
Towards Fine-Tuning of VQA Models in Public Datasets

Miguel E. Ortiz1, Luis M. Bergasa1, Roberto Arroyo2, Sergio Álvarez2, Aitor Aller2

1 Electronics Department, University of Alcalá (UAH), Spain
eduardo.ortiz@edu.uah.es, luism.bergasa@uah.es

2 Nielsen, Spain
{roberto.arroyo,sergio.alvarezpardo,aitor.allerbeascoechea}@nielsen.com

Abstract. This paper studies Visual Question Answering (VQA) topic, which
combines Computer Vision (CV), Natural Language Processing (NLP) and Knowl-
edge Representation Reasoning (KRR) in order to automatically provide natural
language responses to questions asked by users over images. A revision of the
state of the art for this technology is done, and among the different approaches
we select the model known as Pythia to build upon it, because it is one of the
most popularized and successful approaches in VQA Challenge. We study the
original Pythia implementation with the goal of finally applying it to eCommerce
use cases. Recently, an exhaustive breakdown was done to the Pythia code by
Facebook AI Research. We choose to use this more current framework after con-
firming that the two implementations had the same characteristics. We present
the different modules of the FAIR implementation and how to train the model,
proposing some improvements regarding the baseline. Different fine-tuned mod-
els are trained and with the best one an accuracy of 66.22% is obtained for the
test set of the VQA-v2 dataset. An exhaustive revision of the quantitative results
achieved for the most important experiments and some qualitative results for the
best trained model are discussed.

Keywords: Computer Vision, Natural Language Processing, Knowledge Repre-
sentation & Reasoning, Visual Question Answering, Artificial Intelligence.

1 INTRODUCTION

Recently, there is a renewed enthusiasm in multi-discipline Artificial Intelligence (AI)
research problems. Part of this excitement stems from a belief that multi-discipline tasks
are a step towards solving AI. What makes for a compelling “AI-complete” task? In
[1], it is stated that in order to spawn the next generation of AI algorithms, an ideal task
should require multi-modal knowledge beyond a single sub-domain and should have a
well-defined quantitative evaluation metric to track progress. Within this context, Vi-
sual Question Answering (VQA) is a recently popularized topic, where different types
of knowledge are combined. Mainly, VQA is based on Computer Vision (CV), Natural
Language Processing (NLP) and Knowledge Representation Reasoning (KRR). VQA
can be defined as a system that takes as input an image and a free-form, open-ended,
natural-language question about the image and produces a natural-language output an-
swer, as depicted in the examples presented in Fig.1.



2 Miguel E. Ortiz et al.

Fig. 1: Examples of inputs and outputs for a standard VQA approach

There are different methods in the state of the art able to provide solutions to the dif-
ferent use cases related to the generation of automatic answers to questions performed
over images. Most important ones are summarized in Table 1. For a deeper explanation,
we refer the readers to the original paper of each method.

Table 1: Summary of VQA state of the art methods.
Method Reference Datasets and accuracies

Vanilla VQA [1] 54.06 (VQA [1]).
Stacked Attention Networks [2] 58.90 (DAQUAR [3]).

Faster R-CNN in VQA [4] 63.15 (VQA-v2 [1]).
Neural-Symbolic VQA [5] 99.80 (CLEVR [6]).

FVTA [7] 66.90 (VQA-v2 [1]).
Bottom-up and Top-Down [8] 65.32 (VQA-v2 [1]).

Pythia [9] 72.27 (VQA-v2 [1]).
Differential Networks [10] 68.59 (VQA-v2 [1]).

LoRRA [11] 69.21 (VQA-v2 [1]), 27.63 (TextVQA [11]).

Most of the methods have been validated in the VQA-v2 dataset. This dataset con-
tains 204,721 images from the MS COCO [12] and other 50,000 images from some ab-
stract scenes. The MS COCO dataset has images depicting diverse and complex scenes
that are effective at eliciting compelling and diverse questions. The dataset collects as
well some realistic abstract scenes to enable research focused only on the high-level
reasoning required for VQA by removing the need to parse real images. The dataset
contains more than 1M questions with around 10M answers and it can be accessed
from [13].

Some of the methods depicted in Table 1 provide open-source implementations. One
of the most popular is the provided by Pythia [9]. This is a modular framework for vision
and language multimodal research built on top of PyTorch [14]. This implementation is
available in GitHub [15].



Towards Fine-Tuning of VQA Models in Public Datasets 3

With this background, this paper introduces a VQA solution that builds upon Pythia
and the fine-tuning of derived models. The VQA-v2 dataset is used to compare results
with respect to other approaches of the state of the art using standard questions. The
final goal of our solution is being subsequently applied in VQA use cases focused on
eCommerce.

2 VQA IMPLEMENTATION

In this section, we describe the VQA approach developed with the aim of being subse-
quently applied to solve eCommerce use cases. Firstly, we do an overview of Pythia’s
method, which is the baseline of our proposal. Then, we present the implementation
details of the method, explaining the different modules of its architecture. We finish
highlighting the contributions regarding Pythia method.

2.1 Pythia’s Overview

Pythia was the winner architecture in the VQA Challenge 2018 [9]. This model is based
on the Bottom-up and Top-Down attention model [8], which is a network that processes
the image and text separately, adding attention to image processing to get better features
for the final classification. Pythia provides some changes over this model to increase its
accuracy in the VQA-v2 dataset. The main improvements that Pythia introduces in the
Bottom-up and Top-Down attention model are:

– Weight normalization with ReLU. This new method replaces the gated hyper-
bolic tangent activation in the image attention module for a weight normalization
followed by ReLU to reduce computation charge. Features concatenation is also
replaced by element-wise multiplication. With these improvements, the accuracy is
increased to 66.91 % according to the Pythia paper.

– Learning Schedule. Pythia researchers decided to reduce the batch size, typically
fixed to 512, and make use of the learning rate scheduler to first linearly increase
the initial learning rate from 0.002 to 0.01, a process known as warm-up, and then
reduce it every some thousand iterations. With this improvement they obtained an
accuracy of 68.05 %.

– Detectron and Fine-Tuning. In this phase, a fine-tuning of the Detectron output
(a detector based on feature pyramid network) [16] is made, which uses ResNeXt
as backbone together with two fully connected layers (FC6 and FC7) for region
classification. In this case, fine-tuning occurs at layer FC7. This boosted accuracy
to 68.49%.

– Data Augmentation. Additional data is added from Visual Gnome and Visual Di-
alog datasets and mirroring is done to the images in the VQA-v2 dataset. The num-
ber of training iterations is also increased. With all this the accuracy is increased to
69.24 %. Grid feature and 100 objects. Grid level features are added to the bottom-
up features, this is because the first features does not represent all the necessary
information. These new features are obtained from ResNet152. Object-level fea-
tures and grid-level features are separately fused with features from questions and



4 Miguel E. Ortiz et al.

then are concatenated to fed to classification. In addition, adaptive object propos-
als (10 to 100) are no longer used and a fixed number of 100 object proposals for
all images are used instead. With these two upgrades the accuracy increased to
70.01%.

– Ensemble. Two types of model ensembles are made. The first one uses the best
single model and trains the same network with different seeds, and finally averages
the predictions from each model to obtain an accuracy of 70.96%. In the second
case, several trained models are used. These models are trained with different De-
tectron models and with/without data augmentation. This approach gives 72.18 %
of accuracy.

A summary of the Pythia improvements on VQA-v2 are shown in Table 2. However,
these improvements, present in the Pythia framework, except for the ensembles, report
an accuracy of 66.7 % according to the current Facebook AI Research (FAIR) technical
reference [15]. In this framework, all the upgrades mentioned before are codified and
validation is carried out over the same dataset (test-dev). This accuracy difference can
be due to the implementation of Pythia or the features are not exactly the same, or due to
the numbers presented in the original implementation are overvalued. As our numbers
are closer to the provided by FAIR and these numbers are more up to date, we will take
as baseline for comparing the performance provided by FAIR.

Table 2: Pythia improvements on VQA-v2.
Model test-dev

Bottom-up and Top-down 65,32
Weight normalization with RELU 66,91

Learning Schedule 68.05
Detectron & Fine-tunning 68,49

Data Augmentation 69.24
Grid feature & 100 bboxes 69.81

Ensemble 72.18

2.2 Implementation Review

As previously described, Pythia includes modules classified in three main sections: CV,
NLP and KRR. Each of these sections can be seen working together in Fig.2. CV section
is represented by Features and ImageEncoder modules. Questions are processed in NLP
modules, which are WordEmbedding and TextEmbedding. KRR section receives the
CV and NLP outputs in ImageEmbedding module to generate new highlighted features.
Finally, text and image attention features are fused in the ModalCombineLayer module,
which loads the data in the ClassifierLayer to get the final scores of answers.

As it can be seen, the implementation of Pythia does not perform the extraction of
features, so it’s necessary to obtain them from some external models in a previous stage.
Pythia just processes as inputs the features and the questions of the subject.

Hereafter, main modules that make up the Pythia model will be explained.



Towards Fine-Tuning of VQA Models in Public Datasets 5

Fig. 2: Full Pythia Model.

The Pythia implementation receives as inputs the features of the MS COCO images
from two different networks: Detectron and ResNet152. These features are the inputs
of the first module of Pythia implementation (ImageEncoder).

ImageEncoder (CV) is a module that processes the last layer of the Detectron net-
work, FC7 (see Fig.3). Here, Pythia loads the features of the FC6 layer of Detectron
and trains FC7 with the rest of modules. FinetuneFasterRcnnFpFc7 module is a fully
connected net that is in charge with the FC7 training process. For the grid features
(coming from ResNet152), Identity is used. This module just sends the input to the
output without any arithmetic operation. In case any other operation is needed, Identity
module can be changed by the corresponding one. The same strategy can be done with
FinetuneFasterRcnnFpnFC7. This procedure gives the possibility of choosing the fea-
ture extractor model that best fits to the specific application. In general, ImageEncoder
works as a bridge between the features of the image (CV section) and Pythia, where we
can add layers to the features that we receive if it is needed.

Fig. 3: Computer Vision section.

To process the questions (NLP section) two modules are used: WordEmbedding
and TextEmbedding-AttentionTextEmbedding, as we depict in Fig. 4. WordEmbedding
uses Glove to represent the features of the input text words. Words are represented as
a vector of indexes, which are obtained from a vocabulary of 100k words. That means
that it is necessary to transform each word of the text to a one-hot vector. The second
module is an architecture that highlights the most relevant features of the whole text, and
is where the Attention process is applied. As in most text processors, the first step is to
use a LSTM (Long Short-Term Memory) net to extract features of the text, it must be an
RNN (Recurrent Neural Network) like LSTM or GRU (Gated Recurrent Unit) because
they keep information of the previous inputs, that is, the previous words of the current
question. Then, outputs of the LSTM are forward to a CNN with the purpose of getting
a better understanding of the features. In vanilla NLP, a global max pool is applied



6 Miguel E. Ortiz et al.

to the output of the RNN. In VQA, it is necessary to increase the complexity of the
model to get better features. To obtain these improved features the model uses Dropout,
Convolutional, ReLu and Softmax layers. Dropout is a layer to avoid overfitting by
disabling a percentage of the features. Features to be disabled are randomly selected
in each iteration of the training. The role of the Convolutional layer is similar to the
seen in the CV section, that is, to extract features with more relevance that can better
represent the question. At the end of this model, a Softmax layer is used to obtain the
probabilities of the features. The features with high probabilities are the ones that have
more impact in the current question.

Fig. 4: Natural Language Processing module.

Again, Pythia framework lets the programmer change the Embedding and the At-
tentionTextModel models with different approaches if it is needed.

The output of ImageEncoder and AttentionTextEmbedding are processed by Im-
ageEmbedding - AttentionLayer. It is in this layer where the KRR process is done and
the TopDownAttention module is in charge with this process (see Fig. 5). This is the
module where Pythia’s first improvement with respect to Bottom-up and Top-Down at-
tention model is carried out. Hyperbolic tangent is replaced by weight normalization
followed by ReLu to reduce computation and the concatenation of the image and text
features is replaced by an element-wise multiplication. These upgrades can be found
in the NonLinearElementMultiply module that receives both features. New features are
received for the LinearTransform layer which performs a linear with weight normal-
ization operation. Finally, Softmax layer is applied to the output of LinearTransform to
weight the features with probabilities from 0 to 1.

Fig. 5: Knowledge Representation and Reasoning module.

After obtaining the features with attention from images and text, they are merged
using the NonLinearElementMultiply module depicted in Fig. 6. In this module, Re-
LuWithWeightNormFC performs a Linear with weight normalization followed by a
ReLu layer where the Linear module is just a fully connected layer. This operation is
applied to image, text and context features. Context feature is only used in the LoRRa
model [11]. The output is element-wise multiplied in order to get image-question and



Towards Fine-Tuning of VQA Models in Public Datasets 7

question-context features, and finally these features are concatenated. At the end of the
module there is a Dropout layer to avoid overfitting.

Fig. 6: Fusion module.

The output of the fusion module is introduced as input in the last Pythia module,
the LogitClassifier, as we can see in Fig. 7. The scores of the answers are obtained in
this module. Inside the LogitClassifier the input is connected to two different branches,
one for text features and other for image ones. Each branch is formed by modules that
we already know: ReLuWithWeightNormFC plus Linear. The difference between these
two layers is the hidden dimension that returns ReLuWithWeightNorm. For text the
dimension is smaller than for image. This is done to get the best possible features related
to image and text. After this, the Linear layer returns the same two feature vectors of
same size. Finally, both vectors are added to get the final output of the model.

Fig. 7: Classifier module.

2.3 Contributions

Pythia’s framework provides a configuration file to create new models and run it in an
easy way. It offers a lot of modules that can be used for established applications or for
new research. In this section we highlight the modifications introduced on the Pythia’s
baseline code in order to reach the best performance results.



8 Miguel E. Ortiz et al.

– Pythia does not provide an user friendly representation of the performance metrics
like accuracy or loss. Instead the framework offers a simple log file with all perfor-
mance information. We have implemented a module that parses the configuration
file and gets different performance graphs to easier data understanding. This new
module works offline, once the training process is over.

– Changing the training strategies provided in the baseline. Multiple fine-tuning changes
have been carried out according to the following ideas:
• Change the general rule followed by Pythia in the training scheduler.
• Put into practice long training with and without regularization.
• To combine scheduler and regularization.
• To use pre-trained models for new experiments.

3 TRAINING AND FINE-TUNING A VQA MODEL

In this section we describe the training process for fine-tuning VQA models. Firstly, we
explain the different training and fine-tuning strategies we have followed. After that, we
present the hyperparameters values we have assigned for an optimum performance. We
finish explaining the used training loss functions.

3.1 Training and Fine-Tuning Strategies

To train the Pythia models, we used the configuration file that the framework offers. In
this file we found all the needed hyperparameters for the training: optimizer parameters,
size of the layers, path of the dataset that the model will use to train, etc. All these
parameters can be classified into three sets: optimizer, training and model; which will
be explained in the next section. Our training strategy is made up of 3 phases. In each
of them we will set hyperparameters to get information about how the model performs
to different configurations, focusing on different aspects of the training.

– Using a scheduler in the training. We did a lot of training processes with different
scheduler steps, iterations and learning rates. Our first thought was that the change
of learning rate should be later as the learning rate decreases, but following the
results obtained from the training, this idea is not fulfilled. In general, accuracy
improvements with this strategy were less than expected.

– Using regularization in the training. Weight decay and dropout were tested. The
criteria to get the optimum value was mainly that penalization to the training ac-
curacy was not too huge. After doing several tests we concluded that any value for
Weight Decay less than 10−6 will drastically drop the accuracy of the model. In the
case of Dropout we noticed that the accuracy decreases if we deactivate more than
the 40 percent of the features. In general, accuracy with this strategy is worse than
for the first approach.

– Using pre-trained models in the training. This strategy turned out to be the best.
The pre-trained model used in this phase was the best one that uses a scheduler
without regularization. This is because those models had better performance. In
the post training the scheduler is no longer used and we add both regularization
methods. With this setup the model was trained for 100,000 iterations reaching to
increase the accuracy obtained from the previous strategies.



Towards Fine-Tuning of VQA Models in Public Datasets 9

3.2 Hyperparameters

In this section we explain the values of the hyperparameters that have been used for
fine-tuning with the aim of easily understanding the training processes. These hyper-
parameters are depicted in Table 3 and they can be grouped into three sets: optimizer,
training and model.

Table 3: Hyperparameters.
Set Hyperparameter Values

Optimizer Learning Rate 0.0045 to 0.03
Optimizer Weight Decay 10−10 to 10−05

Training Iterations 20000 to 100000
Training Batch Size 128
Training Learning Rate Scheduler True or False
Training Learning Rate Steps 10000 to 30000
Training Learning Rate Ratio 0.05 to 0.1
Training Device cpu or cuda
Model Dropout 0 to 0.4

3.3 Training Loss

The problem that VQA tackles can be explained like a multi-label classification, be-
cause the model must choose between different labels, in this case answers, to solve
the problem that involves the VQA problem. This means that the model must provide
probabilities for a one-hot vector where each index represents an answer. For this kind
of task a training loss based on Binary Cross Entropy with logits (BCELogit) is the
perfect solution.

This loss function uses a sigmoid activation plus a Cross-Entropy loss. For each
output of the model, the sigmoid layer is applied. This function returns the probabilities
of each output of the model, where the output is the range 0 to 1. The mathematical
expression of the sigmoid function is shown in Eq. 1.

Sigmoid(x) = σ(x) =
1

1+ exp(−x)
(1)

The sigmoid function is presented in the equation of BCELogit depicted in Eq. 2 and
Eq. 3. There we can see the output’s model represented as x and the target represented
as y. As this is a multi-label classification problem, BCE is applied to each of the labels.
The c is the class/answer number and n is the number of the sample in the batch. After
the calculations are done, the loss function obtains a list of values for each sample. It is
in this moment when Eq. 4 is calculated. PyTorch offers two options for the final stage
of the BCELogit: sum or mean. Sum just adds all the results obtained before to get the
final error, meanwhile mean adds all the components and divide them by the number
of samples. In PyTorch, the election between mean and sum is called reduction. For
Pythia’s implementation mean is used for the training loss as it is more representative
than the other option for a loss function.



10 Miguel E. Ortiz et al.

Lc = {l1,c, ..., lN,c}T , ln,c =−wn,c[pcyn,clogσxn,c +(1− yn,c)log(1−σxn,c)] (2)

lc(x,y) = Lc = {l1,c, ..., lN,c} (3)

l(x,y) =

{
mean(L) if reduction=’mean’
sum(L) if reduction=’sum’ (4)

4 EXPERIMENTS AND RESULTS

In this section we describe the experimental results we carried out to validate our VQA
proposal. Firstly, we explain the used VQA dataset. After that, we study the used evalu-
ation metrics and the experimentation we have followed. Finally, quantitative and qual-
itative results are presented.

4.1 Public VQA Dataset

Pythia’s baseline model was trained in the VQA-v2.0 dataset. This dataset was used in
the challenge that the VQA group runs anually [17]. In this challenge multiple models
are presented to try to get the best accuracy, showing the best architectures that the
participants could think of. Pythia was one of these models presented and the winner
of 2018, with an accuracy of 72.18%. The main components of the VQA-v2 dataset,
presented by [17] for the challenge, are the following:

– Images: there are 265,016 images in the dataset. These images are the combination
of MS COCO dataset, which contains 204,721 images, and the rest are abstract
images done by [17] with the purpose of enriching the information and trying to
cover all the possible scenarios of the real world.

– Questions: Each of these images has at least 3 questions related to the information
that contain the picture. This makes more than 1 million of questions for the whole
dataset.

– Answers: Answers are provided for the questions. These answers were obtained
from a process done with its workers, this ensures that the pool of answers is di-
verse. Each question has 10 answers, this makes a total of more than 11 million of
answers.

All the information related to the process of the dataset creation can be read in [1].
The data is stored in two main files. The format of these files are JSON, that means

that we can add all the needed information in key-value pairs. This allows us to manage
the information in a very efficient way. The main files are:

– InputQuestionFormat is the file that contains relevant information about the im-
ages and the questions. In this file we can find the link between the two components
mentioned before. The fields that this JSON file contains are:



Towards Fine-Tuning of VQA Models in Public Datasets 11

• Info: this is an object that contains information like year, version, description
or a timestamp.

• Data type: string type value that contains the name of the dataset used for the
images.

• Data subtype: string type value that specifies if the data is for train, test or
validation.

• License: contains the url and the license name.
• Questions: it is a list formed by objects that contain the information of the

images and the questions. Images and questions are represented as numbers,
which help to map them when the data is loaded, increasing the searching
speed.

– AnnotationFormat is the file that contains the link between questions and an-
swers. This file has the same fields that the previous one, except for “Questions”
and “Tasks” type. Instead, this JSON has a new key named “Annotations” that
stores new information related to images, questions and answers The field annota-
tions is a list of objects that store the main information of this file. Each annotation
includes the following fields:
• Question type: VQA questions are clustered by the first words of each ques-

tion. This field gives the cluster this question belongs.
• Multiple choice answer: this field is related to the most popular answers given.
• Image id: this field contains the image identificator related to the question and

the answers.
• Answer type: Determines the nature of the answer.
• Question id: with this field we obtain the correct question from the previous

file
• Answers: it is a list that stores 10 answers for each question. The answers have

their own properties, which hereafter will be briefly explained:
* Answer: this is a literal string that contains the response to the question.
* Answer confidence: this field measures the accuracy of the answers.
* Answer id: it gives a number that identifies the answers.

4.2 Evaluation metrics

To evaluate the performance of the Pythia model, the metrics that the framework uses
are based on Accuracy and Loss.

Accuracy is a metric used to evaluate classifications problems. This metric mea-
sures the ratio between the number of correct predictions and the total number of input
samples. The process to know if the prediction is correct or not is really simple. The
expression that calculates this metric is shown in Eq. 5 The target is a one-hot vector
that represents all the possible responses that the model can give, where the values of
this vector are zero except for the index with the correct answer. Then, it is necessary
to compare this vector with the output of the model. The output of the Pythia model is
a vector where the correct answer is the index with the biggest value, this index must
be the same as the target. To get this information it is necessary to apply a Softmax
layer to the output. This layer will return a vector with real values where the total sum



12 Miguel E. Ortiz et al.

is one. With this information we have a better understanding of the classification that
the model has done.

Lc =
Number of correct predictions
Total number of predictions

(5)

Pythia obtains two accuracy metrics: median and global avg.

– Median accuracy: apply the median operation over the accuracy returned from the
batches

– Global avg accuracy: calculate the average from all the accuracy values returned
for the samples.

Loss metric is just the value returned by the loss function. This function calculates
how much the output’s model fits the target. Interpreting these metrics we can know if
the model generalizes correctly in the test data.

4.3 Experimentation

In addition to the Pythia implementation, [15] also offers the VQA-v2 dataset ready to
load directly into the model. We have used this implementation for our experimentation.
It is composed of three Python packages named training, validation and testing. These
packages have the same format:

– image name: This field is the same that was presented in Sec. 4.1. It stores the name
of the image with the following format: COCO [type] id, where “type” refers to
train, val or test. ID is number.

– image id: This is the number that represents the image. This number is used in the
image name.

– question id: Number that refers to a question..
– f eature path: It is a path to the features of the image.
– question str: Field that contains the question.
– question tokens: It is a list where its elements are each word of the question.
– answers: List of size 10 that contains the answers.

The sum of the three packages is 1,105,904, which is the total number of questions
that VQA-v2 dataset offers. The whole data are divided in three different sets to carry
out a correct training process, according to the numbers shown in Table 4. As we can
see we will use 40% of the samples for the training, about 20% for the validation of the
model and the rest 40% for the testing of the proposals.

Table 4: Dataset division.
Data Type Number of samples Percentage

Training 443,757 40.12
Validation 214,354 19.38

Test 447,794 40.5



Towards Fine-Tuning of VQA Models in Public Datasets 13

4.4 Quantitative Results

In the Loss graph we can see two curves that represent the loss of the training and the
testing set. Taking a quick look to this graph we can observe if the model is overfitting
or underfitting.

From the Accuracy graph we can get the same information as the loss graph. We
can know when the model is overfitting when the two curves diverge and they are stuck
in different accuracy percentages. Scheduler impact can be seen in this graph too, there-
fore, we can get similar conclusions.

As it was mentioned in section 3.1, experiments are focused on different parameters
depending on what training strategy phase we are. However, there are some common
parameters that don’t change as:

– Batch Size: 128, due to hardware restrictions.
– Optimizer: Adamax, typical optimizer, which is explained in [18] the total number

of experiments done is 44.

From all these experiments we choose the most representative for each training phase,
as we depict in Table 5, where we add the accuracy for an easy comparison.

Table 5: Experiment grouped by training phases.
Training strategy phase Experiments Accuracy

Scheduler in training Experiment 1 65.89
Regularization in training Experiment 4 63.61

Pre-trained model in training Experiment 11 66.22

In Experiment1 we tried to replicate the hyperparameters used in Pythia in their
training where they got 66.7 % of accuracy in [15] and 69.81 % in [9], excluding en-
sambles because we can’t reproduce it. The reason for this experiment is to establish a
baseline model to compare with.

The training does not use regularization methods, thus, these hyperparameters are
set to zero. The scheduler follows the same steps that mentioned in [9], with the same
learning rate and the same numbers of iterations. The accuracy obtained in this training
is less than reported in the above papers as we can see in the first experiment of 5 and
8.

We probe different changes in the training scheduler reaching only some slight im-
provements. After that, we checked some regularization methods but we did not obtain
any improvement. However, we confirmed the fact that regularization over a pre-trained
model increases the accuracy of the model. To confirm this improvement hypothesis,
for this experiment we add 70k iterations more to the Experiment2 training which was
the fine-tuned model of the first phase with better results. The final accuracy increased
to 66.22%, reaching this model its best performance with this configuration.

4.5 Qualitative Results

In this section we test our best model with images and questions to check if the answers
provided by the model are the correct ones, obtaining in this way some qualitative



14 Miguel E. Ortiz et al.

Fig. 8: Accuracy Experiment 1.

results about the working of our proposal. The first step is to load the pre-trained model,
in this case corresponding to Experiment11. The second step is to select the images and
questions that the model will try to predict their answers for. The first question for the
image is “is there some food?”. As we can see in the Fig.9, the model’s answer is
positive with 99%. This shows that the model’s performance with general questions is
great.

For the second question we decided to focus more on one of the products presented
in the image (fruits, vegetable, product of animals, dairy product). Fig. 10 shows the
use case. The answers are still positive, but its accuracy decreased a little in comparison
with the previous question. In the case of the product of animals and dairy products,
the model’s performance drops to 74% but still keeps the correct answer. This shows
that the model can still recognize different products but it suffers if these products come
from other sources.

Fig. 9: Qualitative results for a generic question.



Towards Fine-Tuning of VQA Models in Public Datasets 15

5 CONCLUSIONS AND FUTURE WORKS

In this document we have reviewed the state of the art of the VQA technology and the
different modules of the Pythia architecture. We confirmed that the framework that [15]
offers is the same that the described in[9]. After that, we successfully tested the Pythia
implementation following the [15] framework.

Fig. 10: Qualitative results for specific questions.

In the experiments we could see that the accuracy that we first obtained for our
baseline (FAIR framework) was close to the reported results [FAIR, 2020]. Therefore,
we began to fine-tune the hyperparameters and the training strategy of the model with
the intention to obtain better results regarding our baseline. We managed to slightly im-
prove our first numbers, but the most important was to obtain the necessary knowledge
to face the next stage of the described project.

6 Acknowledgment

Authors want to thank to Nielsen for its funding in the development of this project.
This work has been also funded in part from the Spanish MICINN/FEDER through the



16 Miguel E. Ortiz et al.

Techs4AgeCar project (RTI2018-099263-B-C21) and from the RoboCity2030-DIH-
CM project (P2018/NMT- 4331), funded by Programas de actividades I+D (CAM) and
cofunded by EU Structural Funds.

References

1. S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick, and D. Parikh,
“Vqa: Visual question answering,” in Proceedings of the IEEE international conference on
computer vision, pp. 2425–2433, 2015.

2. Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention networks for image
question answering,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 21–29, 2016.

3. M. Malinowski and M. Fritz, “A multi-world approach to question answering about real-
world scenes based on uncertain input,” in Advances in neural information processing sys-
tems, pp. 1682–1690, 2014.

4. D. Teney, P. Anderson, X. He, and A. Van Den Hengel, “Tips and tricks for visual question
answering: Learnings from the 2017 challenge,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4223–4232, 2018.

5. K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum, “Neural-symbolic vqa: Dis-
entangling reasoning from vision and language understanding,” in Advances in neural infor-
mation processing systems, pp. 1031–1042, 2018.

6. J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Gir-
shick, “Clevr: A diagnostic dataset for compositional language and elementary visual reason-
ing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2901–2910, 2017.

7. J. Liang, L. Jiang, L. Cao, L.-J. Li, and A. G. Hauptmann, “Focal visual-text attention for
visual question answering,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6135–6143, 2018.

8. P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang, “Bottom-up
and top-down attention for image captioning and visual question answering,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6077–6086, 2018.

9. Y. Jiang, V. Natarajan, X. Chen, M. Rohrbach, D. Batra, and D. Parikh, “Pythia v0. 1: the
winning entry to the vqa challenge 2018,” arXiv preprint arXiv:1807.09956, 2018.

10. C. Wu, J. Liu, X. Wang, and R. Li, “Differential networks for visual question answering,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8997–9004,
2019.

11. A. Singh, V. Natarajan, M. Shah, Y. Jiang, X. Chen, D. Batra, D. Parikh, and M. Rohrbach,
“Towards vqa models that can read,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8317–8326, 2019.

12. T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context. arxiv
2014,” arXiv preprint arXiv:1405.0312, 2014.

13. “Vqa v2.0 download,” 2020. https://visualqa.org/download.html.
14. “Pythorch,” 2020. https://pytorch.org/.
15. “Fair,” 2020. https://github.com/facebookresearch/mmf.
16. “Detectron,” 2020. https://github.com/facebookresearch/Detectron.
17. “Vqa v2.0,” 2020. https://visualqa.org/people.html.
18. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

https://visualqa.org/download.html
https://pytorch.org/
https://github.com/facebookresearch/mmf
https://github.com/facebookresearch/Detectron
https://visualqa.org/people.html

	Towards Fine-Tuning of VQA Models in Public Datasets

