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Abstract—Explaining the decision made by end-to-end au-
tonomous driving is a difficult task. These approaches take
raw sensor data and compute the decision as a black box with
large deep learning models. Understanding the output of deep
learning is a complex challenge due to the complicated nature of
explainability; as data passes through the network, it becomes
untraceable, making it difficult to understand. Explainability
increases confidence in the decision by making the black box
that drives the vehicle transparent to the user inside. Achieving
a Level 5 autonomous vehicle necessitates the resolution of that
challenging task.

In this work, we propose a model that leverages the driver’s
attention to obtain explainable decisions based on an attention
map and the scene context. Our novel architecture addresses the
task of obtaining a decision and its explanation from a single RGB
sequence of the driving scene ahead. We base this architecture
on the Transformer architecture with some efficiency tricks in
order to use it at a reasonable frame rate. Moreover, we integrate
in this proposal our previous ARAGAN model [1], which obtains
SOTA attention maps, to improve the performance of the model
thanks to understand the sequence as a human does. We train
and validate our proposal on the BDD-OIA dataset, achieving on-
pair results or even better than other state-of-the-art methods.
Additionally, we present a simulation-based proof of concept
demonstrating the model’s performance as a copilot in a close-
loop vehicle to driver interaction.

Index Terms—Driver attention, decision-making, explainabil-
ity, deep learning, self-driving

I. INTRODUCTION

Vehicle intelligence is primarily located within the decision-
making layer [2]. This executive layer is responsible for exe-
cuting the necessary manoeuvres during an event. According
to current literature, there exist two approaches to building
the decision-making layer: modular and end-to-end. Modular
approaches divide the whole AV architecture into a modular
pipeline [3], [4]. On the other hand, end-to-end proposals
execute the entire driving task via a single neural network
(”black box”) that takes in the raw sensor data and produces
the driving manoeuvre (actions) as output [5], [6]. This second
approach is mainly relies on deep learning techniques due to
the complexity of the task.

Two concepts summarise the explainability of the previous
approaches. The former has the advantage that the different
modules of the architecture explain the decision-making. How-
ever, these approaches tend to propagate errors to subsequent
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pipeline modules, which means that the error is cumulative.
Key modules or layers are: perception, localisation, mapping,
planning, decision-making and control.

On the flip side, end-to-end proposals avoid the issue of
error propagation. However, they lack interpretability, making
it difficult to explain errors. Explaining end-to-end proposals
is a complex task and has recently been tackled through the
Explainable AI (XAI) approach. Several techniques such as
Shapley values [7] or saliency maps [8], have been employed
to calculate the influence of each input feature on the model
output. Our approach deviates from these methods because it
does not explain the input features.
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Fig. 1: Driver’s attention-based explainable decision-making framework.

In order to achieve this objective, we propose a driver
attention-based explainable decision-making model to predict
the vehicle’s actions and explains them. Our proposed frame-
work is illustrated in Figure 1. Our ARAGAN Generator [1]
predicts the driver’s attention for the input sequence. Using
only the input image sequence and the driver’s attention
sequence our model is able to predict the ego-vehicle decision
and its explanation. Unlike the state-of-the-art (SOTA) meth-
ods [9], [10], which rely on a single image (i.e. the last one
in the sequence) to make decisions, our approach considers
the entire sequence. Figure 1 highlights the significance of
this approach since it accounts for sequential events that
occur throughout the sequence. For example, in the first three
frames a pedestrian is crossing the street, but in the final two
frames they are out of view of the camera. The automobile
ought to apply the brakes in this scenario. Nevertheless, a
comprehensive judgement of the action and explanation behind
this behaviour cannot be determined solely based on the final
frame due to the lack of temporal analysis.

We propose a deep learning model for vehicle-driver inter-
action based on driver attention. The model predicts decisions
and explanations from a video sequence captured by the vehi-
cle’s forward-facing camera. The proposed model has potential
applications in the field of autonomous driving. This informa-
tion can assist the driver in performing manual manoeuvres
(acting as a copilot), or guide imitation or reinforcement
learning of autonomous driving. The main contributions of



our proposal are:
• We leverage driver’s attention to obtain an explainable

decision. We generate the attention maps with our previ-
ous work ARAGAN. We prove that the driver’s attention
helps to get a better explanation of the decision.

• We propose a novel architecture based on the Transformer
Encoder to predict the explainable decision from an RGB
urban road sequence. It understands the spatio-temporal
features in an efficient way and uses cross-attention to
take into account the decision to get the explanation.

• Our proposal is verified on an open source dataset (BDD-
OIA [9]) outperforming current standard methods in
terms of explainability. This is possible due to the ad-
dition of temporal context and the additional information
provided by the driver’s attention in the sequence.

• We utilize the CARLA simulator in conducting proof-of-
concept testing and validating our model as a copilot in
close-loop vehicle to driver interaction. This digital envi-
ronment enables the evaluation of system performance in
different scenarios beyond the training dataset achieving
on pair results with the obtained in the dataset.

II. RELATED WORKS

The literature review section is split into three subsections
to summarise the explainability of autonomous driving using
deep learning. The first part consists of a study of the open-
source datasets within this topic to show the available data to
accomplish this task. The second section describes approaches
trained in the same dataset as this proposal to show their
strengths and weaknesses. And we end the literature review
with some Transformers architecture in the autonomous vehi-
cles research field.

A. Datasets

Training deep learning models in a supervised way requires
a huge amount of data, as models learn to generalize from
seen data. For this purpose, many datasets are open-source to
reach different tasks. In the context of autonomous vehicles,
object detection, semantic segmentation, and driver attention
are usual tasks that use deep learning. These AV tasks have
their own datasets that allow training supervised deep learning
models.

Another task that needs its own dataset is the explainability
of the decision-making modules. There are different open-
source datasets in the literature to learn models for this task.
Table I summarises them with their sizes and the annotation
method. BDD-X [11] provides a textual explanation of the
decision making with their heatmaps. DoTA [12] collects tem-
poral, spatial and categorical annotations of road anomalies.
CTA [13] is composed of traffic accidents with their causes and
effects annotated. HDD [14] was annotated with a 4-layer an-
notation scheme: Goal-oriented action, Stimulus-driven action,
Cause and Attention. BDD-A Extended [15] is an extension
of BDD-A dataset [16] with first-person explanations.

Among them we have chosen BDD-OIA dataset [9] as it
provides a sequence with the actions and the explanations that
the driver performed during a complex driving manoeuvre.

Moreover, it is a double classification problem instead of a
textual task, which makes the task less complex. The predic-
tion of an explanation in text form, as done in some datasets
exposed above, is within the Natural Language Processing
(NLP) paradigm, which is out of the scope of this work,
focused on computer vision techniques.

The selected videos have various weather conditions
recorded at different times of the day. Their dataset has 22,924
5-second video clips annotated for 4 actions (Move forward,
Stop/Slow down, Turn left and Turn right) and 21 explanations
(i.e. Traffic light is green, No lane on the left, On the right-
turn lane, Obstacle: rider, etc. ). This annotation method allows
the definition of a multi-label classification problem, which
is easier to train because the outputs are bounded. However,
dealing with this dataset is complicated because the same
video has more than one possible output.

B. State-of-the-art models trained in BDD-OIA

There are some models in the literature trained on the BDD-
OIA dataset. The following section describes these architec-
tures used to solve the explainability problem in autonomous
vehicles.

The first proposal [9] introduced the prediction of object-
induced actions and their explanations. They used an object
detection model and a second step called the Action-Inducting
Object Selection module. The object detection module is the
Faster R-CNN [17], previously trained in BDD100K [18] to
perform this task. After this training, they froze it to continue
with the second step of the model. They fed the local features
of each object (bbox) to the second module that fuses them
with the global characteristics (full image) extracted by the
Faster R-CNN to select the best detections to complete the
task. The Global module produces a feature map of the entire
scene that provides context. This shows where the network
focuses. We propose a system that uses attention based on
human gaze.

The authors proposed a multi-task loss to train the model
as the shown in Equation 1. It is a combination of the Binary
Cross Entropy (BCE) (Equation 2) and a hyperparameter λ that
controls the influence of the explanation. After conducting an
ablation study to determine the optimal choice, they set λ to
1. We will retain the same configuration but modify the binary
cross-entropy (BCE) loss function with an alternative option
that will be elaborated on subsequently.

L = LBCEaction + λ · LBCEexplanation (1)

LBCE(y, x) =
1

N

N∑
i=0

[y · log(x) + (1− y) · log(1− x)] (2)

They fed the model with the last frame of the recorded
sequence to obtain the action and the explanation for the
entire clip. They compared their result with other state-of-
the-art works (ResNet-101 [19] and the network of [20]),
outperforming them with their proposal. They don’t have
temporal information, which clarifies many situations that
occur when driving.



TABLE I: Driving datasets to develop explanation methods for AVs and the stakeholders that would potentially benefit from such explanations.

Dataset Size Annotation & Explanation

BDD-OIA [9] 23K × 5s Actions and Why explanation

BDD-X [11] 7K × 40s Textual Why explanation associated with videos segments with
heatmaps

DoTA [12] 4,677 videos (73,193s) What explanation (Temporal and spatial anomaly identification with
bounding boxes)

CTA [13] 1,935 × 17.7s Why explanation for accidents with cause and effects
HDD [14] 374,400s What explanations for driver actions

BDD-A Extended [15] 1, 103× 10s
Human gaze inciting why and/or what explanation, explanation

necessity score

The second proposal [10] claimed that [9] has two short-
comings: 1) It can ”only” have a clear look into those cropped-
out regions. These regions correspond to the detected object.
2) The proposed attention mechanism depends on the Faster R-
CNN. Therefore, the error will propagate to all other modules.

They proposed a Global Soft Attention (GSA) mechanism
to overcome these problems. It allows the model to search
for correlations more deeply. To complete this proposal, they
proposed a model based on two feature extractors (Resnet50
[19] and Mobile Net [21]), which feeds a Multi-Head Self
Attention. Therefore, GSA attends to the ”raw” features in-
stead of only a few ones (ROIs). They used the same loss as
in the previous proposal based on Equation 1. Nevertheless,
they do not take into account the temporal information as they
only processed the last frame of the sequence, which does
not explain the complete sequence. We propose to understand
the temporal sequence in an efficiency way to understand and
explain the decision.

C. Transformers in the autonomous vehicles research field

The application of transformer architectures in autonomous
vehicles’ decision-making processes is a burgeoning area of
research. Transformer models are explored for end-to-end
driving, trajectory prediction, scene understanding, and seman-
tic segmentation tasks, offering the potential to simplify and
enhance autonomous driving systems. Researchers investigated
techniques for multi-modal sensor fusion, efficiency improve-
ments, and the integration of Reinforcement Learning with
transformers. Subsequent iterations extend the application of
the attention mechanism to the realm of driving, encompassing
tasks such as motion projection [22]–[24], forecasting driver
focus [25], [26], and monitoring object movement [27], [28].
In the context of fully autonomous driving systems, TransFuser
[29], [30] leverages multiple transformer components to merge
information sourced from the frontal camera and LiDAR
sensors. We propose a framework that comprehends the spatio-
temporal information supplied by the RGB sequence and atten-
tion maps, incorporating effective transformers architectures
for viable processing of the data at a sensible frame rate.

III. THEORETICAL BACKGROUND

This section presents the theory behind comprehending the
attention modules of the current proposal, which is a key
architectural contribution of this work.

Attention mechanisms in deep learning are a way to se-
lectively focus on certain parts of the input, allowing the

model to make more informed decisions. The main idea behind
attention is to weigh the importance of different input sections
so that the model can focus on the most relevant information.
Attention mechanisms are valuable in tasks with large and
complex input. The attention mechanism allows to improve
model’s performance and to reduce the amount of required
computation. Various tasks, including image captioning, ma-
chine translation, and language modelling, have incorporated
attention mechanisms [31], [32].

1) Self-Attention: Self-Attention computes the relationships
inside the input itself, attending to different input parts. We
will explore with linear layers and with the scaled-dot product
[33]. We define the attention weights ai in Equation 3 to the
input feature vector xi.

ai = σ

(
Q(xi)K(xi)

T

√
dk

)
(3)

Where σ is the softmax function; Q is the query; K is the
key; and dk is the scaling factor. With that said, We compute
the attended output z as:

z = aiV (xi) (4)

It is an attention mechanism where the dot products are
scaled down by

√
dk. If we assume that Q and K are

dk-dimensional vectors whose components are independent
random variables with mean 0 and variance 1, then their dot
product, Q · K =

∑dk

i=1 uivi, has mean 0 and variance dk.
Since we would prefer these values to have variance 1, we
divide by

√
dk.

2) Cross-Attention: Cross-Attention combines asymmetri-
cally two separate embedding sequences of the same dimen-
sion. Generally, in Cross-Attention, the key (K) and the value
(V ) are computed from one input and the query (Q) from
another. A well-known example of this type of attention is
Transformer [33], which implements this technique in the
Decoder section. In this case, the attention weight ai for the
input feature vectors xi and yi is computed as follows:

ai = σ

(
Q(yi)K(xi)

T

√
dk

)
(5)

In this method, the query is derived from a source distinct
from the key and value, while σ represents the softmax
function, Q denotes the query, K denotes the key, and dk
represents the scaling factor. We compute the attended output
z as:



z = aiV (xi) (6)

3) Multi-Head Attention: Multi-Head Attention allows par-
allel computing and provides the ability to pay attention to
different aspects in the same feed.

It is a robust architecture for understanding features and
their relationships. This work explores it in two variants:
build with Self-Attention and Cross-Attention. In this case,
we compute the attention weight ai for each input element xi

as follows:

ai = Concat(head1, head2, . . . , headM )

where headi = σ

(
Q(xi)K(xi)

T

√
dk

)
V (xi)

(7)

Where M is the number of heads, and z is computed by a
feed-forward neural network with parameters θk as:

z = fθk(ai) (8)

4) Transformer Encoder: The Transformer Encoder [33] is
a neural network architecture that uses attention mechanisms
to process sequential input data. The Transformer Encoder was
presented as an improvement of Recurrent Neural Networks
(RNNs) in natural language processing tasks, including but not
limited to machine translation and language modelling.

The Transformer Encoder consists of a stack of layers, each
with two sub-layers: a Multi-Head Self-Attention mechanism
and a feed-forward neural network. The Multi-Head Self-
Attention mechanism allows the model to attend to different
parts of the input and to compute a weighted sum of the
input elements, where the weights are calculated based on
the similarity between the input elements. The feed-forward
neural network then processes the output of the Multi-Head
Self-Attention mechanism to produce the final attended feature
vector.

In addition, the Transformer Encoder incorporates a mech-
anism known as positional encoding, enabling the model to
consider the sequence of input elements. In this way, the model
can understand the spatial context of the input without fading
this information through its layers.

The Transformer Encoder has shown to be very effective
in NLP tasks, outperforming traditional RNN-based models.
The main advantage of the Transformer Encoder is its ability
to handle long-term dependencies in the input data, which is
particularly useful in tasks such as machine translation and
language modelling. Additionally, the Transformer Encoder
can parallelize the computations, which makes it more efficient
than traditional RNN-based models. The problem is that it
takes many GPUs to calculate these relationships from raw
data.

IV. DRIVER ATTENTION-BASED EXPLAINABLE
DECISION-MAKING MODEL

The following section explains the main contribution of
this work, the Driver Attention-based Explainable Decision-
Making model built to assist the driver or to help the learning

of autonomous vehicles. It predicts the decision-making of
the ego-vehicle, giving an explanation based on the driver’s
attention using our ARAGAN [1].

The input data of this model is a sequence of images ex-
tracted from the BDD-OIA dataset [9]. The model predicts an
action expressed as a four-dimension vector and an explanation
as a 21-dimension vector. This section will expose the model
architecture based on the theory previously explained.

Figure 2 shows the architecture and modules of our pro-
posal. We explain these modules individually to understand
the idea behind this proposal and the data flow in the model.
In contrast to [9], [10], the input model is a video sequence
from the dataset instead of the last frame. It makes the model
heavier, but with efficient modules, this proposal outperforms
other architectures in terms of efficiency.

The model is composed of a Feature extractor or backbone;
driver’s attention fusion based on the ARAGAN Generator; a
Spatio-Temporal Transformer Encoder; and the classification
heads.

A. Feature extractor

This technique has been widely used in the literature [34].
The most used dataset for this task is ImageNet, composed
of 1,281,167 training images, 50,000 validation images and
100,000 test images distributed among its 1,000 classes.
Lately, Google has been using a private dataset called JFT-
300M [35]. We employ the MobileNetV2 [21], which is a
mobile architecture that does not increase the computational
cost of the final model. It is a computer vision backbone
composed of convolutional and residual bottleneck layers. The
used version has 2,261,632 parameters trained in Imagenet.

Using a backbone as an initial feature extractor makes it
possible to work with this kind of dataset that has not got
much data.

B. Driver’s attention fusion based on ARAGAN

In addition to the RGB data, our proposal utilises the
driver’s attention as input for our transparent decision-making
model. To achieve this, we implement the ARAGAN genera-
tor, previously trained and developed on the BDD-A dataset
[16]. After training, we assessed the performance of the model
in two datasets: BDD-A [16] and DADA 2000 [36], using
the following metrics: Kullback-Leibler Divergence (KLD),
Pearson’s Correlation Coefficient (CC) and shuffled Area
under the ROC curve (s-AUC). In BDD-A it obtained KLD
= 0.05, CC = 0.92 and s-AUC = 0.66, and in DADA2000 it
obtained KLD = 0.1, CC = 0.97 and s-AUC = 0.65. We refer
the reader to our previous study [1] for more details about that
model.

This work has not got pre-processing, and the feed-forward
of the driver attention net is done online. We resize the
generated attention map to the output of the feature extractor
(7×7). After that, we pass the attention map sequence through
convolutional layers, one for each clip image. The kernel
size is (7 × 7) to have the complete resized attention map
into account. We multiply the result of this layer with the
backbone output and concatenate it. With this method, we use
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Fig. 2: Driver Attention-based Explainable Decision-Making model diagram. It represents the complete forward pass from the RGB sequences to the final
decision and explanation output. The model is composed of 4 modules: 1) Feature extractor, 2) Driver’s Attention Fusion, 3) Spatio-Temporal Transformer
Encoder and 4) Classification Heads. Note that the shape features are missing from the Batch Size dimension, which has been set to 512.

the driver’s attention to understand the output characteristics
of the backbone. Moreover, we pass the complete information
extracted by the backbone to the following network steps.
Finally, we employ a ReLU activation function.

In the complete architecture, we repeat this module N times
in parallel, one for each clip image. They do not share weights
between different timestamps.

C. Spatio-Temporal Transformer Encoder

After the driver’s attention module, the following section
shows the Spatio-Temporal Transformer Encoder. It under-
stands the relationships between the features from the previous
modules and filters them before passing them to the last
network step.

It is composed of N modules that compute in parallel
for each sequence frame. Each parallelised module has as
input the concatenation of the multiplied attention features
and the backbone features, which we flatten using a reshaping
method. After that, we employ positional encoding to preserve
the spatial information throughout the module, which follows
Equation 9. The positional encoding is a vector added to the
features to indicate its position in the sequence (feature map).
The underlying idea is that it generates a unique coding for
each location based on a combination of sine and cosine waves
with different frequencies.

p⃗t = f(t) :=

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos

100002i/dmodel

) (9)

After the positional encoding, an intermediate layer is
necessary to reduce computational costs. For this reason, we
perform a dimensional reduction. The Transformer encoder
has a high memory consumption if the input tensor is too big.
The reduction is carried out linearly, with a Linear layer of 32
units.

With the positional encoding and the dimensional reduction
explained, a Transformer Encoder is applied, which encodes
the Spatio-Temporal features of the sequence. We build it with
N Encoders, one for each frame and it has a stack of M = 8
identical layers.

It has a Layer Normalization, followed by Multi-Head
Self-Attention previously explained, and a Dropout layer.
This branch has a residual connection, a shortcut connection
that allows the gradient to flow directly from one layer to
another, bypassing one or more intermediate layers. After
that, we employ Layer Normalization followed by a Multi-
Layer Perceptron module (MLP) to end with another residual
connection.

We explained the Multi-Head Self-Attention theory earlier,
and the only difference here is how the heads are parallelised.
We calculate them in a single forward pass instead of one
by one. For this purpose, we reshape the outputs of the
Linear layers to have Multi-Head computing. After that, the
features pass a final MLP composed of a Linear layer, a GELU
activation function, a Dropout layer, another Linear layer, and
a Dropout.

After that, we concatenate the features and pass them
through a Linear layer and Layer Normalization to output the
temporal attended features. The Spatio-Temporal Transformer
Encoder proposed to encode the spatio-temporal features.
It learns the temporal information of the video sequence
and the spatial distribution along the image to understand
the localisation of the relevant objects and make the best
decision. It allows parallel computing efficiently. Moreover,
the driver’s attention module filters fed features to this module.
We compute the image features using a pre-trained backbone,
which allows using a low-dimensional encoder.

D. Classification heads

The last modules are the classification heads composed
of two branches, one for each output (Action, Explanation).
The first branch is in charge of the Action output. It is a
standard classification module built of a Linear layer, followed
by Batch Normalization, a ReLU activation function, Dropout,
another Linear layer and a sigmoid activation function to end
the branch. The output is a 4-dimensional vector. The last
activation function is sigmoid because the problem to solve is
a multi-label classification problem. Unlike other classification
methods [37], the softmax function cannot be used as it is
unable to predict output for multiple labels.



The second branch, which predicts the Explanation layer,
is quite different because the input of this branch is the latent
vector that comes from the Spatio-Temporal Transformer
Encoder and the action output. Multi-Head Cross-Attention is
the first module that models the relationship between the action
output and the latent vector. The reason for this procedure
is that explanations are correlated with the action, with each
action having its own set of explanations.

After the Multi-Head Cross-Attention, we pass the attended
latent vector to a classification section that follows the same
structure as the Action branch, but in this case with a 21-
dimensional vector as output.

V. EXPERIMENTAL SETUP

The following section explains the experimental setup of
this proposal, with the different loss functions and metrics
used to evaluate it.

A. Loss functions

A loss function in deep learning is a function that measures
the difference or distance between the predicted output and the
actual output. The objective of training a neural network is to
minimise the loss function value. Common examples of loss
functions include mean squared error and cross-entropy. These
loss functions are used to evaluate the model performance
during training to optimise the model’s parameters.

The task under study is a multi-label classification com-
posed of two outputs. In this work, the aim is to predict
multiple labels or classes for each input sample.

Some architectures in the state-of-the-art [9], [10] used the
BCE as their loss function. This work proposes to use the F1-
score loss to find the optimal threshold that maximises this
metric as will be shown in the results section. Moreover, due
to the unbalanced dataset, the loss is weighted for the action
labels (Turn Left and Turn Right).

B. Metrics

Metrics provide a way to quantitatively assess how well
the model makes predictions on unseen data. In other words,
metrics measure the model’s accuracy, robustness, and gener-
alisation capabilities.

In deep learning, many metrics based on the specific task
and the nature of the data can be used. The most commonly
used metrics are: accuracy, precision, recall, F1-score, area
under the ROC curve (AUC), etc. Each metric has its own
strengths and weaknesses, and choosing the appropriate metric
for the specific task is significant.

In general, it is crucial to consider both the overall perfor-
mance of the model as well as its performance on subsets of
the data when evaluating the performance of a deep learning
model. In this work we use the following.

F1-score (Equation 10). It is the harmonic mean of precision
and recall. We use it to balance the trade-off between precision
and recall. We calculate it as shown in equation 10.

F1 =
2 · Precision ·Recall

Precision+Recall
=

2 · TP
2 · TP + FP + FN

(10)

This proposal evaluates the models with two variations
of this metric. Firstly the models are tested using Equation
11, which computes the F1-score for all the predictions. It
averages the F1-score over all the forecastings.

F1all =
1

|A|

|A|∑
j=1

F1(Âj , Aj) (11)

The other variation computes the mean F1-score of each
label (action or explanation), represented in Equation 12.

mF1 =
1

|A|

|A|∑
j=1

1

|C|

|C|∑
i=1

F1(Âi
j , A

i
j) (12)

Finally, the mean of both F1all (action and explanation) is
computed to show the best model in both metrics. This results
follows Equation 13.

F1all =
F1decisionall + F1explanationall

2
(13)

We will use these metrics to compare the proposed modules
and the comparison against other proposals from the literature.

VI. RESULTS

In this section, we present the obtained results from different
experiments. We evaluate the proposal in two ways. Firstly, we
expose a comparison with main state-of-the-art proposals. To
continue with the explained proposal module by module as an
ablation study to determine the best option and the contribution
of each module previously explained is carried out. After
this, we present a discussion about the results obtained in the
dataset. With that model, we propose a proof of concept to
evaluate the proposal as a copilot in a simulation environment
using CARLA Simulator [38].

A. Comparison with state-of-the-art proposals

This section compares the driver’s attention-based explain-
able decision-making proposal with the main state-of-the-
art models that have published their results. Denote that [9]
provides the code and the weights to its model, so we have
tested it in the same experimental setup as this proposal.
However, [10] do not provide code, and we could not verify
the published results.

As we depict in Table II, our proposal gives the best F1all
for the explanation. Regarding the action F1all, it is only
ten tenths behind [9], [19], [20] and two tenths behind [10].
We have added the F1all to measure the average score of
both results (action and explanations). About this metric, our
approach achieves the best outcome for the tested models, and
it is one-tenth behind [10].

Finally, we have compared the inference time, and both
tested models provide the same values. They work at 5
Hz. However, [9] processes only the last frame, and our
driver’s attention-based explainable decision-making processes
ten sequence frames. We have not tested the other proposals
because the code is not available.



TABLE II: Action and explanation prediction performance using the driver’s attention-based explainable decision-making. It will be compared with other
proposals in the literature. Results in blue colour represent the best of the evaluated models. Bold results represent the best over all the proposals.

Models Action Explanation
F1all

Inf.
F S L R mF1 F1all mF1 F1all (ms)

ResNet-101 [19] 0.755 0.607 0.098 0.108 0.392 0.601 0.180 0.331 0.466 -
Local selector [20] 0.810 0.762 0.600 0.624 0.699 0.711 0.196 0.406 0.578 -

† FRCNN + BDD-OIA [9] 0.829 0.781 0.630 0.634 0.718 0.734 0.208 0.422 0.57 199
GSA (resnet) [10] - - - - 0.750 0.729 0.644 0.525 0.627 -

GSA (mobilenet) [10] - - - - 0.746 0.718 0.642 0.531 0.624 -
† Driver attention-based explainable

decision-making (ours) 0.634 0.802 0.475 0.460 0.593 0.695 0.267 0.538 0.617 199

† indicates that the proposal has been tested on the same computer and the results have been verified.
F = Forward; S = Stop; L = Left; R = Right

B. Ablation study

We have explained various modules for our architectures,
so we carry out an ablation study to known the contribution
of each module according to the following items:

• The use of a sequence instead of the last frame.
• The contribution of adding driver attention to the pipeline.
• The advantage of using the Transformer Encoder to

understand the Spatio-Temporal relationships.
• The use of Cross-Attention between the action head and

the latent vector to obtain the explanation.
• Loss function influence, BCE vs F1-score loss.
We expose the ablation study in Table III. It displays

the contributions of individual modules to the final model,
allowing for comparison with alternative solutions. It shows
the number of parameters for each model (Par. (M)). We
employ for the evaluation the metrics explained above. We
calculate the F1-score individually for each action and their
mean (mF1). After that, we compute the F1-score for all
the decisions (F1all). Finally, we calculate the mean F1-score
(mF1) for each explanation and the F1-score (F1all) for all
of these predictions. The last exposed metric is the inference
time of each proposal (Inf.).

We have carried out this study with the same experimental
setup for every model. Moreover, the seed has been set to a de-
terministic value to avoid randomness and not reproducibility
between experiments.

We have trained every model with a batch size of 512, an
Adam optimizer (b1 = 0.9, b2 = 0.999 and ϵ = 1e − 7)
and have set the learning rate to 0.001 with an Exponential
Decay scheduler. The GPU used for training is an NVIDIA
A100 with 80 GB of VRAM. Moreover, we have measured
the inference time with an NVIDIA 2080 Ti with 11 GB of
VRAM, which is more common to have by other researchers in
order to compare with their proposals. We have configured the
training with an early stopping of 3 epochs to avoid overfitting.
Regarding the dataset, we have trained all the models with the
training and validation set shuffled, and the exposed results
correspond to the testing set. Denote that the dataset has not
got the same amount of sequences as the authors claimed in
the paper, where the dataset was presented [9]. The dataset is
composed of 7,946 videos for training, 1,117 for validation and
2,236 for testing, instead of a training set of 16,082 images,
a validation set of 2,270 and a test set of 4,572 indicated

in the paper. We have measured the inference time results to
the complete forward pass of the model, including the driver
attention model. The batch size has been set to 1 to measure
this parameter.

The strategy followed in this ablation study consists of using
the modules explained above, understanding the contribution
of each module to the final proposal and the benefits of
using them together. The first model has a feature extractor
with classification heads (Id. III.1). We have trained this
configuration using only the last frame of the sequence instead
of the video clip.

After that, the following approach adds an input sequence to
the model (Id. III.2). This configuration computes the temporal
relationships along the series and feeds it to the final decision
and explanation. The last ten frames of the sequence have
been used but skipping pairs, which means they correspond
to the two last seconds of the video clip. The problem with
this approach is that the high quantity of parameters makes
the model overfit in the early steps of the training without
being able to generalize. That’s why the results are worst, but
this information should help the final task because it is crucial
to understand the temporal relationships to predict the vehicle
decision.

The next model adds the driver attention module based
on ARAGAN (Id. III.3). It contributes to the model with
the comprehended visual scene. The driver’s attention is
employed, which is generated by ARAGAN, to achieve this
visual understanding. This proposal again has a problem of
over-adjustment due to the number of parameters.

We have employed the Spatio-Temporal Encoder to over-
come this situation (Id. III.4). It achieves similar performance
with 43 times fewer parameters. It contributes with a low-
parameter model that understands all the relationships among
the temporal and spatial information. Having a model with
fewer parameters does not imply that it will infer faster
because the architecture is the one that affects this the most.
However, the complexity of the architecture proposal makes
it slower than the other techniques, and it will require some
optimization methods that we have not addressed in this work.

Our final proposal adds the Multi-Head Cross-Attention
to the explanation classification head in order to model the
relationships between the action and the explanation (Id. III.7).
It is the final model of this work.



Moreover, evaluating the cross relationships between mod-
ules is relevant. For this reason, we add two more evaluations.
The first one assesses the final model without the driver’s
attention module showing lower performance explaining the
benefits of this module (Id. III.5). And the second one shows
the final model but was trained with the last frame of the
sequence to prove the advantage of understanding the temporal
information (Id. III.6).

Finally, we have changed the loss function to the best
model (Id. III.7), which uses the F1-score loss, to show its
contribution compared with using the BCE loss (Id. III.8).
The proposed loss outperforms the other one.

We conducted an experiment to evaluate the effectiveness of
weighting loss in our proposal following the same procedure
as in [9]. We adjusted the hyperparameter λ in the equation 1.
The results are shown in the table IV, where the best scores are
obtained when λ = 1. Nevertheless, training the model with
λ = ∞, i.e. using only the explanation loss, gives a better
overall score than when λ = 0, i.e. using only the action
loss. This result is due to the use of cross-attention in the
explanation branch.

To quantitatively evaluate the influence of the driver’s atten-
tion on the proposal, which is one of the main contributions of
this work, we conducted two experiments: Gini coefficient cal-
culation and perturbation-based analysis, following the steps
proposed in [39]. The Gini coefficient is an unsupervised
metric to measure the sparsity of the attention. A high score
indicates a high inequality in the distribution of attention.
That means the higher the Gini score is, the more sparse the
attention matrix is. We obtained a Gini score of 0.909 in the
test dataset using ARAGAN. This high score indicates that
most of the attention is paid to some few patches in the images.
We also analysed the Gini coefficient in BDD-A [16] attention
maps generated by humans to compare our result. We obtained
an average value of 0.82, revealing that our attention model
is sparser and tend to be more concentrated on road scene
saliency patches. In conclusion, our model is more flexible
and produces more explanatory attention maps than humans
in BDD-A dataset.

As second experiment to quantitative assess our ARAGAN
model, we performed a perturbation-based analysis [40] to
determine the importance of the focused patches in the images.
The significant regions of interest (attention higher than 0.995)
on the RGB images were deliberately modified to 10 % of their
original values, as done in [39]. The results are presented in
Table V. The notable difference between the perturbed and
normal models underscores the contribution of attention and
its ability to emphasize saliency patches in urban road im-
ages. This enhancement nearly doubles the explanatory power,
providing substantial evidence for the attention mechanism’s
capability to highlight crucial features.

C. Discussion

Our model outperforms the other proposals in explanations,
obtaining the best F1all for this metric. Moreover, it gets the
best F1all of all the tested models in this experiment and the
second-best performance of all the models in the literature.

Although our proposal achieves the best explainability results,
there are instances where the decision and explanation do not
align. This is likely due to insufficient data to extrapolate the
complexities of this task, despite Cross-Attention between the
decision and explanation heads. In the near future, we will
address these errors by imposing constraints on the model to
enhance its learning.

The inference time comparison denotes that having more
parameters does not imply higher inference time and that the
model architecture is the most crucial parameter to evaluate
this metric. Nevertheless, the proposed model achieves a
reasonable frame rate to make a high-level decision, under-
standing the previous frames to take the best decision and
explaining it based on how drivers look at the scene.

D. Qualitative results

In this section, we show some examples of the evaluated
test dataset to show the strengths of our proposal. Table
VI explains the qualitative results of Figure 3 to understand
their predictions and the misunderstanding of the model. The
attention maps are generated by ARAGAN and overlaid on
the RGB image to show the attention map fed to the network,
which helps the suggestion to perform better, as explained in
the ablation study. In addition, Table VI explains the attention
maps for each use case in the last column.

In the exposed samples, the model understands the situation
obtaining the action to be taken and explains the scene with the
explanation and the attention map. The explanation achieves
optimal results, with slight differences from the ground truth.

E. Proof of concept using CARLA simulator for close-loop
assessment

This experiment aims to assess our driver’s attention-based
explainable decision-making in a simulation environment for
close-loop vehicle to driver interaction in an alternative do-
main. The CARLA simulator [38] was configured to execute
a urban scenario. The driver is required to follow a pre-
determined route, which is overlaid in the simulator. During
the driving, the model acts as a copilot for the driver.

1) Experiment Framework: The experiment is composed
of: scenario, vehicle, driver and copilot (our model). The
scenario is a urban route defined in the Town01 of CARLA
with similar use cases than the found in BDD-OIA dataset.
The vehicle provides a view of the road urban scene from the
pilot seat and a frontal camera that sends the information to the
model. Also includes a steering wheel and two pedals (throttle
and brake). The driver is required to drive in a naturalistic way
along the route, taking into account the copilot information.
He has a view of the vehicle interior similar to a real vehicle
using our three-screen simulator. Our model acts as a copilot
that warns the pilot about possible decisions to be taken in their
manoeuvres and provides explanations about these decisions.
Information is overlaid in the frontal screen of the simulator.

The simulation runs at 15 Hz. The model’s input is a
ten images sequence corresponding to two seconds. This
sequence is passed in batches to the ARAGAN generator,
which obtains their attention maps in one forward pass. After
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Fig. 3: Qualitative results for the driver attention explainable decision-making in BDD-OIA test set.



TABLE III: Ablation study of modules carried out to build the driver’s attention-based explainable decision-making. Every model has been trained in the
same data, and the results exposed are for the testing set of BDD-OIA.

Id.
Modules

L Par. Action Explanation Inf.MN Seq Att ST CH CA (M) F S L R mF1 F1all mF1 F1all (ms)V2 Enc

III.1 ✓ ✓ F1 18.5 0.61 0.77 0.46 0.48 0.58 0.65 0.27 0.48 5.5
III.2 ✓ ✓ ✓ F1 165 0.56 0.79 0.37 0.40 0.54 0.68 0.28 0.53 34.7

III.3 ✓ ✓ ✓ ✓ F1 328 0.59 0.79 0.37 0.39 0.54 0.67 0.28 0.53 157

III.4 ✓ ✓ ✓ ✓ ✓ F1 7.6 0.61 0.80 0.45 0.44 0.58 0.67 0.28 0.53 195

III.5 ✓ ✓ ✓ ✓ F1 3.8 0.60 0.79 0.43 0.43 0.56 0.68 0.25 0.52 163

III.6 ✓ ✓ ✓ ✓ F1 3.0 0.60 0.78 0.48 0.48 0.59 0.66 0.26 0.49 21

III.7 ✓ ✓ ✓ ✓ ✓ F1 4.2 0.63 0.80 0.48 0.46 0.59 0.69 0.27 0.54 199

III.8 ✓ ✓ ✓ ✓ ✓ BCE 4.2 0.52 0.78 0.34 0.29 0.49 0.63 0.14 0.38 199

Notes: Id. = identification; MNV2 = MobiliNet V2; Seq = Use of sequences; Att = Driver attention module; ST Enc = Spatio-Temporal Transformer Encoder; CH = Classification
heads; CA = Multi-Head Cross-Attention explanation head; L = Loss
Par. = Parameters; F = Forward; S = Stop; L = Left; R = Right

TABLE IV: Performance in predicting actions and explanations based on task
importance (determined by λ) and its impact on the loss function (1).

λ
Action Explanation

F1allmF1 F1all mF1 F1all

0 0.571 0.676 - - -
0.01 0.558 0.679 0.206 0.485 0.582

1 0.593 0.695 0.267 0.538 0.617
∞ 0.430 0.442 0.265 0.535 0.489

TABLE V: Perturbation-based analysis to ascertain the significance of the
attended region.

Models Action Explanation
F1allmF1 F1all mF1 F1all

Proposal 0.634 0.695 0.267 0.538 0.617
Perturbed proposal 0.324 0.549 0.107 0.237 0.395

that, the RGB sequence and their attention maps are fed to the
explainable decision-making model, to predict the action and
the explanation of the sequence. This decision and explanation
are sent to the driver to close the loop between the driver and
the vehicle.

2) Experiment Results: This section explains the result of
our copilot in the scenario designed in CARLA. For this
experiment 5 drivers were requested to perform the test. The
results are presented in two different ways: firstly, predicted
actions and explanations provided by the copilot are compared
with the decision and the reason made by the user for each
designed use case. A posterior analysis of the route is required
for each participant to obtain the explanation ground truth.
After that, the predictions are compared with all the possible
actions and explanations associated to each use case, not only
the ones made by the driver, as the model has not got route
information and cannot predict the decision according to that.
For this purpose, a supervisor labels the possible action and
explanation for the sequence and compares it with the model’s
output.

Table VII shows both comparisons. The first row shows the
comparison against the drivers’ decisions and explanations.
The results show that the Forward and Stop predictions are
perfect while the Left and Right decisions are not fulfilled,
with a F1 = 0.67. This is because of the unbalanced dataset,

which has more sequences of the first two classes. Regarding
the global decision results, mF1 and F1all are higher than
the ones achieved in the test dataset, because the use cases
variability for this simulated environment is lower. Table
VII second row shows the comparison with all the possible
actions and explanations associated to each use case. Decision
results show better performance than in the dataset, achieving
F1all = 0.81, but explanation performance decreased from
the obtained in the dataset, achieving F1all = 0.46. The cause
may be the explanations are more difficult to predict due to
the bias between domains and there are 21 possible answers.
However, the scenario actions are easier with only 4 possible
options in a simulated town with less complexity than the real
world.

These results show the close-loop verification of our pro-
posal and the domain adaptation of the model trained in a
real dataset in a simulation environment. Fine-tuning in some
recorded sequences in the simulator could improve the results.
Moreover, the exposed results should be taken in caution,
because the users’ sample is low, and they are subjective,
because the supervisors’ bias could influence them. However,
the decisions made in almost all use cases are the expected
ones. VII. CONCLUSIONS AND FUTURE WORKS

This work proposes a driver’s attention-based explainable
decision-making validated on BDD-OIA. It presents a novel
architecture that understands the temporal data to explain and
make a driving decision from a frontal sequence of images.
We base the architecture on driver attention obtained with the
features provided by our ARAGAN Generator and a Spatio-
Temporal Transformer Encoder. The explanation branch has
Multi-Head Cross-Attention to understand the relationship
between both results.

We have carried out an ablation study to show the best
approach using the proposed modules. In addition, we have
compared the architecture with other state-of-the-art archi-
tectures obtaining on par results for action and the best for
explanation. It outperforms the tested architectures, showing
the best explanations for all the options in the literature.

The driver’s attention helps the driving decision’s visual
context, resulting in a comprehensive vehicle-to-driver interac-



TABLE VI: Qualitative results explained for Figure 3. Correct predictions Incorrect predictions

Figure Action Explanation Comments Attention maps commentsPre GT Pre GT

3(a)
Forward

Stop
Right

Forward
Right

Follow traffic
Obstacle: car

Obstacles on the left lane

Follow traffic
Traffic light is green

Obstacles on the left lane

The model does not detect
the traffic light and predicts
to stop due to an obstacle.

It focuses on the car ahead
and on obstacles in the left

lane.

3(b) Stop Stop
Obstacle: car

The traffic light
Solid line on the left

Obstacle: car
Solid line on the left

The model mispredicts the
traffic light due to night

conditions.

It focuses on the vehicle’s
brake lights, which provide

information about the
braking event.

3(c) Stop Stop

The traffic light
No lane on the left

Solid line on the left
Obstacles on the right lane

The traffic light
No lane on the left

Solid line on the left
Obstacles on the right lane

Perfect prediction.
It focuses on the current lane
because there is no relevant

traffic on it.

3(d) Forward Forward
Follow traffic

No lane on the left
Obstacles on the right lane

Follow traffic
No lane on the left

Obstacles on the right lane
Perfect prediction.

It focuses on the vehicle in
front, but not on the right

one.

3(e) Stop Stop Obstacle: car Obstacle: car
Obstacle: person/pedestrian

The model understands that
the pedestrian on the right is

not an obstacle and
mispredicts it.

It focuses on the vehicle
ahead and the possible new

path of the ego-vehicle.

TABLE VII: Comparison between the predicted decisions and explanations in some labelled sequences.

Comparison Action Explanation
F1allF S L R mF1 F1all mF1 F1all

Against the drivers’ questionnaire 1 1 0.67 0.67 0.83 0.86 0.16 0.43 0.64
Against all possibilities 0.67 0.80 0.50 0.81 0.69 0.81 0.18 0.46 0.64

tion that can forecast decision-making. This capacity can assist
a human driver to take decisions or facilitate the learning of
autonomous driving.

We have conducted a proof of concept of the proposed
algorithm in a simulation environment where the output model
is provided to drivers to assist them during driving in a close-
loop, acting as a copilot. The results were compared with the
driver’s decision and the explanation of that decision obtaining
expected results.

In the near future, we intend to carry out a full investigation
of the proposed model using an alternative dataset. This will
require re-labelling. We also want to expand our simulation
experiment with more users and scenarios.
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F. Arango, Á. Llamazares, and L. M. Bergasa, “How to build and
validate a safe and reliable autonomous driving stack? a ros based soft-
ware modular architecture baseline,” in 2022 IEEE Intelligent Vehicles
Symposium (IV), pp. 1282–1289, IEEE, 2022.

[4] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, “Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,” in 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 8806–8813, IEEE, 2021.

[5] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and
A. Kendall, “Learning to drive from simulation without real world
labels,” in 2019 International conference on robotics and automation
(ICRA), pp. 4818–4824, IEEE, 2019.

[6] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the
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versity of Alcalá. Currently he is a PhD candidate in
Robotics and Artificial Intelligence in the RobeSafe
research group (Department of Electronics, Univer-
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Alcalá (UAH), Madrid, Spain. He is Full Professor
since 2011 and Director of Digital Transformation
since 2022 in this university. From 2000 he had
different research and teaching positions at the UAH.
He was Head of the Department of Electronics
(2004-2010), coordinator of the Doctorate program
in Electronics (2005-2010), Director of Knowledge
Transfer at the UAH (2014-2018), and Director of
the Committee for the Strategic Plan of the UAH

(2019-2022). He is author of more than 280 refereed papers in journals and
international conferences. His research activity has been awarded/recognized
with 28 prizes/recognitions related to Robotics and Automotive fields from
2004 to nowadays. He ranks 65th among Spanish researchers in Computer
Science (2022). He was recognized as one of the most productive authors in
Intelligent Transportation Systems (ITS) (1996-2014). He was a Distinguished
Lecturer of the IEEE Vehicular Technology Society (2019 - 2021). He
received the Institutional Lead Award 2019 from the IEEE ITS Society for the
longstanding work of his research group. He is Associate Editor of the IEEE
Transactions on ITS from 2014 and he has served on Program/Organizing
Committees in more than 20 conferences. His research interests include driver
behaviors and scene understanding using Computer Vision and Deep Learning
for Autonomous Driving.

Manuel Ocaña is a Associate Professor at the De-
partment of Electronics of the University of Alcalá.
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