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Gaze Fixation System for the evaluation of Driver
Distractions induced by IVIS

Pedro Jiménez, Luis M. Bergasa, Jesús Nuevo, Noelia Hernández, Ivan G. Daza

Abstract—We present a method to monitor driver distraction
based on a stereo camera to estimate the face pose and gaze of
a driver in real-time. A coarse eye direction is composed with
the face pose estimation to obtain the gaze and driver’s fixation
area in the scene, a parameter which gives much information
about the distraction pattern of the driver. The system does not
require any subject-specific calibration, it is robust to fast and
wide head rotations and works in low lighting conditions.

The system provides some consistent statistics which help psy-
chologists to assess the driver distraction patterns under influence
of different In-Vehicle Information Systems (IVIS). These statistics
are objective, as the drivers are not required to report their own
distraction states. The proposed gaze fixation system has been
tested on a set of challenging driving experiments directed by
a team of psychologists in a naturalistic driving simulator. This
simulator mimics conditions present in real driving, including
weather changes, manoeuvring and distractions due to IVIS.
Professional drivers participated in the tests.

Index Terms—Distraction monitoring, driver, inattention, gaze
fixation, PRC, IVIS, naturalistic simulator

I. INTRODUCTION

Driving inattention is a major factor in traffic crashes. In

the EU-27, 38,900 people died in 2008 in traffic accidents and

34,500 people lost their lives in 2009 [1]. That year, over 1.25

million accidents took place and more than 1.5 million people

were injured [2]. On the other hand, the National Highway

Traffic Safety Administration (NHTSA) estimates that approx-

imately 25% of police-reported crashes involve some form

of driving inattention, including fatigue and distraction [3].

Driving distraction is more diverse and implies a more risky

factor that fatigue and it is present in over half of inattention

involved crashes, resulting in as many as 5000 fatalities and

$40 billion in damages each year [4].

Driving distraction is defined by the American Automobile

Association Foundation for Traffic Safety (AAA FTS) as occur-

ring “when a driver is delayed in the recognition of information

needed to safely accomplish the driving task because some

event, activity, object or person within or outside the vehicle

compelled or tended to induce the driver’s shifting attention

away from the driving task” [5]. Thirteen types of potentially

distracting activities are listed [4]. Since the distracting ac-

tivities take many forms, NHTSA classifies distraction into

4 categories from the view of the driver’s functionality [3]:

visual distraction, cognitive distraction, auditory distraction

(e.g., responding to a ringing cell phone), and biomechanical

distraction (e.g., manually adjusting the radio volume). Many

distracting activities can involve more than one of these

components (e.g., talking to a phone while driving creates a

biomechanical, auditory and cognitive distraction).

Increasing use of in-vehicle information systems (IVIS)

such as cell phones, GPS, DVD players and other on-board

devices has exacerbated the problem by introducing additional

sources of distraction [6]. Enabling drivers to benefit from

IVIS without diminishing safety is an important challenge.

One promising strategy to mitigate the effects of distraction

involves monitoring and classifying the driver state and then

using this classification to adapt the IVIS. Driver inattention

monitoring has been an active research field for decades,

mainly focusing in fatigue, and various methods have been

proposed. Some auto companies have already installed some

fatigue monitoring systems in their high-end vehicles. Yet,

there is still a great need to develop a more reliable and

fully functional system using cost efficient methods for a real

driving context.

To date, realistic studies that provide information on the

impact of distracting activities have been developed as small

scale studies. An effort is needed to study distraction under

naturalistic situations. Simulation is an optimal method of

experimentation to acquire knowledge of driver’s behaviour,

close to a real scenario but without the safety risks of having

inattentive drivers in an open road. The simulation methodolo-

gies applied in Europe to the road transport sector research are

demonstrating their profitability and efficiency [7]. The main

objective through the simulation is to immerse the driver in his

normal work environment. In order to do this, a fully equipped

cockpit is required to perform the driving task. Previous work

scoping the prediction of drivers behaviour mostly rely on lane

position and vehicle sensors. Also, a video signal of the driver

is frequently used but manual annotation or very simple head

position estimation is used [8].

In this paper, an automatic gaze fixation system for the

evaluation of IVIS-induced distraction is presented. Driver’s

gaze fixation is estimated using a non-intrusive vision-based

approach. The system has been tested with professional drivers

in a naturalistic simulator running tests directed by a team of

psychologists.

We show results of the performance of our system and

consistent statistics in order to infer distraction behaviour of

the drivers during these exercises.

The remaining of the paper is organised as follows. In

section II, a review of the main approaches of the state of the

art is presented. Sections III and IV present our 3D face pose

estimation and eye direction estimation proposals. Evaluation

of our gaze fixation system performance and an analysis of

the statistics proposed to study distractions are addressed in

Section V. This paper closes with conclusions and future work,

presented in Section VI.
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II. DRIVER DISTRACTION MONITORING APPROACHES

In the literature there are three main groups of works,

according to the measurements they used to detect distractions:

biological signals, driving signals and driver images.

Biological signals include electroencephalogram (EEG),

electrocardiogram (ECG), etc. These signals are collected

through electrodes in contact with the skin of the human body

and consequently they are intrusive systems [9]. Only few

works, focusing in cognitive distractions, have been reported

in the literature using this approach [10]. Most of them have

only been tested in operational environments.

Vehicle signals reflect driver’s action, so driver’s state can

be characterised in an indirect way. Force on pedals, vehicle

velocity changes, steering wheel motion, lateral position or

lane changes are normally used in this category. The advantage

of these approaches is that signal acquisition is easier. This is

the reason why the few commercial systems existing nowadays

use this technique [11], [12]. However, they are subject to

several limitations such as vehicle type, driver experience

or road geometric characteristics. Moreover, some results

showed that the accuracy using this approach varied between

individuals [13].

Approaches based on image processing are effective be-

cause the occurrence of distraction is reflected on the driver’s

face appearance and head and eyes activity. Different kinds

of cameras and analysis algorithms have been employed in

this approach. We group them according to the cameras they

adopted, including visible spectrum monochrome cameras, IR

cameras or stereo cameras.

A. Methods based on visible spectrum camera

The simplest and most affordable hardware setup is a

visible spectrum image acquisition system, at the cost of

requiring more complicated algorithms to compensate for the

lack of data when compared with infrared or stereo systems.

Rongben et al. [14] used skin colour to segment the face.

This method needs initialisation and is not robust to lighting

conditions or user race. Sun et al. [15] detected the face using

adaptive boosting, locating the eyes using a template matching

method, and estimated gaze combining Hough transform and

gradient direction. Eye activities do not only contain fatigue

information but also distraction information.

A commercial eyetracker is also employed in some research

works. Blaschke et al. [16] use an off-the-shelf eye-tracker to

get head pose and eye gaze signal. They model the visual

distraction level as a time dependency of the visual focus,

with the assumption that visual distraction increases with time

as the driver looks away from the road, but decreases nearly

instantaneously when the driver refocuses on the road. Based

on the pose and eye signals they propose a two-stage detection

method: first, the instantaneous distraction level is estimated,

and then a classifier determines if the current level corresponds

to a distracted driver.

B. Methods based on IR camera

Many researchers have adopted image acquisition systems

based on infrared illumination (IR). The use of IR serves three

purposes: it minimises the impact of different ambient lighting

conditions, it produces the bright pupil effect and it increases

illumination without disturbing the driver. Because of bright

pupil effect the eye can be detected more easily, eliminating

the face segmentation and reducing computation times.

Cudalbu et al. [17] use a headband with IR reflective

markers to estimate the head pose, from which they get a 6

DOF head pose with the average error of 0.2 degrees. Together

with this headband, they use a simplified 3D eyeball model to

estimate the gaze orientation with an accuracy between 1 and

3 degrees. Jiao and He [18] propose a Round Template Two

Values Matching algorithm to locate the bright pupil, which

obtains an accuracy of 96.4% but takes 1.01 seconds per frame

on a PIII 800MHz computer.

Some commercial products measuring driver’s states are al-

ready available on the market, such as SmartEye AntiSleep [9]

and SeeingMachines DSS [19], [10]. Both of them use two IR

illuminators to enhance their robustness to lighting conditions,

and employ only one camera to give 3D information. However,

they are focusing on detecting fatigue, not distraction, and they

are still limited to some well controlled environments.

C. Methods Based on Stereo Camera

Stereo cameras are also employed to estimate driver state.

In [20] two standard web-cameras are employed to make

a 3D image acquisition system. They extract face from the

disparity map on the assumption that the driver face has

smaller depth than background. After face region is extracted

they perform embedded HMM to recognise the forehead, eyes,

nose, mouth and chin, from which the driving fatigue level

can be estimated. The commercial products based on 3D

camera technology such as Smart Eye Pro [9] and Seeing

Machines faceLAB [21], can provide measurements of head

pose, eyebrow, eye, nose, and mouth.

Commercial products are still limited to some well con-

trolled environments, and more importantly no technical in-

formation about their algorithms and effectiveness has been

published.

D. Contributions

Most of the works in the state of the art were designed

for visual distractions, but only a few for cognitive, auditory

or biomechanical distraction. In this paper, we introduce a

novel gaze fixation system which could potentially be used

to extrapolate distractions from any kind, provided all the

information from the driving exercises and simulator. Our

approach comprises a face pose estimation system and a gaze

classification system. Both are non-intrusive and designed to

work in very low illumination conditions. The face pose esti-

mation works in the full yaw rotation range. In contrast with

existing commercial solutions, it does not require any subject-

specific calibration, and could then be used in commercial

vehicles. With only two cameras, the system is robust to fast

and wide head rotations. The gaze is classified in several areas

in the cabin and the road, which may draw the attention of the

driver when a distraction is taking place. We use this system

in a naturalistic simulator to study changes in driver behaviour



3

due to distractions caused by IVIS. Our system is able to

generate objective distraction statistics automatically. It does

not require user self-reports, which are subjective, or additional

input from experts. The experimental setup was designed by

a team of psychologists, and it is described in detail in this

paper.
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Fig. 1: Architecture of the face pose estimation algorithm.

III. 3D FACE POSE ESTIMATION

In this section we describe the main characteristics of our

face pose estimation method. A detailed description of the

face pose estimation can be found in [22]. A diagram of

the implemented face pose estimation system is shown on

Figure 1.

A requirement is that the pose estimation must be user

independent. The proposed face pose estimation system is

based on tracking a set of features which are automatically

detected on the subject’s face with a calibrated stereo rig.

The features are selected from high-contrast regions of the

face using a Harris interest point detector [23]. Taking both

camera views, the features are arranged in the form of a sparse

3D face model. This user-specific 3D model provides a prior to

the feature tracking that the method performs on each frame:

features that drift from their expected positions on the model

are discarded as outliers.

The appearance of the features in the face changes when

the head rotates, and our method proposes a feature template

registering using a novel mixed-view technique: the samples

of the features taken by both cameras are used to build a joint

appearance model, so that views of the face from one camera

can be used to anticipate what the other camera will see as

the face rotates. This estrategy was inspired by the work of

Nuevo [24]. From the detected 2D position of the features, the

pose is estimated using Levenberg-Marquardt [25].

A model extension process adds new features to the model

when the face rotates exposing new areas to the camera. This

model extension and the shared template registering allow for

a face pose estimation over the full yaw rotation range, from

-90◦ to +90◦. The online model creation process is subject

to errors. We correct the 3D feature coordinates of the model

with a bundle adjustment optimisation [26], which is executed

at certain key frames after initialisation and after the addition

of new features.

IV. EYE DIRECTION ESTIMATION

To obtain the gaze fixation areas of the driver, we need to

take into account both the face pose and the eye direction.

Gaze estimation has been applied in HCI and in studies of

cognition, which also have attracted interests from marketing

research. A survey of the techniques can be found in Hansen

and Ji [27]. A common step of all these techniques is the

need of person-specific calibration, and recent developments

focus on reducing the lenght of this step. Guestrin and

Eizenman [28] presented a system based on calibrated light

sources that achieved accuracies of 1◦, requiring the subjects

to look at a single point. Saliency maps of the images shown

to the users have been used as a prior to estimate the eye

parameters. Sugano et al. [29] reported errors of 6◦, and more

recently Chen and Qi [30] presented a probabilistic approach

with errors below 2◦.

The approach we take is substantially different from these

methods. We aim to classify the gaze fixation point in a

discrete number of areas of interest, and thus we are only

interested in a rough estimation of the gaze. Compared to

the works mentioned above, our setup is much harder as the

head can move freely and quickly in a wide range and the

illumination is low. Also, we can not do any offline user

calibration and we can not precompute the saliency maps on

the scene. Our only prior is the position of the different areas,

which is much less informative than a saliency map because

it is not based on human cognition.

We calculate the eye direction, ~e, with respect to the

face model coordinate system. Consequently, the gaze G is

computed as the composition of face pose and eye direction,

as we can see in figure 2. It can be expressed as a vector ~g

and an origin Tg as

G = {Tg, ~g}, Tg = ~T + R · ~eoff , ~g = R · ~e, (1)

where P = {~T ,R} is the face pose (translation to the centre

of the face and rotation), and ~eoff is the distance between the

centre of the eyes and the centre of the face model, ~T .

At the gaze estimation step, face pose is already known

because it has been calculated during the previous stage, so P

is given by the face pose translation vector. If head rotation

is wide enough, eyes might not be visible, so the gaze is

calculated using only the known face pose.

A. Algorithm description

The steps of the coarse algorithm for gaze estimation are

shown in figure 3. It consists of the following steps:

1) Automatic 3D face model creation: 3D face model is

first created, as explained in section III.
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Fig. 2: Difference between gaze and face pose
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Fig. 3: Main blocks of the gaze estimation algorithm.

2) Initial eye features detection: At the model creation

stage, some characteristic features around eyes are detected

within the face using the Stacked Timmed Active Shape

Models (STASM) algorithm [31] and added to the face model.

Figure 4 shows these features.

3) 3D face pose estimation: In a loop, face pose is esti-

mated from frame to frame as described in Section III.

4) Eyes tracking: The eye features are tracked frame to

frame using the same technique as for the rest of the model

points. This gives the approximate position of the pupils.

5) Pupil centre localisation: Pupil position is located for

each eye using the integral projections algorithm and a Gaus-

sian approximation, obtaining an approximated localisation

error of 20% of the pupil size. See figure 5.

6) Eye direction calculation: The eye direction is calcu-

lated from the relative displacement of the pupils centre with

respect to its original 3D coordinates.

7) Gaze estimation: Gaze is computed rectifying the face

pose estimation with the eye direction estimation, according

to Equation (1).

8) Fixation classification: Fixation is calculated as the

intersection point between the gaze vector and the simulator

scene. The fixation point is classified among a set of interest

Fig. 4: Initial eye features: Eye corners and pupil

Y pupil centre

X pupil centre

Y projection

X projection

Fig. 5: Samples of the integral projection algorithm

areas where the subject can be looking at.

Figure 6 shows an example of the face pose and gaze

estimation monitoring application. At the bottom of the image

is shown the fixation point on the scene.

B. Gaze fixation and classification

The objective of this classification is to determine the

fixation area of the driver, to know where of a set of key

areas she/he can be looking at. The 11 different fixation areas

defined for this project are shown on figure 7, and are:

1) Front: The road itself and traffic ahead. Victor and

Joanne, basing on experiments on various simulators and on

Fig. 6: Example of face pose estimation and gaze estimation,

with fixation point on the scene.
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Fig. 7: Set of key fixation areas

real traffic, defined this as an area between 16◦ and 20◦ in

diameter centred on the road [32].

2) Left and right signals: Denote the signalling on sides of

the road, overtaking cars, crosses or other objects present in

the proximity of the truck. When the driver is looking at any

of these points, the fixation is slightly diverted horizontally to

the left or to the right.

3) Lateral rear mirrors: The external rear mirrors located

at both sizes of the cabin. Most times it is not possible to

localise the pupils when the driver is looking to them because

they are occluded, but it is easily recognisable because he/she

needs to turn largely his/her head horizontally.

4) On-board computer, GPS and Hands-free: Usually the

driver tries to look at these IVIS with very little head move-

ment, to not lose attention to the road.

5) Tachograph: This IVIS is located overhead, over the

windscreen, and looking at it requires a head movement.

6) Overhead signalling and near road: Looking at these

points requires no head movement and very little vertical pupil

displacement, so it is difficult to distinguish when the driver

is looking there from the front road itself. We do not classify

these areas.

The cameras’ position inside the cabin is fixed, and the

geometric layout of the simulation room, cabin and projection

panels are known, so the 3D centroid in the scene of each

of the regions described above, can be measured and refer-

enced to the right camera frame system. The fixation area is

calculated as the closest area to the gaze fixation point using

Mahalanobis distance, which takes into account the different

sizes of the areas. Using this algorithm it is possible to know

the area where the driver is looking at or how long the driver’s

gaze remains fixed on an area. This is very important to

study drivers reactions to different IVIS in order to know the

potential distraction caused by each of them.

V. DISTRACTION ANALYSIS USING GAZE ESTIMATION

This section presents the tests and results of our non-

intrusive approach to monitoring driver’s distraction. Fixation

in the scene is calculated in order to infer driver’s distraction

state. Different distraction tasks or activities were inferred in

a naturalistic simulator and a study of the incidence of these

distracting tasks in the driver’s behaviour was carried out.

Professional drivers were invited to drive the truck through

a few scenarios carefully designed by a team of psychologists

from the Safety and Human Factors Investigation and Training

Centre (ESM) [33], who later examined the generated data

to extrapolate behaviour. The scenarios were designed and

prepared to require a high level of attention from the driver,

and some tasks were intentionally programmed during the

driving activity to stress the driver in order to study his/her

behaviour under such conditions. The simulator cabin was

fully equipped with a variety of IVIS. Experiment layout,

driver behaviour studies’ results and conclusions are presented.

A. Experimental environment

Different aspects must be considered in the experimental

environment: the physical simulator layout, the camera vision

system for gaze estimation, the experiments setup and the

subjects.

1) Naturalistic driving simulator: The experiments were

performed in the research facilities at CEIT [34], (San Se-

bastián, Spain), in a room with controlled light and sound

environment. The given naturalistic simulator TUTOR [35],

shown in figure 8a, consists of a real truck cabin, motorised

to simulate movement and equipped with common IVIS.

The cabin is assembled on a movement platform with 6

degrees of freedom on which drivers can feel the vehicle

accelerating, braking, its centrifugal force, etc. The devices

send information to the host, located at the Instructor Position

(PI), where the psychologists can control the whole simulator,

analyse all the data and reproduce stored simulations. Main

computers are placed in the PI, located near the cabin. A

dedicated computer processes face pose and gaze estimation

using the algorithms presented in this paper, and sends this

information to the PI, where the psychologists can access to

the data.

The visualisation system is made of three back-projection

panels with a total surface of 22 m2. The fact that the screens

have no marked separation plus the geometry of the image

system makes for a flawless overall impression. Moreover, two

computer screens are used as rear mirrors, attached to both

sides of the cabin.

The cabin is fully equipped, and contains a GPS, a hands-

free, the on-board computer and a tachograph. These are some

of the key locations that the gaze estimator must differentiate.

2) Vision system: The stereo rig is located inside the cabin,

over the dashboard, between the windscreen and the driving

wheel, facing the driver at a distance between 70 and 100 cm.

The baseline is 23 cm, and cameras are slightly turned inward,

to better point to the driver’s face, closer to the rig. Figures 8 b)

and c) show the camera layout inside the naturalistic simulator

cabin. The cameras [36] are 1392 × 1040 pixels, and capture

images at of 30 fps, with a Firewire 800b interface. The

custom-built rig and IR illumination board are attached to the

windscreen using suction pads, and rests on foam over the

dashboard to reduce vibration. The hardware layout can vary

without affecting system operation, as long as the stereo rig

is calibrated and referenced to the world coordinates, fixation

area locations are approximately known, and the cameras are
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(a) Motorised simulator cabin, and projections
panels

(b) Cameras position (c) Driver’s view of road and cameras

Fig. 8: Naturalistic driving simulator cabin

ahead of the driver, not necessarily in front. Our cameras

mount a 9 mm lenses, and capture is synchronised with the

IR pulsed illumination. The capture system is coded using

C++ and GNU libraries and tools, running on a Core 2 Duo

processor commanded by Ubuntu. This vision system is an

evolution of ther monocular one developed by the group for

drowsiness detection [37].

3) Experiments setup : To design the experimental proto-

col, the team of psychologists built on the following initial

hypothesis: “The potential driver distraction due to IVIS is

determined by the level of attentional demand required by

them while driving, decreasing the effectiveness of the primary

task: driving.”

By analysing the professional drivers behaviour, the basic

and most representative features in the context of this activity

are identified [38]. Some scenarios, types of vehicles, inci-

dents, on-board systems utilisation and critical situations are

selected to infer distraction in drivers. Thus, the professional

drivers behaviour should be generically represented. Taking

into consideration this basis, which involves observing and

information recording during the driving activity, the next step

was to define the simulation exercises.

Experiments were designed with the goal of refuting the

initial hypothesis of the research regarding the potential dis-

traction of four different on-board systems which are com-

monly used in professional driving. These devices were digital

tachograph, GPS, hands-free and on-board computer. Under

these conditions, four scenarios were created: mountain, inter-

city, urban and long-distance. Different exercises setup were

prepared for each scenario, each containing different tasks,

events, weather conditions and IVIS requirements.

According to Victor et al. [32], three different tasks are of

special importance to study distraction: visual tasks, auditory

tasks, and cognitive tasks. During the experiments, visual

tasks require to use the GPS. Auditory ones involve making

a call to the hands-free telephone, and engaging in a trivial

conversation. For the last one, a cognitive task is enforced

in one of the exercises by making a phone call in which the

driver is asked to describe the route from one point to another

on a city he knew. During the exercises, events are inserted

proximal to tasks, such as motor, tires or ABS breakdown,

sudden braking of the precedent vehicle, broken down vehicles

on the road, vehicles running a red light, etc. A summary of

the different exercises setup is shown in table I.

These tests were implemented using 16 different exercises:

five based on the inter-city scenario, four on the mountain sce-

nario, three on the urban and the last four on the long-distance

one. The defined procedure to evaluate these exercises consists

on different drivers driving through different scenarios.

The first exercise of each scenario was the control exercise

which corresponds to the exercise undertaken by each driver

without external perturbations. This exercise provides a refer-

ence for the other exercises, in terms of driver gaze fixation

patterns on the controls, to which the results from distractions

can be compared.

4) Subjects: 12 professional drivers from different gender,

age and experience were selected, having different participants

for each test configuration to detect the user dependent be-

haviour variables. Each driver drove in two exercises on each

scenario (the control exercise plus another), and duration varies

from 20 to 45 minutes, depending on the scenario.

Previous studies with similar conditions used groups from

7 to 30 participants [39], [40]. All subjects were informed of

the purpose of the experiment and the security procedures in

the simulator facilities.

B. Ground-truth generation

To assess the performance of our system we obtained the

ground-truth (GT) for the face pose and gaze. We obtained

the pose ground-truth with a calibration chessboard, attached

to a helmet the subjects wore during the experiments. The

pose of the chessboard was obtained using camera calibration

techniques, with an average error below 1◦. The ground-truth

data was obtained for 6 users on sequences over 10 minutes

long.

With respect to gaze, we used a video database of 15 videos

more than 10 minutes long each. We have obtained the ground-

truth for the gaze fixation classification by manually labelling

the driver’s fixation area on each moment.

C. Face pose experimental results

Firstly we analyse the general performance of our face pose

estimation system. Mean pose estimation error in the three
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Scenario Exercise Events IVIS
A

.
In

te
r-

ci
ty

1 Control exercise

2 GPS guidance

3 Faulty GPS guidance

4 Telephone guidance

5
GPS guidance
Distorted voice call

A vehicle running a STOP.
Mechanical fault in air filter†‡.
Cyclists on road.
Sudden speed down of preceding vehicle.
Slow vehicle on road.

GPS
Hands-free

B
.

M
o

u
n

ta
in

1 Control exercise

2 GPS guidance

3 Telephone guidance

4
GPS guidance
Faulty voice call
Tachograph speed warning

Obstacle on road
A vehicle running a STOP.
A vehicle stopped on road.
Sudden speed down of preceding vehicle.
Slow vehicle on road.
Tyre blowout‡.

GPS
Hands-free
Tachograph

C
.

U
rb

an

1 Control exercise

2
GPS guidance
tachograph error

3
GPS Guidance
Distorted voice assistance call

ABS fault†

A vehicle running red light.
Mechanical fault in air filter†‡.
A pedestrian crossing the street.
A dog crossing the street.

GPS
Hands-free
Tachograph
Computer

D
.

L
o

n
g

-d
is

ta
n

ce

1 Control exercise

2
Phone calls
On-board computer warnings

3
Phone call
Cognitive phone call∗

Tachograph warnings

4
Phone call
On-board computer data

Obstacle on road
A vehicle running a STOP.
Vehicles stopped on the road.
Slow vehicle on road, and a car overtaking a bus
downhill.

Hands-free
Tachograph
Computer

†Marked on the on-board computer
‡Truck dynamic model changes
∗Phone call with important cognitive charge: The driver is asked to explain a route within a known city.

TABLE I: Exercises setup

angle rotations are shown in table II. Mean error is computed

by rotation ranges for each direction. Pitch and roll rotations

present a smaller output range than for yaw since there are

no wider head rotations for these directions on the driving

exercises. Because the registering technique can not be applied

to pitch variations, the system error is higher in this direction,

and it can be observed how it increases for angles αpitch >

30◦. Still, the bundle adjustment (BA) slightly improves the

results. Evaluation of the error in a wider pitch and roll range

is not possible because significant rotations are not natural

while driving.

Rotation BA? α < 15
◦

α < 30
◦

α < 45
◦

α ≥ 45
o

yaw no 1.92 2.44 6.72 12.83
yaw BA 0.98 1.54 3.04 8.54

pitch no 3.82 7.86 8.59 -
pitch BA 1.81 4.70 6.34 -

roll no 1.27 2.06 - -
roll BA 1.16 1.75 - -

TABLE II: Mean face pose estimation error. The error is

divided into yaw, pitch and roll, and evaluated in different

ranges of the absolute rotation angle in the ground truth, α

As we can see, our proposal has a very low error thanks

to the BA corrections. The error remains low for the full

range ±90◦ of yaw rotations. These results show equal or

lower errors than other important works in the literature [41],

[42], [43],despite we tested or system with more challenging

scenarios. The low-lighting conditions, along with the fast

head movements make the face appear very blurry when the

head is moving side to side. Any other tracking system would

lose track of the head under these conditions. On the other

hand, we can keep tracking the face thanks to the extended

face model and the mixed-view technique.

The tests used in the different works presented in Table

II differ, but a qualitative comparison among them is possible

taking into account the performance results published for each

work.

D. Gaze fixation experimental results

Table III presents the gaze fixation classification error. The

error has been calculated as the relation between the incorrect

classifications, and the total number of frames (from the GT)

that the driver has gaze fixation to an specific area. A False

negative is when we do not detect that the driver is looking at

an specific fixation area. A False Positive happens when the

classifier says that the driver is looking at fixation area, but

actually is looking at another area. For reference, we divide

the false positives into the different areas where the driver

was really looking at. As it can be observed in the table, the

classification errors for the Front fixation area, rear mirrors and

on-board computer are below 5%. This are the areas which

give more information on the distraction state of the driver.

The left and right signals are the most difficult to detect, since

they are very proximal to the front fixation area.

E. Statistics results to infer distractions

In this section we provide some consistent statistics, based

on gaze fixations, useful to assess driver distraction. The



8

Fixation area
False Negative False Positive (detected while looking to:)

(not detected) Total Front Left mirror Right mirror Computer GPS Hands-free
Front 4.64% 2.33% - 0.62% 0.41% 0.36% 1.33% 1.02%
Feft mirror 2.79% 1.31% 0.27% - 0.02% 0.60% 1.20% 0.10%
Right mirror 3.22% 2.14% 0.15% 0.01% - 0.46% 0.90% 1.30%
Computer 4.96% 4.78% 1.75% 0.36% 0.28% - 1.30% 0.87%
Gps 11.16% 6.56% 2.86% 0.50% 0.60% 2.40% - 4.70%
Hands-free 10.78% 15.3% 1.28% 0.60% 0.50% 3.20% 5.20% -
Tachograph 5.45% 4.70% 2.10% 0.84% 0.34% 1.67% 0.30% 0.20%
Left and Right signals 13.95% 17.30% 6.30% 2.10% 1.40% 1.40% 1.70% 0.90%

TABLE III: Gaze classification error percentage

driver’s behaviour interpretation must be carried out by psy-

chologists and is out of the scope of this paper.

As explained in Section V-A the drivers were asked to

perform demanding tasks while driving such as answering

the phone and following indications, receive corrections of

previous indications to get to a place or to operate the on-

board computer or the tachograph. In Table IV the recorded

incidents while using the different IVIS are shown.

Distraction Time Crashes Near Crashes Incidents
No distraction 95% 0% 1% 0%
GPS 2% 42% 47% 40%
On board computer 1% 0% 0% 12%
Tachograph 0.1% 0% 0% 0%
Hands-free 2% 58% 52% 48%

TABLE IV: Classification of registered incidents

Most of the accidents occurred while receiving or executing

the indications from the GPS or the hands-free device. As

expected, the more cognitive demanding a task is the higher

the risk of being involved in a distraction related incident.

Results on table IV also show that using the tachograph and

on-board computer is not very cognitive demanding since it

only requires quick looks, similar to a mirror checking. The

challenge now is to study driver reactions to different IVIS

and find out the optimal IVIS location and the optimal way

to deliver indications and warnings to them. Hereafter, we

analyse two concrete cases for the most critical IVIS. Using

our system, statistics are automatically generated while many

other works in the state of the art are bassed on user self-

report, which is subjective.

1) Hands-free device: Most incidents were registered while

the driver was using the hands-free device. This, together

with the fact that 85% of people admitted using a cell phone

while driving at least occasionally makes phone use one of

the most dangerous activities while driving. The recorded

consequences of using the hands-free device are: an increase

in the corrections of the in-lane position, short braking, non

constant speed and fixed gaze.

Figure 9a shows gaze focalization of the driver for a piece

of the exercise D2 starting at the moment when a phone call is

received. Continuous looks to the hands-free device (H) and no

checking to the vehicle speed (C) or rear-view mirrors (M) are

detected while answering the phone call. On the other hand,

on the control exercise (D1) for the same piece, depicted in

Figure 9b, the driver remains attentive to the road (F) checking

the vehicle speed and the rear-view mirrors from time to time.

(a) Answering a phone call (seconds)

(b) Without external perturbations (seconds)

Fig. 9: Driver’s gaze focalization while answering the phone

2) GPS: The second higher cause of incidents was the use

of the GPS device. In our experiment, incidents were caused

while setting up the GPS device and while following the

indications. When setting up the GPS the loss of attention

to the road was the main cause of incidents. During these

losses of attention the gaze was fixed on the GPS device for

long periods of time. However, the indicators received from

the GPS also caused an increment in the incident rate, which

is mainly due to a decrease in the attention paid to the road

information (traffic signs and overhead panels) and a loss of

attention to the road with frequent looks to the GPS device

Figure 10 depicts gaze focalization of the driver for a

piece of the exercise B2 versus the control exercise for the

same piece. In this case the driver follows guidance GPS

instructions. The lack of attention paid to the road information

while using the GPS, makes the driver to start an overtaking

manoeuvre while approximating the exit he has been asked

to take. The driver is overtaking a very slow moving vehicle

when GPS informs him of taking the next exit. To accomplish

this instruction, a two-lane changing is required in less than 4

seconds. Instead, when driving without external perturbations,

the driver checks the traffic signs to reach his target. The driver

is aware that he has to take the next exit in advance and decides

to wait behind the slow moving vehicle.

As figure 10a depicts, reiterative checks of the rear-view

mirrors (M) and the vehicle speed (C) are performed in the
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(a) Following GPS instructions (seconds)

(b) Without external perturbations (seconds)

Fig. 10: Driver’s gaze focalization previous to overtaking

slow moving vehicle overtaking maneuver. Then, traffic sign

checking is not carried out. On the control exercise, the

overtaking intentions of the driver are also detected in the

mirrors (M) and signals (S) checking but the driver is aware of

the closeness of the highway exit and decides not to start that

dangerous maneuver and to wait behind the slow vehicle until

taking the exit. Predicting the drivers intentions, the indications

delivered by the GPS can be modified and warn the driver

about the incoming exit or advise the driver to stay on the right

lane. Dangerous situations as well as annoying indications or

warnings can be avoided by predicting driver intentions.

3) General statistics: Human factor studies have shown

that reaction times are influenced by secondary tasks such as

IVIS usage. Table V shows some statistics obtained after the

complete evaluation of the gaze fixation for all the subjects

and exercises (where A1, B1, C1, D1 are control exercises and

A[2-5], B[2-4], C[2-3] and D[2-4] are distracting exercises). It

compares the reaction times needed before or after an inserted

event in the case of the control exercise or when the subject

is forced to a distractive driving by requiring a high degree of

devices utilisation. As an example, on exercise D3, few drivers

are unable to avoid hitting an on-road obstacle, while they

perfectly do it up to 12 seconds in advance if they were not

distracted. Many of them overpass speed limits more often,

and need more time to notice a mechanical failure. One of

the subjects needs more than two minutes to notice that he is

driving a fully loaded truck on a mountain road with a flat tyre.

Being undistracted, he needed a few seconds to notice the same

anomaly. The gaze estimation system allows to study what was

the subject doing before noticing the anomaly, and why he

was not aware of that for such a long period. This parameter

is important to avoid dangerous situations as well as to study

the arrangements and the ways of delivering information in

which the IVIS create a higher level of distraction. Warnings

and preventive measures, such as early pre-breaking, require

a very precise knowledge not only of the driver’s state and

intentions but also of the vehicle’s surroundings state.

To help psychologists understand the distraction pattern of

a driver, two more measurements can be taken, apart from

reaction time. Traditionally, a glance based measure has been

used. This technique measures duration of individual fixations

on different zones, frequency, number of glances or total task

duration. However, these measurements heavily depend on the

task, the driver experience, and other factors. In [32] authors

found that the Percent Road Centre (PRC) measurement is

more stable across users and different experiments. PRC

measures how much time is spent looking at the road centre

area while performing a task. This zone includes the road,

signalling and visual elements proximal to the road. We have

analysed this parameter in our experiments.

Figure 11 shows the fixation time percents in the different

zones of the scene during the execution of a task. This figure

was generated after the analysis of the results obtained with

the gaze estimation algorithm and tasks schedule during the

exercises. The first column shows the average percents for

the control experiments (exercises A1, B1, C1 and D1). The

second column depicts distractions inferred using the GPS,

obtained from exercises A2, A3, B2, B4 and C2. The third

column depicts distractions inferred by tasks requiring talking

by the hands-free phone, on exercises A4, A5, B3, D2 and

D4. The last one represents a cognitive task on exercise D3,

which induced distraction with a phone call to explain a route.

We have found PRC to be a good parameter to assess

driver distractions. In contrast with other parameters used in

the state of the art works, this is automatically calculated.

Moreover, we also found that the distraction pattern inferred

for the different IVIS is different. Unlike most of the works in

the state of the art, we analyse visual, cognitive and auditory

distractions. While the GPS shows an important reduction of

PRC, phone calls do not reduce PRC, rather instead, it slightly

increases. On cognitive tasks, we could not infer any important

variation of this parameter. However, the time used looking at

the signalling and as well as the road proximities is reduced

for all tasks. This behaviour is clearly observable on figure 11,

and it is in line with the conclusions presented by [32].

It can be observed how the time that the driver spends

looking at the mirrors, signals and on-board computer is

drastically reduced for any of the task, in comparison with the

control exercises. During phone calls, driver increases the time

in which he is looking at the front, but reduces the fixations

on the mirrors and signals. This could mean that the driver is

not actually paying attention to the road, although more work

would be needed to extract a precise conclusion.

VI. CONCLUSIONS AND FUTURE WORKS

We have applied a gaze fixation technique, based on face

pose and gaze estimation algorithms, to monitor the distraction

state of a driver in a naturalistic driving simulator. Our face

pose estimation approach is based on a sparse 3D face model

obtained from face features. A re-registering algorithm, online

model extension and bundle adjustment process for error

corrections allow a face tracking for the full yaw rotation

range, ±90◦. The system has been tested under challenging

conditions, such as low illumination, variety of drivers, heavy
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Scenario Exercise

Overpass Reaction time to an event [seconds]

speed Obstacle‡ Mechanical fault∗ Answer a call∗

limit [#] max min min max min max

Inter-city
A1 0 25 5 (1) 5 9 1.5 5

A[2-5] 2 15 3 32 81 2 9

Mountain
B1 2 19 5 (2) 0.6 2 1 3

B[2-4] 6 13 2 24 2min 11s 2 11

Urban
C1 0 16 3 (3) 4 11 2 8

C[2-3] 0 4 0 4 43 4 miss

Long-Distance
D1 1 34 12 (4) - 1 4

D[2-4] 4 20 0 - 3 miss

∗ Reaction time after the event. ‡ Reaction time before the event. Moment at which the subject is aware of the obstacle and takes an action before colliding.
(1) Mechanical fault in the air filter. Warning marked on the on-board computer. (2) Tyre blowout. Marked trough audible sound and truck dynamic model
changes. (3) ABS fault. Warning marked on the on-board computer. (4) No mechanical faults scheduled.

TABLE V: Driver behaviour and reaction time statistics

PRC normal conditions

Front

IVIS

75%

Signals

Mirrors IVIS

Computer

others

Detailed view without Front

9%

4% 3%

5%

4%

(a) Normal driving

PRC using GPS

Front

IVIS

49%

Signals

Mirrors

IVIS

others

Detailed view without Front
                           

2%

1%

38%

9%

1%

(b) Visual tasks

PRC using the Phone

Front

IVIS

 

 

85%

Detailed view without Front

Signals

Mirrors

IVIS

Computer

others
2%

1%

6%

2%

4%

(c) Auditory tasks

Front

others

PRC cognitive call

70%

Signals
Mirrors

Computer

others

Detailed view without Front

4%
1%

0%

1%

24%

(d) Cognitive tasks

Front

Signals

Mirrors

IVIS

Computer

others

Fig. 11: PRC statistics

IVIS utilisation and fast and wide head movements. Under

this conditions the system has proved good results. It shows

a mean error below 1◦ for rotations in the ±15◦ range, and

1.54◦ in the ±30◦ range, improving the results of other works

in the literature.

An eye direction estimation method has been added to the

face pose to generate the gaze estimation. The eye direction

is based on the pupils displacement with respect to their

original positions. Gaze fixation information can be used to

help psychologists to assess the distraction state of the driver.

Performance of our gaze fixation system has been analysed

showing good figures for this application.

Different driving exercises directed by a team of psycholo-

gists were recorded in a naturalistic driving simulator, through

12 professional drivers, generating more than 15 hours of

driving. Four scenes were created, and distractions induced

by different IVIS were inferred and compared to the control

exercises without external perturbations. This way, it was

possible to compare the driver behaviour under non-distracted

driving conditions versus distracting ones. This has been a

challenge dataset to evaluate our system.

Reaction times and gaze focalisation behaviour patters have

been measured to draw conclusions about the capacity of

our monitoring system to help psychologists to study driver’s

reactions under different situations while using IVIS. At the

time of writing, psychologists are finishing the interpretation

of data provided by our system in order to assess driver

distractions over the explained tests.

Further studies about the optimal location of the different

IVIS and the way the information is delivered are being

designed by psychologists to reduce the distraction New tests

with these modified IVIS will be performed on the simulator

to evaluate the improvements of the new designs.
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