
Change Detection Tool based on GSV to help DNNs
training

Carlos G. Huélamo1, Pablo F. Alcantarilla2, Luis M. Bergasa1 and Elena López1

1 Deparment of Electronics, University of Alcala, Spain,
carlos.gomezh@edu.uah.es luism.bergasa@uah.es elena.lopezg@uah.es

http://www.robesafe.es/personal/bergasa/
2 SLAMcore Ltd, London, United Kingdom,

pablofdezalc@gmail.com,
http://www.robesafe.es/personal/pablo.alcantarilla/

Abstract. We present a system to carry out the automatic detection of structural
changes through a Deconvolutional Neural Network (DNN) in images synthe-
sized from panoramas provided by an online and open source map tool, Google
Street View (GSV). Our approach is motivated by the need of more efficient and
frequent updates on large-scale maps for autonomous driving applications. To
train and evaluate our DNN we build a geolocation database, an order of magni-
tude larger than other existing datasets, based on pairs of images and their corre-
sponding ground truth that shows changes detection over time. A tool has been
implemented to guide manual annotation of changes using panoramas all over the
world. The tool chains the panoramas and depth maps creation, the image synthe-
sis and the labelling synthesized images generating their groundtruth. Finally, a
DNN has been trained to automatically detect changes validating our methodol-
ogy by using the obtained dataset, yielding better results that other state-of-the-art
approaches.

Keywords: Google street view, Change detection, DNN, Keypoint, Training/Validation
instances, Matching

1 Introduction

When viewed at the scale of cities and over periods spanning seasons or years, we
realized that the urban visual landscape is a highly dynamic environment, with many
navigational signs such as buildings, traffic signs and other structures located at both
sides of the road being highly added or removed [1] [2]. From the point of view of
an autonomous driving system, keeping an updated map of certain places of interest is
essential. The higher the frequency with which maps are updated, the more robust the
navigation system will be.

In this work we address the problem of efficient maintenance of a map by detect-
ing structural changes using a powerful tool made available to the public, online and
totally free such as Google Street View (GSV). The greatest advantage of using GSV
is that structural changes over the years all over the world can be recovered by using
the different laps of the Google Car in the same places. This information can be very
interesting for historical, engineering, architectural (cadastres) or sociological analysis,
among others. According to driving applications, keeping maps up-to-date is not only

2 Carlos G. Huélamo et al.

useful for robust navigation, but can also provide benefits in monitoring the availability
of parking spaces or road closures and deviations due to road works. Detecting struc-
tural changes in urban environments from GSV images is a challenging problem, as
illustrated in Figure 1.

Fig. 1. Examples on images that present challenging changes generated from Google Street View,
taken from our dataset. Left and right columns show a pair of images (older and newer ones), both
being as aligned as possible.

Note that all examples in Figure 1 assume changes in luminosity, weather and sta-
tion, and what makes it even more challenging is the point of view.

Images taken at different times show a great variability that can be induced by struc-
tural changes (construction/demolition of buildings/traffic signals, among others), but
also due to nuisances generated by changes in point-of-view (the main problem in this
work), environmental conditions (luminosity, weather or season) or dynamic changes
(pedestrians, vehicles or vegetation). The main task of this work is the detection of
structural changes. Therefore, in order to successfully distinguish among noises and
real structural changes, the detection method must be able to model both, not-detecting
the first ones and detecting the second ones.

So far, structural changes are manually detected on images, being a very time con-
suming task. For this purpose we present a real powerful tool able to process ge-
olocations all over the world, getting as output pairs of images and its differential
groundtruth (structural changes between pairs of aligned images) in order to serve as
training/validation dataset for neural network implementations.

Based on the current success of Convolutional Neural Networks (CNNs) in differ-
ent image processing task: image classification [3], semantic segmentation [4] and site
recognition [5], our tool has been validated by using a deconvolutional deep architec-
ture [6] in order to detect structural changes. This DNN, shown in Figure 2, takes as
inputs a pair of aligned images of the same geolocation and returns a highlight of the
structural changes present between both based on pixel-wise classification.

The main contributions of our paper are the following:

Change Detection Tool based on GSV to help DNNs training 3

1. We propose a powerful tool that combines an on-line and open source map tool
such as GSV and a self-code able to process geolocation databases, obtaining a dataset
useful to train a Deconvolutional Neural Network in the task of detecting structural
changes.

2. We provide a new dataset for the task of detecting urban changes that presents an
order of magnitude larger than other existing datasets. In addition, it contains challeng-
ing landscapes, due to variations of light, weather or seasons.

3. We validate our tool and dataset by using an improved deep deconvolutional
architecture compared to previous works [7] that significantly improves the results of
change detection with hand-crafted descriptors [8][9][10] and a CNN-based approach
[11] on the street view change detection task.

Fig. 2. DNN architecture adopted throughout this work.

2 Change detection tool architecture

Image-based change detection is a major problem in robotics and computer vision. This
detection can increase the efficiency of maintaining a 3D map by updating only the
areas of change [12] or allowing a system to learn about the nature of objects in the
environment by segmenting while they are changing [13].

In order to train the DNN, our tool must generate training/validation instances, con-
sisting in two aligned RGB images of the same place in different time and a groundtruth
image with the structural differences between the two images. Flowchart 3 shows the
architecture followed in our tool. As inputs, it takes two different in time links for the
same geolocation. As output, it returns training packages constituted by pair of aligned
images (from where the DNN will highlight the main structural changes perceived) and
its differential groundtruth in order to validate the results.

4 Carlos G. Huélamo et al.

2.1 Creating the URL database

The first step is to obtain two images for the same geolocation at different times. The
conditions that should have the geolocation (both situations included) must take into
account these requirements: Low or no presence of pedestrians, vehicles and vegetation,
little difference in brightness and moderate structural changes in order to carry out the
subsequent extraction of keypoints and alignment. These structural changes should not
reach the stage where is impossible to realize if both images correspond to the same
information. Figure 4 shows the GSV interface with the option of the time machine

Fig. 3. Flowchart adopted in our tool.

framed in a red square. The user can obtain two different in time links for the same
geolocation (eg: March 2015 and February 2017). After that, these links are stored in
a geolocation database linked to our application. For that reason, if an user modify the
database, the tool automatically will detect the change and operate in an updated way.

Notice that the more effective the search of geolocations (better coincidence in po-
sition and camera orientation), the more coincident will be the information represented
in each pair of images, so the easier and more useful will be these images in the training
process.

Fig. 4. GSV interface. Framed in a red box, represents the time machine that allows the user to
navigate through different for the same geolocation.

Change Detection Tool based on GSV to help DNNs training 5

2.2 Creating the panoramic image

Both panoramic image generation and its depth map are based on the three-dimensional
reconstruction of cities from GSV [14]. GSV does not provide the user with a panoramic
image, but thanks to these previous geolocation links we must perform a panorama re-
construction by using an API provided by GSV:

https://geo0.ggpht.com/cbk?cb client=maps sv.tactile&authuser=0&hl=en&panoid=%s&
output=tile&x=%d&y=%d&zoom=3

The arguments to be introduced to the API are the panorama identifier (or panoid)
and the horizontal (x) and vertical (y) position of the specific tile we are analyzing. By
default, GSV divides the panorama into 21 tiles, grouped into 7 columns and 3 rows.
As illustrated in Algorithm 1, introducing both panoid and a row and column identifier
(ix, iy), rows and columns are traversed and each tile analyzed for a given geoloca-
tion. Notice that when representing the information of each tile into the panorama, the
function Ipan(ix, iy, :) = im means that this portion of the panorama adopts the whole
tile information (512 x 512 pixels) including the RGB channels. Finally, panorama di-
mensions are 1536 x 3584 pixels. Figure 5 shows an example of estimated panorama
reconstruction, where the panoramic projection of the spherical image caught by GSV
car be perfectly seen.

Algorithm 1 Computing the panorama in function of chosen resolution
Input: Panoid
Output: Estimated panorama reconstruction
1: for ix = 0 −→ xtiles - 1
2: for iy = 0 −→ ytiles - 1
3: st url = sprint f (′htt ps : //geo0.ggpht.com/cbk?cb client = maps sv.tactile&authuser =

0&hl = en&panoid = %s&out put = tile&x = %d&y = %d&zoom = 3′, panoid, ix, iy);
4: im = imread(st url);
5: Tile composition:

ypos = iy · tile height +1−→ (iy+1) · tile height;
xpos = ix · tile width+1−−→ (ix+1) · tile width;

6: Ipan = (xpos,ypos,:) = im;

2.3 Computing the depth map

Now that we have the panoramic image, we need to retrieve its corresponding depth
map. Google Maps REST API lets us to download a depth map JSON representation
from the following link:

https://maps.google.com/cbk?output=json&cb client=maps sv&v=4&dm=1&pm=1&ph=
1&hl=en&panoid=%s(3)

If we decompress the downloaded file it can be observed an alphanumeric file that con-
tains the distance from the camera to the nearest surface for each pixel of the panoramic
image. After decoding from Base64 data, transforming into UINT 8-bits array and then

https://geo0.ggpht.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid=%s&output=tile&x=%d&y=%d&zoom=3
https://geo0.ggpht.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid=%s&output=tile&x=%d&y=%d&zoom=3
https://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&ph=1&hl=en&panoid=%s (3)
https://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&ph=1&hl=en&panoid=%s (3)

6 Carlos G. Huélamo et al.

parsing the raw data in order to obtain the header information (that contains the number
of planes, width and height of the decompressed depth map). This header information
is pretty useful since parsing again its values we realize that each pixel of this 512 x
256 grid corresponds to one of these planes (adjacent pixels with the same depth are
contained in the same plane), each plane featured by its normal vector and minimum
distance to the camera, respectively plane.n and plane.d in Algorithm 2. As mentioned
above, the panorama is reconstructed by using spherical image caught by GSV. By Eu-
ropean agreement, considering spherical coordinates, ϕ angle or azimuthal angle goes
from 0 to 360 degrees (0 to 2π radians). On the other hand, θ angle or colatitude an-
gle goes from 0 to 180 degrees (0 to π radians). Notice that an offset of π

2 is added
to azimuthal angle in order to obtain a more realistic representation. The variable ur in
Algorithm 2 represents the vector that joins a given pixel with the center of the camera,
that is, the vector to transform our spherical coordinates into cartesian coordinates. To
determine the depth of each pixel, it must be calculated the intersection of a ray that
starts at the center camera [14] (whose vector is ur) and its corresponding plane. It must
be taken into account that if planeIndex is equal to 0, the depth associated to that pixel
will be maxDepth (input parameter). Otherwise, if planeIndex is higher than 0, the as-
sociated depth will be the absolute distance from the center of the camera to that pixel,
represented by pixdistance, as illustrated in Algorithm 2. Iterating for all planes (all
pixels per plane), we can compute our depth map as a bidimensional array of 512 x 256
elements each one 32 bits length. Figure 5 shows an example of depth map generation
based on panoramic projection of the spheric image caught by GSV.

Algorithm 2 Computing the depth map
Input: Header, planes
Output: Estimated depth map
1: depth = zeros (header ·height,header ·width)
2: for h = 0 −→ header.height - 1
3: for w = 0 −→ header.width - 1
4: planeId←− index [h ·header.width+w+1] ;
5: ϕ ←− 2π · header.width−w−1

header.width−1 + π
2 ;

6: θ ←− π · header.height−h−1
header.height−1 ;

7: ur←− [sin(θ) · cos(ϕ),sin(θ) · sin(ϕ),cos(ϕ)]
8: If planeId > 0 then

plane←− planes [planeId];
t = plane·d

ur·plane.n ;
pix camera vector←− v · t;

pix camera distance←−
√

pix camera vector · pix camera vector′;
depthMap [y ·w+(w− x−1)]←− pix camera distance;

9: else
depthMap [y ·w+(w− x−1)]←− maxDepth;

2.4 View synthesis

After elaborating the panoramic image and associated depth map a binary differential
groundtruth could be generated in order to train the DNN [15]. However, previously
images must be aligned. To do that we synthesize images from the panorama, using the

Change Detection Tool based on GSV to help DNNs training 7

panoramic image and its depth map (Figure 5), because is easier to implement structural
changes in smaller images and geolocation efficiency is a critical point.

This synthesis pretends to deal with the problem of visual shift and visual recog-
nition of the place at large-scale where the scene suffers important changes, such as
illumination, wear through time or explicit structural changes.

Planar structure of the depth map provides a really coarse 3D structure of the scene
that will be represented in future synthetic views. Nevertheless, its precision is good
enough for our purposes. The main objective of synthesizing both panoramas is to
obtain pairs of images with approximately the same field of view so as to appreciate
possible changes.

The flowchart adopted by our tool, shown in Figure 3, defines a feedback process in
relation with the view synthesis process. First, an initial synthesis of the first panorama
is carried out. Second, a global offset alignment is calculated and applied to the sec-
ond panorama with the purpose of this second panorama with the same point-of-view
of the first one. An individual extra offset is calculated, if required, based on matching
techniques from each pair of images (from first and second panorama) in order to align
them horizontally as best as possible. The synthesis process is explained in detail in
paper [15]. For our purposes, a 5 degrees pitch angle and a field of view of 35 degrees
are considered for our synthetic images from the center of the panorama. Notice that
really these synthetic images do not exist but there are created by using GSV informa-
tion. This is one of the highest contributions of this paper because our tool is able to
generate different point-of-view images in an easy way. With the purpose of aligning

Fig. 5. Inputs for view synthesis. Left side, generated panoramic image. Right side, associated
depth map.

both panoramas with a global offset, the tool is able to return the first panorama initial
column from where the view synthesis is going to start, that is, zero degrees in our yaw
vector, that represents the array that stores the view synthesis initial angles in spheri-
cal projection. In order to obtain a precise global offset alignment the tool stores the
polyline manually drawn by the user, which must correspond to the same information
that showed in the first initial column. An example can be observed in Figure 6. Global
alignment is based in the following equation:

Global o f f set =
mean(User line(:,1))−mean(in col)

ImWidth
·360

As mentioned, ImWidth is equal to the panorama width, in this case 3584 pixels. This

8 Carlos G. Huélamo et al.

equation represents the equivalence in degrees between the horizontal offset presented
in both panoramas and the projection of the panorama over a horizontal plane. If the
global offset was negative (red column more to the right than blue column), it must be
performed a positive anti-offset (adding the corresponding degrees to the heading angle
of the camera). Otherwise, a negative anti-offset is carried out. Pitch angle and field of
view are the same in both cases.

Fig. 6. Global alignment interface. It can be seen in red the first panorama initial column, calcu-
lated by the tool, and the second panorama initial column, drawn by the user.

2.5 Individual pair images alignment

Despite the view synthesis process is generated from globally aligned panoramas, it is
not weird finding these camera points-of-view presenting strong displacements in terms
of rotation and/or rotation. To ensure a fine alignment, it is convenient to individually
align each pair of images by using matching techniques.

The previous global alignment is calculated determining the difference between ini-
tial columns. On the other hand, this additional individual pair images offset is cal-
culated determining the arithmetic average among horizontal differences of theoretical
good pairs of inliers (Algorithm 3) validated after the M-SAC and parallel filter (Algo-
rithm 4).

With this double offset correction (global and individual offset) these pair of im-
ages are well aligned. However, in order to generate in an easier way the differential
groundtruth, second panorama synthetic views are generated again, as illustrated in
Flowchart 3, by using a homogeneous transformation to correct errors in terms of rota-
tion or vertical translation. Notice that these homogeneous transformed images will not
be introduced into the network but it will be useful in order to generate the differential
groundtruth.

To carry out both alignments (individual and homogeneous transformation), some
keypoints must be found in both images of each pair of images, matching those that
correspond to the same information. Three keypoints detection techniques are applied,
such as Harri’s corner detector [16], SURF technique (Speed-Up Robust Feature) and
SIFT technique (Scale-Invariant Feature Transform) [9]. Depending on three differ-
ent techniques instead of only one provides us a greater flexibility facing condition

Change Detection Tool based on GSV to help DNNs training 9

changes, such as rotation/translation of the point of view, different illumination, veg-
etation or season. After obtaining these required keypoints, a M-SAC (M-Estimator

Algorithm 3 Checking individual offset
Input: Validated pair of inliers, Image width
Output: Individual offset alignment
1: Sum of individual offsets:

for i = 0 −→ n = lenght(inliers pairs)
num(i) = second panorama inlier(i)− f irst panorama inlier(i)

Image width ·360;
f inal num = f inal num+num(i);

2: Individual o f f set alignment←− o f f set angle = f inal num
n ;

SAmple and Consensus) filter is applied to remove the outliers. The main advantage
of M-SAC filter versus the classic RANSAC (RANdom SAmple Consensus) technique
[17] is that RANSAC technique can be sensible to the chosen threshold that determines
which pair of keypoints is valid facing to the whole set of keypoints or not. For that
reason, M-SAC variant is used based on evaluating the set of pairs quality calculating
its probability. However, after checking some panoramas, we observed that after apply-
ing this M-SAC filter, just with two pair of erroneous keypoints outliers, the evaluated
individual offset was really different from the real one and even after the second stage
of this feedback (homogeneous transformation).

For that reason, we create a parallel filter based on reinforcing outliers discard,
based on the Algorithm 4. It can be proved that if the second panorama section is
located following the first one (both presenting 640 x 480 pixels, RGB images and
groundtruth dimensions) can be considered a vector relating the second panorama sec-
tion keypoint (end) and its counterpart in the first panorama section (origin). With ele-
mentary trigonometry the module and angle of this vector can be calculated.

Considering the module and angle of the initial vector characterized as our refer-
ence, a pair of keypoints will be validated if its module and angle is adjusted under
established tolerance in relation with angle and module conditions. In order to validate
the theoretical purged inliers after M-SAC filter, all keypoints vectors must be validated.
Otherwise, even just one of evaluated inliers is defective, the combination among de-
tection techniques (Harris, SURF and SIFT) and different homogeneous transformation
applying the M-SAC filter (similarity, affine or projective) will do the inlier is automat-
ically discarded. It can be summarized on a 3 (detection techniques) x 3 (homogeneous
transformations) quality matrix. If the combination was discarded by the parallel filter,
the position will be zero in the matrix. In any case, this matrix element will store the
number of resulting pairs of inliers after applying M-SAC filter.

When the matrix is totally filled, it is ordered from highest to lowest number of
inliers, considered in this work as the main quality parameter. The greater the number of
matched pairs, the greater the accuracy of the estimated transformation. If exist four or
more elements non-zero, there will be chosen the three highest values. A great checked
matching example is observed in figure 7. Notice that the number of keypoints in the
homogeneous transformation stage tends to be larger due to the extraction is carried
out now with both images horizontally aligned as far as possible. Figure 8 shows an
example of progressive alignment. First and second row show original first and second

10 Carlos G. Huélamo et al.

synthesized panorama views. Third row shows second synthesized panorama view after
horizontal alignment and fourth row shows second synthesized panorama views after
applying homogeneous transformation when required. Be aware that middle column
(second pair of images) has such amount of change in point-of-view that neither the
global alignment offset nor individual alignment offset by using keypoints can correct
the initial yaw angle, so this pair of images would be discarded.

Fig. 7. Recommended alignment interface. It can be observed that results are completely coherent
and successful.

Algorithm 4 Validation by using parallel filter
Input: Estimated keypoints pairs
Output: Alignment validation
1: Resulting keypoints pairs after M-SAC filter are taken.
2: Reference point calculation:

k(1)=(second.keypoints.Location.x + 640)-(first.keypoints.Location.x);
l(1)=(second.keypoints.Location.y + 640)-(first.keypoints.Location.y);

3: The first pair represents the reference absolute distance and reference angle:
module(1) =

√
k(1)2 + l(1)2;

angle(1) = 360
2·π · arcsin(l

module(1));

4: Alignment validation depending on manual set tolerances:
for i=2 −→ index(n)

module(i) =
√

k(i)2 + l(i)2;
If (module(i) inside module tolerances then −→Calculate angle(i);

If (abs angle inside angle tolerances) then −→ cont ++;

2.6 Differential groundtruth

Labeling represents the last stage of our application. By using Liblabel Matlab tool
created by Autonomous Vision Group of the University of Tübingen [18], we are able
to label in an easy way structural changes that span from road repairements to facades,
traffic signals or construction/demolition of new buildings. This lasts interface lets the
user adding/removing a label or even generating the groundtruth at the same moment in
order to check if a right semantic segmentation has been carried out.

Change Detection Tool based on GSV to help DNNs training 11

Notice that in this work we will label in a mono-class segmentation way: There is
structural change (taking into account its several classes) or not, not distinguishing in
several classes which would correspond to a multi-class segmentation. Figure 9 shows
main structural changes labeled throughout this work, being the three most represen-
tative classes: Repairements/maintenance (36 %), large structural changes (21 %) and
combination among different classes (21 %). To a lesser extent, facades (10 %), non-
presence of changes (9 %) and singular changes in traffic signals (3 %) are found. It
can be observed that the percentege of repairements is bigger than others because there
were more structural changes related to demolition/construction of buildings rather than
traffic signals.

Fig. 8. Progressive alignment results performed by our application.

An important contribution in this work is the incorporation of a link between the
tool and output database that contains the polygon coordinates of those pair of images
from where the groundtruth has already been generated. Thus, if we try to label a pair of
images that were previously labeled in order to improve the quality of the groundtruth
or even labeling to a complex multi-class segmentation, last information remains unless
it is removed, speeding up the process.

3 Validation results
So as to validate our proposed tool and the dataset obtained with it, we trained and
validated a DNN proposed by one of the authors and we compare its performance with
other works of the state-of-the-art. First, we divided the obtained instances dataset into
a training set of 844 instances and a validation set of 233 instances. The split among se-
quences was chosen at random, with whole image descriptor matching used to confirm
that test and training sets did not contain similar looking sequences.

In order to elaborate this training/validation instances dataset, 559 geolocation links
where collected all over the world, then processed 354 of them by using the tool (as
illustrated in Table 1) with the intention of generating a total of 354 · 2 · 3 = 2,124 syn-
thetic images, because each link represents the same place in different time. From each

12 Carlos G. Huélamo et al.

place three synthetic views are obtained, as shown throughout this work. Notice that
is much more convenient talking about 354 · 3 = 1,062 images pairs rather than 2,124
synthetic images because an image pair is the main element of each training/validation
instance. Those image pairs that presented strong misalignment in terms of rotation and

Fig. 9. Main structural changes detected. Most of them are repairements/maintenance tasks and
secondly medium size structural changes.

translation, even after global and individual offset, were discarded in order not to intro-
duce unnecessary noise to DNN. So, from a total of 1,062 theoretical training/validation
instances we got 909 effective instances (as average, 4 minutes distributed in analyzing
and labeling each pair) in order to train and test the DNN, obtaining an 85.59 % of ef-
ficiency. In the instances obtaining process our dataset presents an order of magnitude
larger that previous databases of the state-of-the-art, as shown in Table 1.

Table 1. Comparison of existing Street-View Change Detection Datasets

Dataset #Sequences #Pairs #Type
Taneja et al. [12] 4 50 Perspective
Sakurada et al. [11] 23 92 Perspective
Sakurada and Okatani [19] - 200 Panoramic
VL-CMU-CD [7] 152 1,362 Perspective
Current Dataset (Ours) 559 (354 used) 909 Perspective

In addition, with the purpose of helping prevent overfitting during training we used
data augmentation by adding pairs of images containing both no changes of interest
and artificial changes (by adding synthetic changes to existing images) [20]. This place
recognition method has shown [21] impressive performance to recognize images from
the same place under different weather and lighting conditions, taking into account that
there are no large structural changes between both images, providing a pretty useful
source of data augmentation for structural change detection systems.

These additional images were added in an approximate ratio of 25 % augmented
changes and 75 % real changes, presenting the training dataset a total amount of 909 +
300 = 1,209 instances.

Change Detection Tool based on GSV to help DNNs training 13

We compared our DNN called CDNet against multiple state-of-the-art techniques:
Hand-crafted descriptors such as DAISY [10], DASC [8] (recently introduced as dense
descriptor for multi-spectral and multi-modal correspondences) and dense SIFT [9].
Furthermore, our CDNet is compared to a pre-trained CNN for image recognition com-
bined with superpixel regularization and sky segmentation [19].

(a) TNR vs FNR (b) TPR vs FPR (c) Recall vs Precision

Fig. 10. Validation test results after applying the architecture of the DNN to our dataset

Quantitative comparison: Figure 10 shows a comparison of the CDNet based on
our instances obtaining process versus previous baseline methods. We show True Neg-
ative Rate (TNR) or specificity versus False Negative Rate (FNR), True Positive Rate
(TPR) or Recall versus False Positive Rate (FPR) and Precision (Pr) versus Recall (Re)
graphs. These are defined as follows: TPR or Recall: TP/(TP+FN), FPR: TP/(TP+FN),
Pr: TP/(TP+FN) and f1 Score: 2 · Pr · Re/(Pr + Re).

Table 2. Quantitative comparison versus baseline methods at FPR = 0.10

Method Pr Re F1-Score
Dense SIFT [9] 0.1133 0.1078 0.1105
DAISY [10] 0.1112 0.1063 0.1087
DASC [8] 0.1944 0.1799 0.1868
CNN (Sakurada and Otakani [19] 0.3671 0.3000 0.3302
CDNet (Ours) 0.6078 0.5889 0.5982

Table 2 compares our method over different change detection metrics for a FPR of
0.10. This same value was used in the qualitative comparison, as illustrated in Figure 11.
Notice that our improved DNN architecture outperforms other methods on all metrics
by a significant margin, being these best results highlighted in bold.

Qualitative comparison: Figure 11 shows qualitative results after applying our
improved DNN to validate instances generated by the tool, with a FPR of 0.10. It is
illustrated the predicted change maps of some methods for randomly selected validation
image pairs. The performance of the DNN over these validation instances generated by
the tool is quite better than other methods, both in detecting when there is structural
change (from S1 to S5 row in Figure 11) and no detecting when there is no structural
change (S6 and S7 in Figure 11), what shows both great performance of the network
and great performance of the tool in the task of training and validating the DNN. Notice
that changes due to vegetation, pedestrians or vehicles are not labeled.

14 Carlos G. Huélamo et al.

4 Conclusions and future works

We have created a tool able to process links from Internet with GSV and generate
aligned pair of images from the same geolocation but different time situations as well
as a binary groundtruth able to detect structural differences between the pair of im-
ages. In addition, we create a new dataset in order to train and validate a DNN able
to detect street-view structural changes. Our method combines panoramic images and
depth maps generation, view synthesis, image alignment and manual labeling. Taking
into account that the efficiency of our tool is 85.6 %, in relation to the searching and
processing time of the dataset (2 months) results can be considered successful.

Fig. 11. Structural changes detection by using validation instances and different approaches.
Changes detected are labelled in red.

Future improvements are the generation of our own depth map from the difference
of pose between two panoramas of the same temporal situation and same geolocation,
an improved camera pose correction in terms of translation in the synthesis process,
the development of a better alignment process in order to increase the DNN labeling
efficiency and the geolocation database to at least ten thousand of links.

5 Acknowledgment

This work has been partially funded by the Spanish MINECO/FEDER through the
SmartElderlyCar project (TRA2015-70501-C2-1-R), the DGT through the SERMON
project (SPIP2017-02305), and from the RoboCity2030-III-CM project (Robótica apli-
cada a la mejora de la calidad de vida de los ciudadanos, fase III; S2013/MIT-2748),
funded by Programas de actividades I+D (CAM) and cofunded by EU Structural Funds.

Change Detection Tool based on GSV to help DNNs training 15

References

1. R. Martin-Brualla, D. Gallup, and S. M. Seitz, “Time-lapse mining from internet photos,”
ACM Transactions on Graphics (TOG), vol. 34, no. 4, p. 62, 2015.

2. K. Matzen and N. Snavely, “Scene chronology,” in European conference on computer vision,
pp. 615–630, Springer, 2014.

3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in neural information processing systems, pp. 1097–
1105, 2012.

4. H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,”
in Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528,
2015.

5. N. Sünderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. Upcroft, and M. Milford,
“Place recognition with convnet landmarks: Viewpoint-robust, condition-robust, training-
free,” Proceedings of Robotics: Science and Systems XII, 2015.

6. G. Ros, S. Stent, P. F. Alcantarilla, and T. Watanabe, “Training constrained deconvolutional
networks for road scene semantic segmentation,” arXiv preprint arXiv:1604.01545, 2016.

7. P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi, “Street-view change detection
with deconvolutional networks.,” in Robotics: Science and Systems, 2016.

8. S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-
correlation descriptor for multi-modal and multi-spectral correspondence,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2103–2112, 2015.

9. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International jour-
nal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

10. E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense descriptor applied to wide-baseline
stereo,” IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 5,
pp. 815–830, 2010.

11. K. Sakurada, T. Okatani, and K. Deguchi, “Detecting changes in 3d structure of a scene from
multi-view images captured by a vehicle-mounted camera,” in Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pp. 137–144, IEEE, 2013.

12. A. Taneja, L. Ballan, and M. Pollefeys, “Image based detection of geometric changes in
urban environments,” in Computer Vision (ICCV), 2011 IEEE International Conference on,
pp. 2336–2343, IEEE, 2011.

13. R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward lifelong object segmentation
from change detection in dense rgb-d maps,” in Mobile Robots (ECMR), 2013 European
Conference on, pp. 178–185, IEEE, 2013.

14. M. Cavallo, “3d city reconstruction from google street view,” Comput. Graph. J, 2015.
15. A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, “24/7 place recognition by

view synthesis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1808–1817, 2015.

16. C. Harris and M. Stephens, “A combined corner and edge detector.,” in Alvey vision confer-
ence, vol. 15, pp. 10–5244, Citeseer, 1988.

17. H. Wang, D. Mirota, and G. D. Hager, “A generalized kernel consensus-based robust es-
timator,” IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 1,
pp. 178–184, 2010.

18. A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3d traffic scene understanding
from movable platforms,” Pattern Analysis and Machine Intelligence (PAMI), 2014.

19. K. Sakurada and T. Okatani, “Change detection from a street image pair using cnn features
and superpixel segmentation.,” in BMVC, pp. 61–1, 2015.

16 Carlos G. Huélamo et al.

20. S. Stent, R. Gherardi, B. Stenger, and R. Cipolla, “Detecting change for multi-view, long-
term surface inspection.,” in BMVC, pp. 127–1, Citeseer, 2015.

21. R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, and E. Romera, “Fusion and binarization of cnn
features for robust topological localization across seasons,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on, pp. 4656–4663, IEEE, 2016.

	Change Detection Tool based on GSV to help DNNs training

