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Abstract. Gaze estimation is a typical approach to monitor the driver attention
on the road scene. This indicator is of great importance in safe driving and in
the design of the takeover control strategy for a Level 3 and Level 4 automa-
tion system. Nowadays, most of eye gaze tracking techniques are intrusive and
costly, which limits their applicability over real vehicles. On the other hand, cur-
rent databases used for gaze validation face the driver attention task focused on
critical situations in simulation but they do not encounter actual accidents. This
paper presents a low-cost and non-intrusive camera-based gaze mapping system
integrating the open-source state-of-the art OpenFace 2.0 Toolkit [1] to visualise
the driver attention simulation on prerecorded real traffic scenes through a heat
map. The proposal has been validated by using the recent and challenging public
dataset DADA2000 [2] which has 2000 video sequences with annotated driving
scenarios based on real accidents. We compare our system with an expensive
desktop-mounted eye-tracker, obtaining on par results and showing it is a good
tool for driver attention monitoring able to be used in the design of take over
systems and driving scenarios awareness systems for automated vehicles.

Keywords: Driver attention, accidental scenarios, gaze estimation, heat map,
computer vision.

1 INTRODUCTION

In last years, important advances have been made in autonomous driving field from
an academic and industrial point of view. According to SAE (J3016), five Levels of
Automation can be applied, achieving the full automation in the Level 5. Nowadays,
we have technologies that can be used to take over the functions normally reserved for
the driver. In Level 1 and Level 2 the driver is still supposed to be fully engaged in
supervising the actions of the vehicle under all circumstances. In Level 3 and Level
4, the driver is freed from supervision, either in limited situations or during the entire
trip. Problems arise at the above levels, because the driver is in-the-loop and not always
aware of what is happening (Level 1 and Level 2) or is out of the loop and needs quickly
to be brought back into the loop for some unexpected reason (Level 3 and Level 4) [3].
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Fig. 1: General Architecture.

In this context of shared control between human and machine, driving in a safety
way requires being ensured that the state of driver is suitable for driving. This is par-
ticularly important when the vehicle requests the driver intervenes in case the driving
scenario is complex. In addition, it is crucial to assess driver’ awareness of driving sce-
nario (e.g. surrounding vehicles or pedestrians) right before the take-over. In conclusion,
evaluating driver’s visual attention is a key task in the development of automated ve-
hicles. Gaze tracking estimation is the common way for evaluating the driver’s visual
attention [4]. In the literature, there are different approaches mainly based on head-
mounted eye trackers [5], [6], [7], active desktop-mounted eye trackers [8] and passive
desktop-mounted cameras [4], [9], [10], [11], [12]. The former provide accurate gaze
information but they are intrusive and costly. The latter are low-cost and non-intrusive
but less accurate. Most of the existing visual attention systems have been validated in
simulation with simple scenes. However, the simulation of driver attention in complex
driving scenarios is rather challenging and highly subjective [2]. The goal of these sys-
tems is to automatically estimate the regions of interest where the driver is looking.
In this sense, acquisition systems and computer vision techniques have gained impor-
tance regarding the traditional human factor approaches focused on driving behavior
understanding using manual tools.

There are different challenging databases to validate driver visual attention in the
state of the art. Recently, the project DR(eye)VE [13] collected 555,000 frames with
driver attention maps. However, only few critical scenes were captured for only one
driver. Berkeley DeepDrive Attention (BDDA) dataset [8] includes 1232 videos with
critical situations in-lab designed. However, the critical situations do not cause true
accidents and in consequence the attention simulation does not explore the dynamic
process from critical situation to actual accidents. DADA2000 dataset [2] is a larger
and more diverse video benchmark with driver attention and driving accident annotation
simultaneously. It contains 2000 video clips with fairly complex accidental scenarios in
diverse weather and lighting conditions.

This paper presents a low-cost and non-intrusive camera-based gaze mapping sys-
tem able to estimate the driver attention simulation on challenging prerecorded traf-
fic scenes through a heat map. Gaze direction is calculated by using the open-source
state-of-the-art OpenFace 2.0 Toolkit [1]. After a slight calibration process and using
a simple projection model, a heat attention map is obtained. Our goal is to implement



Integrating OpenFace 2.0 Toolkit 3

a cheap and user-friendly measurement system able to work as most sophisticated sys-
tems in the localization of accidents over complex scenarios. Our proposal has been
validated by using the recent and challenging public dataset DADA2000 which collects
annotated driving scenarios based on real accidents providing the accident position and
the attention map generated by some users who have watched the scene. We present
some performance results for our attention model and we compare our numbers with
the obtained with an expensive and active desktop-mounted eye-tracker [2] in similar
conditions that the reported by the authors, reaching on par results. From our knowl-
edge, this is the first time a camera-based vehicle-mounted driver attention system is
evaluated in the challenging DADA2000 dataset.

2 SYSTEM ARCHITECTURE

The system architecture is divided in four steps to estimate where the driver is looking
at. These steps are: video acquisition, gaze estimation, visual attention model and heat
map visualization. A general overview of this architecture is depicted in Figure 1.

The complete system is connected using Robot Operating System (ROS). ROS is
a framework that gives communication, standardisation and modularity facilities to the
developed modules, offering an easy connectivity of each module in the general archi-
tecture of our autonomous vehicle.

2.1 Video acquisition

The measurement system consists on a ZED camera. This is an stereo camera, but for
this application only the left lens is used. After a positioning study, the camera is located
on the middle-bottom of the screen in front of the user where the videos are shown,
as we depict in Figure 2. This position provides an optimum working with OpenFace
because the face is frontal and all the facial landmarks, including the eyes ones that are
vital for this application, are correctly acquired.

ZED camera was chosen due to its ROS compatibility. The manufacturer provides a
wrapper to communicate both systems. Another reason was its high working frame rate
(100 fps at VGA), higher that the obtained with an standard web-cam.

In order to emulate the perspective that a driver would have in the real vehicle and
to have a good gaze dynamic behavior, an study about the user’s position with respect
to the screen, as well as a study about the optimal screen resolution and system frame
rate have been carried out in next sections.

2.2 Gaze estimation

We are interested in non-intrusive systems that do not generate rejection nor fatigue
in users and that are able to be used on a vehicle. Therefore, head-mounted eye track-
ers and desktop-mounted eye trackers are refused. Among vehicle-mounted cameras
approaches, several gaze tracking techniques have been proposed in the literature [9],
[10], [11], [12], [4]. OpenFace is one of the most popular open-source facial analy-
sis tools due to its fine performance and robustness. We propose to use OpenFace 2.0
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Fig. 2: Calibration step. The user under test has to watch during 8 seconds 4 points
displayed on the screen

toolkit [1] because it provides facial behavior analysis algorithms including eye gaze.
The tool begins detecting the face. Then, it extracts 68 facial landmarks and estimates
the eyes gaze direction from these landmarks, as shown on Figure 1.

The process uses a Conditional Local Neural Field (CLNF) for detecting the facial
landmark, including eyelids, iris and pupil. Once the eye and the pupils are located,
eye-region data are used to compute the gaze vector for each eye. OpenFace provides
three different eye vectors, one for each eye and a third one for the fusion of both eyes.
In this project the fusion vector is applied. Eye gaze estimation was evaluated on the
challenging MPIIGaze dataset [14] obtaining a mean absolute error of 9.1 degrees per
frame, which can be enough for our application assuming this measurement uncertainty.

2.3 Visual attention model

In our application, gaze vector is used to know where the person under the test is look-
ing. The vector is given as two angles, [θx,θy], regarding the (X,Y) axis in the camera
reference system. This vector is projected on the screen in order to get an attention pixel
through a visual model. To minimize gaze vector uncertainty, a Kalman Filter experi-
mentally adjusted, is implemented over the projection. To emulate driver position in the
real vehicle, and following the same strategy that the authors in [2], the user is placed in
front of a 47” screen, where traffic videos are shown, at a distance of 125 centimetres.
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In this way, his visual field varies between ±24 degrees on the X axis and 27 degrees
on the Y axis. In these ranges the projection model is quite linear. This is the reason
because we propose to use a simple projection model learned in a previous calibration
step in the same way that the done in a touch screen calibration process [15]. We apply a
slight calibration method at the beginning of each experiment that consist on looking at
four points of the screen to get the projection matrix and the limits of the screen where
the test is run.

Calibration method translates the gaze vector into coordinates that accurately rep-
resent the projection of this vector on the screen in pixels. For each calibration point,
the gaze vector ([θx,θy]) is projected on the screen ([X ′k,Y

′
k ]) using the trigonometric

equations shown in equation 2. z is the average distance of the user’s eyes regarding the
camera reference. This parameter is also provided by OpenFace.

z =
zright eye + zle f t eye

2
(1)

(
X ′k
Y ′k

)
=

(
−z · sin(θx)
z · sin(θy)

)
(2)

The matrix A is formed by the projected points (in cm) associated to the 4 screen
points that have been projected during the calibration step (red points in Figure 2) on
camera reference. In this step, these points have to be matched with the known positions
of the calibration points on the screen in pixels ([Xk,Yk]) regarding the screen reference
(top-left corner), which are: [X1,Y1] = [200,200], [X2,Y2] = [200,900], [X3,Y3] = [1700,900],
[X1,Y1] = [1700,200].

A =


X ′1 Y ′1 1
X ′2 Y ′2 1
X ′3 Y ′3 1
X ′4 Y ′4 1

 (3)

To match these points we use a parametric model composed of the coefficients
[αX ,βx,∆x] and [αy,βy,∆y], which transform the spatial space from centimetres to pixel
and change the reference from the camera to the left upper corner of the screen, accord-
ing to the equation 4. 

X1
X2
X3
X4

= A

αX
βX
∆X

and


Y1
Y2
Y3
Y4

= A

αY
βY
∆Y

 (4)

Equation 5 shows how the coefficients are calculated from equation 4.

αX
βX
∆X

= A−1


X1
X2
X3
X4

and

αY
βY
∆Y

= A−1


Y1
Y2
Y3
Y4

 (5)
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After calibration, each attention point is obtained applying the trigonometric projec-
tion of its corresponding vector gaze provided by OpenFace, where Xcm = −z · sin(θx)
and Ycm = z · sin(θy), and the parametric transformation carried out by equation 6.

xpixel = αX Xcm +βXYcm +∆X

ypixel = αY Xcm +βYYcm +∆Y
(6)

2.4 Heat map visualisation

To represent the spatial distribution of the gaze fixations on the screen, we use the com-
mon visualization approach known as heat map. To take into account the trajectory of
the gaze, we integrate the spatial distribution of the fixations within a temporal window
[t-w,t], where t is the current frame and w the number of last frames. This temporal
window has been set to 1 second as done by [16]. In this way, we have 60 samples for
frame in order to generate the heat map. With these samples a Gaussian model is built
to represent the different areas of colour of the heat map, where (Mt = [mx(t),my(t)]) is
the centre of the Gaussian, Ct is the covariance matrix and h(X , t) is the intensity of the
heat map for the pixel (X=[x,y]). In a practical way, we draw ellipses in the heat map
until two times the standard deviation of the Gaussian model.

h(X , t) = e−
1
2 (X−Mt )

T C−1
t (X−Mt ) (7)

3 Experimental Results

This section presents experimental results obtained for our architecture proposal. Eval-
uation is divided in two different subsections in order to compare our results with the
obtained with other state-of-the-art systems.

3.1 Visual attention model evaluation

To evaluate the precision of our driver attention model we have applied the following
testing procedure. After the calibration step, the user has to look at eight points, placed
on different positions on the screen, during eight seconds for each one. To get a more
stable view, the first two second of each point are despised. This procedure has been
done to test the camera parameters, the camera position, the loss of precision by using
glasses and finally the performance with different users. The metric used to evaluate the
accuracy of the tool is the root mean square error (RMSE) of the gaze projection on the
screen and its ground-truth. Accuracy is shown in total and regarding the (X,Y) axis
and is evaluated in percentage, pixels and millimeters.

Camera parameters. To reach optimum results, a previous study about camera pa-
rameters was carried out. In this aspect, resolution and camera frame rate were changed
to test precision for the different options. ZED camera allows four different resolutions
with different frame rates, as we show on Table 1. Performance shows the ability of
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OpenFace to process frames. This test was done only by one user, but to achieve more
robust conclusions each test was repeated 5 times.

Results show that, on the X axis, best performance is get by VGA resolution at 100
frames per seconds. On the Y axis, best performance is get by HD720. In total, best
accuracy is obtained for HD720. In conclusion, this last configuration is taken for the
following tests. Also performance shows that OpenFace is not able to work at 100 Hz
with an VGA resolution.

Table 1: Testing accuracy vs camera parameters on a 1920x1080 screen. Test done by
one person looking at eight points on a screen. Test was done 5 times.

Resolution Frame rate
Acc x Acc y Acc total

Performance (Hz)
% pix mm % pix mm % pix mm

HD2K 15 1,9 36,5 11,4 5,4 57,9 18,1 4,0 77,2 24,1 14,761
HD1080 30 1,4 27,5 8,6 5,7 61,0 19,1 4,1 79,2 24,7 29,378
HD720 60 1,9 36,1 11,3 4,0 43,7 13,6 3,2 60,5 18,9 50,74
VGA 100 0,6 12,3 3,8 4,7 50,2 15,7 3,3 63,7 19,9 74,63

Camera position. Camera position is vital for the system working. Three different
positions compatible with a real car were tested, all of them aligned with the middle
of the screen but at different heights (10, 48 and 78 centimetres over the table where
the screen is placed). Results are shown on Table 2 for the same conditions that the
explained in the before section. The optimal position for the camera is just in front of
the user, but this is not possible in a real car because hides the road scene. Top position
is not allowed because face landmarks are occluded most of the time and the model
does not work properly. Then, bottom position was chosen.

Table 2: Testing accuracy vs camera position on a 1920x1080 screen. Test done by one
person looking at eight points on a screen. Test was done 5 times.

Position
Acc x Acc y Acc total

% pix mm % pix mm % pix mm
Top - - - - - - - - -
Mid 1,9 36,1 11,3 4,0 43,7 13,6 3,2 60,5 18,9
Bot 2,5 48,0 15,0 10,6 114,5 35,8 7,7 147,9 46,2

Glasses Some drivers wear glasses while driving and some other drivers prefer to drive
with sun-glasses. Performance of every gaze monitoring system must be analyzed un-
der these common situations. Commercial applications like Tobii Pro Glasses [17]do
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not work properly because their sensors are on some special glasses and two different
glasses cannot be used at the same time.

In our case, precision will get worse for sure due to the glasses hide some face
landmarks. To evaluate impaired performance three different test were done: no glasses,
with glasses and with sun glasses, in the same conditions that in the before case. Results
are depicted on Table 3. For the sunglasses case, our system does not work because eyes
landmarks are hidden and gaze can not be calculated. For the glasses case, accurate
numbers decrease a little but can be used without problems.

Table 3: Testing accuracy vs glasses on a 1920x1080 screen. Test done by one person
looking at eight points on a screen. Test was done 5 times

Eyes-glasses
Acc x Acc y Acc total

% pix mm % pix mm % pix mm
Free 1,9 36,1 11,3 4,0 43,7 13,6 3,2 60,5 18,9

Glasses 2,5 48,7 15,2 4,6 50,0 15,6 3,7 71,7 22,4
Sunglasses - - - - - - - - -

Precision test Once the best camera parameters and camera position have been found,
it is time to test the accuracy of our model with different users. 25 users were requested
for the tests. Firstly, they were asked to calibrate the tool looking at 4 points as shown
on Figure 2. Age of the users were between 17 and 55 years old and 3 of them wore
glasses during the test.

Results for all of the users can be seen on Figure 3. Red circles indicate the goal
points where the person has to look at. The heat map represents the spatial distribution
of the data, divided in this case in eight different clusters, modelled by a Gaussian
Mixture Model (GMM) of eight Gaussian. The heat map for each Gaussian indicate the
probability of a pixel to belong to each cluster. In theory, the centre of each Gaussian
should be placed over the corresponding calibration point and its covariance indicates
the measurement uncertainty.

Our method achieves about 1.9 % error on the X axis and 4 % error on Y axis, being
bellow the reported by OpenFace for the MPIIGaze dataset (9.1 degrees equivalent in
our case to 19 % on X axis and 34 % on Y axis) [14]. This comparison should be taken
with caution since in our case gaze movements are limited and the number of users who
undergo the test is less.

Results on Y axis are worse due to the number of pixels for the vertical field of view
range is smaller that the corresponding to the horizontal one. Despite these errors are
considerable, they can be enough for our application. Figure 5 shows the error over-
printed on an image with a Crash Object in order to compare scales. As we can see,
in spite of the measurement uncertainty the object is perfectly detected in the frame,
which demonstrate our method can be used to localize accidents in complex scenarios.
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Table 4: Testing accuracy on a 1920x1080 screen. Test done by one person looking at
eight points on a screen. Test done by 25 users looking at eight points on a screen.

Acc x Acc y Acc total
% pix mm % pix mm % pix mm

25 people 1,9 36,1 11,3 4,0 43,7 13,6 3,2 60,5 18,9

Fig. 3: Calibration results. 8 points are displayed on the screen (Red circle). The results
from our output creates 8 Gaussian around the testing points.
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3.2 DADA2000 evaluation

Once shown the potential of our visual attention method to localize objects of a cer-
tain size in an image, we are ready to test it on a challenging video benchmark with
driver attention and driving accidents annotated to evaluate the performance of our pro-
posal to estimate accidents in video sequences. To have a clear idea of the quality of
our method we will compare results with the obtained using an expensive and active
desktop-mounted eye-tracker watching the same videos in similar conditions. Differ-
ent options were raised, such as MIT300 [18], CAT2000 [19], DR(eye)VE [16] and
DADA2000 [2]. The two first ones were discarded because they are not focused on
drivers. Between the two lasts, authors decided to use DADA2000 because it is focused
on real traffic accidents, which are the critical moments to evaluate the driving attention.

DADA2000 was done collecting accident videos from different websites, and it
is composed of 658,476 frames in 2000 videos with a resolution of 1584x660 pixels.
At the time of this work, only half of data is public. Then, we use 1000 videos for
the experiments, which are classified in three groups: training (598 videos), validation
(198 videos) and testing (222 videos). The videos are divided into 54 accident cate-
gories classified into two large groups, ego-car involved and ego-car uninvolved. Videos
are recorded in different environment such as illumination conditions (day and night),
weather (sunny, rainy and snowy) and occasion (urban, rural, highway and tunnel). The
dataset provides the following information: annotated crash-objects position in pixels
per frame, attention map for each frame and temporal window for each accident indicat-
ing the involved frames. Videos are partitioned in three main clips: before the accident,
accident and after the accident, as it is depicted in Figure 4. Also, the accident clip is
divided in three sub-sections for a better analysis (Start, Mid and End).

Fig. 4: Temporal partition of the video. Dividing the accident part in three pieces of
same length to evaluate the results by sections.

Crash Object detection in DADA2000 benchmark To test Crash Object detection,
we employed 4 volunteers who were invited to watch the testing section of the dataset,
composed by 222 videos. For each visualization, the output of our visual attention
model was recorded in a synchronized way with the video. In order to wide the work-
ing field of view, dataset was resized from 1584x660 to 1920x1080 to match it with
the screen resolution used in the experiment. The clips were played at 30 fps to com-
pare our results with the obtained by the authors of DADA2000 [2] in the same terms.
We recorded attention map without temporal aggregation, obtaining two measures per
frame, because our system run at 60 Hz.
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Fig. 5: DADA2000 frame. Crash object circle for 60 and 300 pixels (blue). Error area
(red).

The goal of this test is to localize driver attention on a screen. We use the same
metrics as the authors of the dataset to evaluate this parameter. We measure the distance
between the Crash Object center (ground-truth manually annotated) and the attention
points obtained for each frame. If this distance is below a certain threshold (Th) in pixels
the detection is consider as true and false if it is higher. Figure 5 shows a frame with the
Crash Object an its true detection area, represented by a circle, for a Th equals to 60 and
300 pixels. Performance detection is solved as a binary problem: True, if the attention
point falls inside the circle, and False, if it falls outside. For this work, we only have
tested experiments with the priori information option (with-priori), that means users are
told that they have to find crash-objects in the sequences. With these premises we obtain
two indicators:

– Frame ratio: percentage of frames in each clip section where the attention point
is inside the correct detection area. This is measured frame by frame because the
crash object change with it.

– Success rate: percentage of clips which frame ratio for the entire clip is over 50%.
Clips refers different video sub-sections defined for the accident.

Results for different detection area sizes and a comparison with the numbers pre-
sented by the DADA2000 authors using a Senso Motoric Instrument (SMI) RED250
desktop-mounted infrared eye tracker are shown on Table 5. Our success rate is higher
than the obtained by the DADA200 authors for all the partitions except for the start one
with a threshold of 60 pixels. However, our numbers are obtained for 4 users per video
instead of the 5 they argue to use, even though they also argue every video was watched
by at least two people, indicating that not all of were watched by the 5 users. For a 300
pixels threshold we have obtained more than 90 % of success rate for start and mid
sections of the accident event. The end section always get less success rate because,
at this part of the video, users normally fix their attention in other part of the scene.
Results are or par or even better than the claimed by the authors of DADA2000 but it
must be remarked that our experiment has been recorded on a 47 inch screen instead
on a 24 inch screen. Results shows that early accident detection is worse than for the
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middle partition because users take some time to react. In the last part of the accident
some users under test keep their eyes out the accident and the late accident detection
gets worse.

Figure 6(a) shows the success rate and frame ratio curves, obtained for a threshold
between 60 and 1000 pixels and for the three sub-sections presented in the accident
partition, in the same way that the shown by the dataset authors in [2]. Our results
outperform the obtained for our baseline for all the analyzed sub-sections.

Table 5: Success rate: percentage of number of clips that frame ratio for the entire clip
is more than half of the frames of the entire accident scene.

System Ours (Based on OpenFace) DADA2000
Th (pixel) Start Mid End Start Mid End

60 9,4% 18,8% 10,9% 10,8% 10,7% 5,1%
100 39,1% 48,4% 29,7% 34,4% 30,8% 22,6%
160 76,6% 78,1% 57,8% 59,0% 57,2% 49,1%
200 81,3% 87,5% 65,6% 68,0% 67,2% 60,1%
260 90,6% 90,6% 71,9% 76,6% 76,6% 71,5%
300 90,6% 93,8% 78,1% 80,0% 81,3% 76,6%

(a) Success rate obtained by the system pro-
posed.

(b) Frame ratio obtained by the system pro-
posed.

Fig. 6: Results obtained on the testing

Heat attention map on DADA2000 Heat attention map is a good visualization tool to
represent where a user is looking when he is driving. To represent the trajectory of the
gaze, a temporal window is used. For the presented experiments the temporal window
has been set to 1 second, like in the DR(eye)VE project.

Figure 7 shows the way this experiment has been done. The user is looking at the
accident while the camera is recording him from a lower position. The attention map
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Fig. 7: Heat attention map. First column shows the DADA2000 attention map. Second
column shows our heat attention map.

Fig. 8: Attention map with temporal aggregation for the frame t, t-1 s and t-2 s.
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generated by the samples is shown. As we can see, our attention map is included in the
baseline map, showing the usability of our tool but using a cheaper and non-intrusive
sensor.

Figure 8 shows how temporal aggregation on heat attention map can help to pre-
dict where the accident will happen. The figure shows 2 accident situations with their
corresponding maps in the image where the accident takes place as a heat map. Images
displayed are with a temporal difference of 1 second. As we can see, the heat map is
able to correctly predict all the crash objects.

4 CONCLUSIONS AND FUTURE WORKS

This paper presented a new low-cost and not intrusive method to get visual atten-
tion maps, based on a passive vehicle-mounted camera, as an alternative to the head-
mounted eye-tracker and the active desktop-mounted eye trackers (our baseline), which
are intrusive and costly. Our proposal has been validated in the challenging public
dataset DADA2000, showing on par results with our base line in similar conditions.
This fact confirms our technique is a good tool for driver attention monitoring able to
be used in the design of take over systems and driving environment awareness systems
for automated vehicles.

As future works we plan to implement a more sophisticated attention model, to
obtain saliency maps with temporal windows on challenging driving scenarios using
deep-learning techniques and to test our proposals in our simulator based on CARLA
[20].
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