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Abstract - This paper presents a new method for real-time environments. One of the main milestones is to achieve large
SLAM calculation applied to autonomous robot navigation in closing loops in robot paths running in real-time.
large-scale environments without restrictions. It is exclusively Several approaches can be found to solve the related issues
based on the visual information provided by a cheap wide-angle by using metric methods, topological methods or hybrid ones.
stereo camera. Our approach divide the global map into local One example ofthe last ones is described in [5]. This solution
sub-maps identified by the so-called SIFT fingerprint. At the tries to build a topological map composed by several simple
sub-map level (low level SLAM), 3D sequential mapping of metric maps. After that, as long as the robot explores newnatural land-marks and the robot location/orientation are
obtained using a top-down Bayesian method to model the places, the algorithm decides whether to build a new sub-map
dynamic behavior. A high abstraction level to reduce the global or create a new branch to one of the already visited maps.
accumulated drift, keeping real-time constraints, has been added The links contain the coordinate system relations as well as
(high level SLAM). This uses a correction method based on the uncertainties transformations among sub-maps. In [6] they
SIFT fingerprints taking for each sub-map. A comparison of the propose a 3D SLAM using SIFT similarity matrix, which are
low SLAM level using our method and SIFT features has been based on visual appearance. This allows the recognition of
carried out. Some experimental results using a real large pre-visited places that can be quite repetitive. The paper
environment are presented. presented in [7] proposes a method that is able to close a very

large loop with a very high number of landmarks on a
Keywords - SLAM, Computer Vision, Intelligent Vehicles, lated eironment it us aerarcialketod t* ~~simulated environment. It uses a hierarchical method to

represent the different probabilistic magnitudes associated to
several map regions. Also, means to transfer the updates and
predictions from the top to the bottom of the tree and vice
versa are provided.

Real-time Simultaneous Localization and Mapping This paper presents a real-time SLAM method based on
(SLAM) is a key component in robotics. In the last years stereo-vision. The basis of this work was previously presented
several approaches have been used [1][2]. Recent researches by the authors in [8]. The system is based on a stereo wide-
have demonstrated that camera-based SLAM is very useful in angle camera mounted on a mobile robot. Several visual
domains where the goal is to recover 3D camera position in landmarks are sequentially captured, using the Shi and
real-time moving rapidly in normal human environments, Tomasi operator (see [8]), and introduced on an EKF filter in
based on mapping of sparse visual features, potentially with order to model the probabilistic behavior of the system. A
minimal information about motion dynamics [3]. In [4], a 3D measurement model is used for landmarks perception and a
visual SLAM method, based on a stereo camera and SIFT motion model is implemented for the dynamic behavior ofthe
(Scale Invariant Feature Transform) features, is presented. robot. As it is well known, one of the major problems on the
Currently, the main goal in SLAM research is to apply EKF implementation is the quadratic (n2) increase of
consistent, robust and efficient methods for large-scale computational cost as a function of the number of landmarks,

making it unsuitable for large environments where this
_____________________________number can be potentially high. In order to solve this
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will be known as "low level SLAM". The global map is Feature
divided into local sub-maps identified by SIFT fingerprints. A hor
fingerprint characterize the visual appearance of an image <

from some SIFT visual landmarks and the relation among
them. Then, the robot is locally positioned in a sub-map using
the low level SLAM. The sub-map generation technique is
performed based on the movement of the robot and the I-- -

environment appearance. Then, a fingerprint is taken at the
beginning, in case that the robot changes its direction, when Fig. 1. Original and current feature measurement vectors.
the visual appearance of the images changes a lot, if the total linear and angular) during each time step. There will only be
reference is lose, etc. This process identifies a sub-map as the random speed changes, which will lead to the so-called
landmark positions obtained from the images taken from the impulse model. The motion model has been adapted to the
current fingerprint to the next one. A fingerprint matching navigation of a mobile robot by using some restrictions.
between previously captured fingerprints and current one is These restrictions are to reduce the uncertainty on the "y"
carried out to detect pre-visited zones. The information linear movement direction as well as the uncertainty on
extracted from the matched SIFT features of thefingerprint is rotations around the "z" and "x" axes. According with this
used to update the EKF filter and correct the robot state as model, to predict the next state of the camera the function,
well as the whole map covered by the loop. ' T

This paper is structured into two main parts. The first one rvo(xrob+Vrob At qrobXq[CO At] Vrob co) isdefined The
presents the low level SLAM implementation and the second term q[cO At] represents the transformation of a 3
one the high level SLAM. After that, a large set of results is components vector into a quaternion. Assuming that the map
given to show the behavior of our system. A comparison of does not change during the whole process, the absolute
the low SLAM level using our method and SIFT features has feature positions y should be the same from one step to the
been carried out. The paper finishes with some conclusions next one.
and future work.

C. Measurement Model
II. Low LEVEL SLAM

Visual measurements are obtained from the "visible"
This level implements all the algorithms and tasks needed features positions. In our system we define each individual

to locate and map the robot on its local sub-map. measurement prediction vector hi = (h x hiY hiz )T as the
corresponding 3D feature position relative to the camera

A. Extended Kalman Filter application frame. To choose the features to measure, some selection
criteria have to be defined. These criteria will be based on the

In order to apply the EKF, a state vectorXand its feature "visibility", that is whether its appearance is close
covariance matrix P need to be defined. The purpose of the enough to the original one (when the feature was initialized).
algorithm is to continuously estimate the position and This is based on the relative distance and point of view angle
orientation of the camera, via the linearization of the next respect to the one at the feature initialization phase (see Fig.
state function, f(X), at each time step. Because of the impulse 1).
motion model used for the camera movement, which will be The first step is to predict the measurement vector hi,. To
explained later, it is needed to add two more variables to the look for the actual measurement vector zi, we have to define
camera state vectorXv: the linear and angular speed: a search area on the projection images. This area will be
Xv = (Xrob qrob Vrob w)T. On this equation, Xrob is the 3D around the projection points of the predicted measurement hi
position vector of the camera relative to the global frame, qrob on both left and right images: UL :(ULVL), UR (uR,VR). To
represents the rotation vector, Vrob is the linear speed and a obtain the image projection coordinates, first we apply the
is the angular speed. On the other hand, as the whole map has simple "pin-hole" model and then it is distorted using the
to be included into the filter, all the features global position radial and tangential distortion models, which are detailed in
state vectors y have to be included into the total state [8]. To obtain z we need to solve the inverse geometry
vectorX. So, the state vector X=(xV Yl y2 ) and its problem, applying the distortion models as well (see [8]).
corresponding covariance matrix P are defined. Respecting to the search areas, they will be calculated based

on the uncertainty of the feature 3D position, what is called
B. Motion Model innovation covarianceS.. (see [13]). As we have two

different image projections, si needs to be transformed into
The first stage to build the motion model is to predict the the projection covariance Puand PU using equation (1).

next state vector and covariance matrix. In this case the object T aa T
to model is a mobile robot. Our model is based on a more P L.5.is~0 nP - R S* RI (1)
general application (see [8]). It assumes constant speed (both UL 1h h ) UJR ah / h )
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These two covariances define both elliptical search regions, comparing it to the previously acquired fingerprints within an
which are obtained taking a certain number of standard uncertainty search region. This region is obtained from PG
deviations (usually 3) from the 3D Gaussians. Once the areas, because it keeps the global uncertainty information of the
where the current projected feature should lie, are defined, we whole map. In case that the result of the evaluation gives that
can look for them. At the initialization phase, the left and the robot is in a previously visited place, a closed loop
right images representing the featurepatches are stored. Then, situation will be identified. This situation is explained later
to look for a feature patch, we perform normalized sum-of- on. The philosophy of the EKF sub-maps was previously
squared-difference correlations across the whole search presented in [12]. One of the main differences between their
region (see [13]). The path appearance is modified depending approach and ours is the local map management. In [12], the
on the robot point of view using the Patch Adaptation method EKF process is carried out taking into account all landmarks
described in [8]. This helps on the search correlations phase within the local maps. We take into account only the visible
in the sense of extending the tracking of the patch. ones. This allows us to keep always a reduced number of

landmarks being processed within the EKF. On the other
III. HIGH LEVEL SLAM hand, in [12], a global map is tried to be built joining all local

maps. Then, a process is carried out to identify all duplicated
As it was stated before, in large environments, as the landmarks, closing all possible loops inside. Instead, we

number of landmarks grows the covariance matrix P size continuously keep the accumulated global uncertainty,
increases until the processing time exceeds real time allowing the global map correction at any time as soon as a
constraints. To avoid this, only a local visible window of closed loop situation is detected.
landmarks is introduced into the EKF. This, as we will show
on the results, allows an almost constant processing time with A. SIFT Fingerprints
number of landmarks increasing (see Fig. 6).
On the other hand, we need to keep the global map error as As we explained before, the way to identify a place is

low as possible. Therefore we need to assure the whole map based on the so-called SIFT fingerprint. These fingerprints
consistency as well. As we only keep local uncertainty are composed by a number of SIFT landmarks distributed
information on the visible features, it is necessary to add a across the reference image and characterize the visual
higher level process that preserves the global map uncertainty appearance of the image. SIFT features were introduced by D.
history along the robot's path, that is the cumulative Lowe in [9]. SIFT features are invariant to image scaling and
covariance matrix p,G which is obtained as follows: rotation, and partially invariant to change in illumination and

PG(k)=PG(k-1)+Pxx (k) (2) 3D camera viewpoint. In addition, the features are highly
distinctive, which allows a single feature to be correctly

To do that we divide the global map into local sub-maps matched with high probability. This is achieved by the
identified by the SIFTfingerprints SF = {sfi |1c O...L}, each of association of a 128 length descriptor to each of the features,
them composed by a set of SIFT features which will identify uniquely all of them. The overall SIFT
YF' {Yf I me O...M}. The process consists in periodically features extraction is described as follows:
take fingerprints along the path covered by the robot (see Fig. 1. Scale-space extreme detection: The first stage of
2). Each time a new fingerprint is to be taken it is evaluated computation searches over all scales and image locations. It is

implemented by using a difference-of-Gaussian function to
lStatt | identify potential interest points (local maxima and minima).

2. Keypoint localization: At each candidate location, a
ol mit evaluation .4 detailed model is used to determine the feature location and
K) condition scale.

3. Orientation assignment: One or more orientations are
Newvvfingerprlnt assigned to each keypoint location based on local image

evaluation gradient directions. Relating the future operations to these
directions the invariance to orientation is achieved.

omatchinv N Add fiLngerprint l 4. Keypoint descriptor: The local image gradients arematching to database measured at the selected scale in the region around each
i,Yes keypoint. This information is transformed into a

|L66p closing representation that will provide an identification of the
tdetection J feature.
L_ ~~~~~~~~~~~~~Inour global process we will store these SIFT feature

process update rfingerprints matching process. The left image coordinates and

Fig. 2. High level map management. the 3D position are also stored Yfjl (UL VL X Y Z )
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B. Matching Process

One of the main issues on SLAM in large environments is
the loop-closing problem. The first issue to solve is the
recognition of previously visited places, as it was stated
before. Once a new fingerprint is identified it is evaluated,
that is, it is compared against all stored fingerprints within the
uncertainty area. This comparison is carried out through a
matching process which takes into account, for each pair of
fingerprints (sfA,SfB), both the number of recognized SIFT
features and their relative positions within the images to Fig. 3. Representation of the fingerprints global uncertainty PG in
compare. The overall process is as follows: red colour, increasing along the robot path. Numbers represent each

1. Computation of the euclidean distance between all fingerprint.
detected SIFT features on both images, and selection of those the robot rotation matrixRrob' Finally, Rot represents the
close enough. transformation of the 3 components vector to the rotation

2. Lines connecting each pair of matched features are matrix expression. The attributes mit and end refer to the
calculated. The corresponding lengths LnA-B and slopes situationbeforeandafterthemapcorrection.
SPA-B are computed as well (see Fig. 8 (b)).

'3. The global fingerprint matching probability is yi =int (yinit - Xinit) (4)
computed as a weighted function of 3 parameters: Number of
matchedfeatures, lengths scatter and slopes scatter (see (3)). =Y'Rot T(PGh ) -(Rfn) +1 T(PG)(RJiDnft) (5)

P.t -match =mC7,P + m2 +m3 num matches (3) kGen I
fpmatch - ~~ ~~~~~~~~~~~~~~~Yfiyi_Fx.-G-' - (G (6)

An outlayers filter is carried out to discard erroneous T(PGend) fi T(PGend)) initj
individual feature matches different enough from the mean
showed on (3). Once the loop is closed, PG takes the value of the
Once the loop-closing situation has been detected, the associated old fingerprint identified. Thus, we update the

whole map must be corrected according to the old place global uncertainty to the new situation. In addition, old visited
recognized. The first step is then, to update the current robot features will become visible again, and can be incorporated to
state (Xrob q b vb c0)T with the detected pre-visited the low level EKF process.
place. To do that we use the epipolar geometry applied to the
matched SIFT features in the same way as in the low level IV.RESULTS
SLAM stage. This is achieved thanks to the stored fingerprint
states Xfp, which represent the robot states at the time of the In order to test the behaviour of our system, a test video
fingerprint creation. After that, the rest of the map, including sequence has been used. The cameras employed were the
feature positions y and fingerprint states xf, along the loop Unibrain Fire-i IEEE1394 modules with additional wide-
must be updated accordingly. HTowever, we must assure that angle lens, which provide a field of view of around 100°
the resultant map is consistent. The idea behind is that the horizontal and vertical. Both cameras are synchronized at the
global uncertainty pG will always grow as long as the robot time of commanding the start of transmission. The calibration
moves on the environment. That means: the error in self- iS performed offline usig a chessboard panel usig the
locating will increase until the robot revisits an old place that method referenced in [10]. The test video sequence was taken
helps to reduce its own uncertainty. In terms of map by moving the robot along the upper floor of our Polytechnic
construction, we can conclude that the oldest map features School building. The complete path, from the start point to
will have less associated uncertainty and will have to be the loop-closing place, has a perimeter of 283.25 m (see Fig.
corrected in a lower degree. On the opposite side, a higher 4). We have implemented the low level SLAM using two
degree of correction will be applied to more recent features. techniques: our proposal and the SIFT method introduced by
This degree of correction will be modulated as a function of D. Lowe [9], in order to compare its performance in a large
the historic accumulated uncertainty along the whole loop environment. Fig. 5 depicts the obtained results based on the
(see Fig. 3). On this figure we can also observe the location of low level SLAM. Both ours and SIFT results are showed
the fingerprints right after each ofthe corners on the path. together with the ground truth data. From these results we
On equations (4), (5) and (6) we show the 3 consecutive observe two main deviation points on each implementation.

steps applied to the position of a single feature in order to The first deviation is accused with the SIFT method on the
calculate its estimated new corrected value. T(PGl) represents first curve of the path, while using our implementation, the
the trace of th_ global covariance of fingerprint associated to robot tend to deviate on the third curve. If we represent the
the feature i. DR iS the 3 components rotation expression of cumulative mean error £ 11,/n ).)E lX-Xrefj on Fig. 7,

i=O
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Fig. 6. Processing times for low level SIFT (in blue colour) and our

Fig. 4. Aerial view of the path covered by the robot, marked on green method in red colour. Real time limit is represented as a constant 33
colour. The red arrow indicates the starting and loop closing position. ms black line.

not exceed 33 ms for a 30 frames/second capturing rate. All
wei appreciateon. Thereatst a s toatbhehirstdevigheroncausIF a

results were taken using a 2.0 GHz speed CPU. Fig. 6 depictsimplmenatin.Te raso isthatthefirt dviaton auss a the processing times along the whole robot path for both SIFT
cumulative drift over the rest of the path. As a general rule,
low level SIFT landmarks should be correctly recognized and our implementation. We can see that only our method is

able to work under the real time constraint, remaining the
withav a longer lietime.ofthu, thet locSlalcmulati eror average processing time quite constant along the whole path,
should belowger uingtimeSThlandar However,mulasiwe wil showing the benefit of using our method instead of the SIFTshouldate theb using SIFT within the lo one. On Table 1 we show the average processing times for

levelaSLAM, isethe .sinfant pocesing tie. in crease some of the most important tasks in the process. Respect to

ResectingMto the high level SLAM,sFig 8 depinct te the low level SLAM tasks, we can see the main cause of the
Respresenttionto the map lestimated, ding al ladmtst higher processing time for SIFT implementation, which is due
andrefingerpriont Theseu the mapestimated,includingari to the increase of measurements and feature initialization
bedforerandrafte Theloop-closing situation.tAs ithisashow,th phases computational costs. Even though we restricted thebeforeeps the c ons clso aits rtion. A fter tha keypoints search to the minimum needed area, the successive

situatin,te keeps the consistency re-introd gth.e. Gaussian blurring phases contribute to increase the processingsituation, the system keeps the consistency re-introducing.h. time. This is particularly evident for the case of the featureold visible landmarks on the low level EKF and still detecting y
old fingerprints. Respecting to the processing time, the real- itial ephas wher the se reatis etsended aon
time implementation imposes a time restriction, which shall

15
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Fig. 5. Estimation of the path covered by the robot using SIFT andour Fg .Cmltv enerrfrXai n xsrsett h
method. The reference (ground truth) is drawn on solidline, frame number n. Results are shown both for the SIFT implementation

and our method.
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(a) (b) (c)
Fig. 8. Map representation of a loop-closing situation. The low level landmarks are represented in yellow colour, while the visible and correctly

measured are represented in red colour. The green numbers show the fingerprint locations. The robot position is represented on the centre of the big blue
cross: p a) Representation right before the map correction. b) Fingerprint SIFT features matching. c) Representation right after the map correction.

im - search range. Regarding the high level SLAM, as it
is shown, the time dedicated to fingerprint matching process ACKNOWLEDGMENT
as well as the correction of the map at the time of loop The authors would like to express their gratitude to the
closing, having 1630 landmarks, is significantly higher than

Comunidad de Madrid and the University of Alcala for theirreal time. However, both tasks do not belong to the
continuous self-locating process carried out by the low level 0505/DPI/000o176) and LOMJCO (CCG06-UAH/DPI-0721).
SLAM, so there is no need to complete them within a single
frame time slot. Therefore, we can obtain a positive
fingerprint matching result a few frames after it was really REFERENCES
detected. Then, we can go back and start loop-closing task. [1] Lopez E, Bergasa L M, Barea R, Escudero M. "A Navigation System
This implies that both of these tasks can be computed in for Assistant Robots Using Visually Augmented POMDPs".
parallel, keeping them outside the real time computation. Autonomous Robots, Vol. 19, No. 1. pp. 67-87. 2005.

[2] P.M. Newman, J.J. Leonard, J. Neira and J. Tard6s. "Explore and
return: Experimental validation of real time concurrent mapping and

TABLE I. localization." Proceedings of the IEEE Conference on Robotics and

PROCESSING TIMES Automation, pp.1802-1809, 2002.
[3] A. J. Davison. "Real-time simultaneous localisation and mapping with a

Low level SLAM processing times High level SLAM processing single camera." Proceedings of the 9th International Conference on

times (parallelized). Computer Vision, Nice, 2003.

Implementation Our SIFT [4] P. Elinas, R. Sim, J. J. Little. "SLAM: Stereo Vision SLAM Using the
method Rao-Blackwellised Particle Filter and a Novel Mixture Proposal

Number of 5 5 Number of features 1630 Distribution." ICRA 2006.
features e [5] M. Bosse, P. Newman, J. Leonard and S. Teller. "SLAM in Large-scale

Filter step Time Time Cyclic Environments using the Atlas Framework." IJRR 2004.
[6] P. Newman, D. Cole and K. Ho. "Outdoor SLAM using Visual

Measurements 3 ms 47 ms Fingerprint matches 3 s Appearance and Laser Ranging." ICRA 2006.
Filter update 5 ms 5 ms Loop closing [7] U. Frese and L. Schroeder. "Closing a Million-Landmarks Loop." IROS

Feature + graphic 4 s + 2006.
initializations |7 ms 62 ms representation time los [8] D. Schleicher, L.M. Bergasa, E. Lopez and M. Ocana. "Real-Timeinitializations Simultaneous Localization and Mapping using a Wide-Angle Stereo

Camera and Adaptive Patches" IROS2006.
V. CONCLUSION [9] D.G. Lowe and J. Little. "Vision-based mobile robot localization and

mapping using scale-invariant features." In International Conference on
Robotics and Automation, Seoul, Korea, pp. 2051-58. 2001.

We have presented a two hierarchical SLAM levels [10] Heikkila and Silven. "A Four-step Camera Calibration Procedure with
method that allows self-locating a robot by measuring the 3D Implicit Image Correction." CVPR97.
positions of different natural landmarks. Several benefits have [11] J. Shi and C. Tomasi. "Good features to track." In Proceedings of the
been shown on the low level SLAM respect to the use of IEEE Conference on Computer Vision and Pattern Recognition, 1994,

QT-F,r ~~~~~~~~~~~~~~~~~~pp.593-600.
SIFT features mainly on the processing time area. Respecting [12] J. Tard6s, J. Neira, P. Newman, and J. Leonard, "Robust mapping and
to the high level SLAM based on SIFT fingerprints, there has localization in indoor environments using sonar data," Int. J. Robotics
been proved that it solves the loop-closing problem keeping Research, vol. 21, no. 4, pp. 311-330, 2002.
the real time behavior constant along the path. Nowadays we [13] A. J. Davison. "Mobile Robot Navigation Using Active Vision." PhD
are working on improving our taking fingerprints technique.Ths,UnvriyoOfrd198

Authorized licensed use limited to: Univ de Alcala. Downloaded on April 20,2010 at 15:03:24 UTC from IEEE Xplore.  Restrictions apply. 


