32 and an initial learning rate of 1e-4, the model is
trained over 60 epochs using the Adam as the optimizer. The
CamVid test dataset is utilized to test the given model, and
it is then evaluated utilizing variety of evaluation metrics. We
must consider the issue of class imbalance while selecting
the evaluation metrics. Therefore, even while class weighting
during the training process helps to minimize the effects of
class imbalance, the developed model often has a tendency



(a) Evaluation Results of U-Net on the Camvid dataset

(b) Evaluation Results of Enhanced U-Net on the Camvid dataset

Fig. 3: Evaluation Results

to perform better on classes with higher frequency. As a
consequence, we use metrics that perform some sort of average
calculation between the findings of the evaluation of each class
independently. Additionally, a different metric for estimating
model complexity is employed. For the current work, the
following metrics are employed :

• Mean class accuracy (mCA): The prediction accuracy in
semantic segmentation is defined as the proportion of
properly identified pixels to all pixels. We adhere to the
accepted practice of taking the average accuracy amongst
all estimated accuracies of the defined classes in order to
prevent class imbalance from producing false accuracy
results. The obtained value is called as mCA.

• Mean intersection over union (mIoU): This criteria is
commonly utilized for classification tasks. In tasks involv-
ing semantic segmentation, the intersection over union
ratio measures the proportion of pixels with labels from
both the prediction and the ground truth frames to the
proportion of pixels with labels in either frame separately.
The mIoU is calculated by using the average of all
categories after the IoU for each segment class has been
individually established.

V. EXPERIMENTAL RESULTS

A. Experimental Condition

For the implementation of the chosen approach, we use the
deep learning framework Tensorflow and the Nvidia acceler-
ation libraries to perform the learning process and the testing
phase on a development environment equipped with an Intel
i7 CPU and Nvidia GeForce RTX 2070. We utilized the U-Net
model as a baseline to assess the effectiveness of our suggested
network and to demonstrate the functionality of the additional
squeeze and excitation modules. Following the common set-
tings, we train both of U-Net and our proposed model on the
CamVid dataset which was randomly divided into three main
partitions for train, test and validation purposes. The model
takes 40 hours for a number of 60 epochs. The CamVid testing
dataset is used as input after training, and the model is then
assessed using evaluation metrics.

B. Results and Discussion

As presented in Fig 3, the proposed model proves significant
enhancement in terms of class accuracy, loss and intersection
over union compared to the original U-Net.

As shown in Table I, the mCA and the mIoU are increased
by 5.54% and 5.87% respectively. The Comparison with other



   True labels                                    U-Net predicted                             EU-Net predicted

Fig. 4: Qualitative results for Testing Images : Tested images from the CamVid dataset with U-Net vs Enhanced U-Net.

TABLE I: Comparison with state of the art models

Model mCA (%) IoU (%)

ApesNet [16] 69.3 48

ENet [17] 68.3 51.3

U-Net [8] 78.61 54.01

SegNet [7] 65.2 55.6

ESCNet [15] 70.9 56.1

ESPNet [9] 68.3 67.7

Enhanced U-NET 84.15 59.88

state of the art models is then reported in Table I. Among the
baselines mentioned above, the proposed model achieves a
better mean class accuracy of 84.15% and a mean intersection
over union of 59.88%. Fig 4 depicts segmentation results of
the original U-Net and the suggested model on the CamVid
dataset. The left column shows the True labels, the central
and the right columns represents the predicted mask with U-
Net and Enhanced U-Net respectively. The level of complexity

is critically important since our system will perform in an
outdoor environment and is going to be employed for real-
time perception. Therefore as result, the more complicated a
model is, the longer it will take to calculate the output. This
makes its use in real-time applications less convenient.

Fig. 5: Accuracy vs #parameters of State of the art algorithms
for semantic segmentation.

Fig 5 compares the accuracy and complexity of our devel-



TABLE II: Comparison of number of parameters: U-Net vs
Enhanced U-Net

Model Total params

U-NEt [16] 31.197.600

Enhanced U-Net 31.286.680

oped model with those of other state-of-the-art algorithms.
Enhanced U-Net outperforms the lightweight approaches such
as ENet [17] and ESPNet [9] (0.36 million parameters).
Although certain models, such as DeepLab-LFOV [13] and
Dilated-8 [12], would reach a greater mIoU or mCA, these
are less suitable for real-time use due to the large number
of parameters. As we can clearly see, our proposed approach
provides promising performance with a relatively low set of
parameters. In addition, it achieves a better accuracy then U-
Net, without a significant increase in the computational cost
as presented in Table II.

VI. CONCLUSION

Semantic segmentation is a fundamental task for the per-
ception component of self-driving vehicles. It is crucial to
understand how the ego vehicle will operate in a road scenario.
As deep learning techniques have advanced over the recent
years, a growing amount of research is increasingly relying
on how to use deep learning to enhance perception, among
other autonomous driving modules. In order to achieve the
accuracy of real-time considerations, we proposed a deep
learning method that takes advantages of both U-Net and
squeeze and excitation architectures. The CamVid dataset was
used to train the suggested model, which outperformed other
cutting-edge algorithms in terms of accuracy and efficiency.
Nevertheless, there is still an enormous gap to achieve a
better trade-off between accuracy and inference speed while
preserving small size to allow these models to be applied in
real-time systems.
Although the domain is very active, there is still much room
for further development.
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