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Abstract— Semantic segmentation based on Convolutional
Neural Networks (CNNs) has been proven as an efficient
way of facing scene understanding for autonomous driving
applications. Traditionally, environment information is acquired
using narrow-angle pin-hole cameras, but autonomous vehicles
need wider field of view to perceive the complex surrounding,
especially in urban traffic scenes. Fisheye cameras have begun
to play an increasingly role to cover this need. This paper
presents a real-time CNN-based semantic segmentation solution
for urban traffic images using fisheye cameras. We adapt our
Efficient Residual Factorized CNN (ERFNet) architecture to
handle distorted fish-eye images. A new fisheye image dataset
for semantic segmentation from the existing CityScapes dataset
is generated to train and evaluate our CNN. We also test
a data augmentation suggestion for fisheye image proposed
in [1]. Experiments show outstanding results of our proposal
regarding other methods of the state of the art.

I. INTRODUCTION

Understanding the surrounding environment is an essential
task for autonomous vehicles. Semantic segmentation aims
to solve this problem by parsing images into different regions
with different semantic categories such as pedestrians, road,
buildings, traffic signals, etc. at a pixel level. This provides
relevant information that covers most of the needs of au-
tonomous vehicles in an unified way [2].

Semantic segmentation solution based on Convolutional
Neural Networks (CNNs) standout over other state-of-the-
art solutions, as they can be trained end-to-end to accurately
classify multiple object categories in an image at the pixel
level. The success of this technique is due to the existence
of large-scale training datasets [3], [4], high performance
Graphics Processing Units (GPUs) and excellence open
source deep learning frameworks [5], [6], [7].

Urban traffic scenes can be very complex, with un-
predictable behaviors of dynamic traffic participants and
challenging situations, especially at roundabouts and inter-
sections. Therefore, a complete and real-time surrounding
perception is mandatory. Multiple sensors can be used to face
the problem, including ultrasound, radar, LIDAR, cameras,
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etc. Among then, cameras are a good solution because they
offer deep information, are cheap and easy to handle. The
problem is that standard cameras have a limited field of view,
demanding many of them to cover the whole surrounding
area. An alternative is to perceive wide-angle views for
semantic segmentation by using fisheye cameras, which are
able to provide the entire frontal hemispheric view of 180°.
Exploiting this option, only two cameras would be theoret-
ically needed to cover the 360°. However, fisheye cameras
introduce strong distortion on the images, so elements on
the scene appear warped on them and standard algorithms
cannot be applied for image segmentation tasks.

Several solutions have been presented to deal with this
challenge that also influences other vision tasks such as
classification or detection. Initial approaches tried to handle
the problem by un-warping fisheye original images and
then applying standard algorithms to the undistorted image
like Local Binary Pattern (LBP) [8] or DPM [9]. Other
approaches reprojected the fish-eye image using pinhole
camera models to correct the distortion [10] [11].

The previously proposed methods showed a good per-
formance in different tasks, but they also present a strong
dependency on the intrinsic camera calibration parameters.
Even with a good knowledge of the used set of parameters,
the un-warping process usually hurts the image quality, and
the obtained image may present some differences with the
original that negatively impacts subsequent processes. They
also force the designing of complex preprocessing stages
that increase the response time of the developed systems and
make them non-viable for real-time applications. Summariz-
ing, learning based methods trained in conventional images
are difficult to be applied over undistorted images.

Due to this difficulties, latest works have been focused
on adapting existing image processing techniques to handle
the uncorrected images directly. These proposals must tackle
three important problems: 1) how to manage the strong
distortion in the fisheye images, 2) the lack of large-scale
dataset with pixel-level annotated images and 3) computa-
tional resources needed to implement perception systems for
real-time applications. In this sense, latest state-of-the-art
methods have tried to generate new artificial datasets using
existing ones adding fisheye distortion on them forwards to
adapt neuronal networks to information provided by wide-
angle field of view devices. In [12] an spherical perspective
imaging model is used to generate a fisheye dataset based
on the ETH pedestrian benchmark. In [1] authors used the
perspective projection equation of fisheye cameras to remap
the pixels from the original dataset images to the new
distorted ones.



This paper presents an efficient CNN-based semantic
segmentation proposal for urban traffic images using fisheye
cameras on board a real vehicle. A new fisheye image dataset
for semantic segmentation based on CityScapes dataset
[3] is proposed in Section II. In Section III a new data
augmentation strategy for our fisheye images is tested to
evaluate its generalization performance. An Efficient Resid-
val Factorized CNN for real-time semantic segmentation
(ERFNet) is proposed in Section IV. Finally, experimental
results that validate our proposal are presented in Section V
and conclusions in Section VI.

II. FISHEYE IMAGE DATASET

In conventional pinhole model cameras light directly maps
into the image as in equation (1):

Ppinhole :ftan(e) (D

where 0 is the angle between the incoming light ray and the
image principal axis, f is the focal length of the camera and
p is the distance between the image point and the camera
principal point.

However, fisheye camera imaging model is different: fish-
eye lenses can be designed following various mathematic
models. Among them, the most generic one is the equidis-
tance projection, as in (2):

Pequidistance = f@ (2)
Despite this, there are other less used models such as
stereographic projection (3), orthogonal projection (4) or
equisolid angle projection (5):

Pstereographic = 2ftan(6/2) 3)
Porthogonal = fSl}’l(e) “4)
pequisolid = 2fSln(9/2) (5)

Any of the previous equations together with (1) can be
used to define a remapping between an original conventional
image and a new synthetic fisheye image that will only
depend on a focal length, as proposed in [1]. The final
remapping relationship will link the distance between a
single pixel (P. = (x.,y.)) and the principal point (U, =
(ttex, Uey)) on the conventional image (d.) with its equivalent
distance between the single pixel (P = (xf,yr)) and the
principal point (U = (usy,uysy)) on the new fisheye image
(dy). This relation for the equidistance projection is described
by:

d. = ftan(ds/f) ©)

With de = \/(x¢ — ttex)? + (Yo — Uey)? for the conventional
image, and dy = /(xy —us)> + (yf — ugy)? for the fisheye
image.

Using the previous equation, we generated a new set
of images from CityScapes dataset, as showed on Fig.l.
CityScapes is a large-scale dataset for semantic urban scene
understanding that contains 5,000 dense pixel-level annotated
images selected from 27 cities with 19 classes for evaluation.
The images are split into three subsets: 2,975 for training,

(d) Original and transformed annotation 2

Fig. 1: Examples of transformation from original CityScapes
images and annotations to fisheye ones

500 for validation and 1,525 for test. The training and
validation sets (RGB images and annotated images) are
transformed to fisheye images following equation (6). The
corresponding annotated images are not available for the test
set. To generate the complete dataset, we used the validation
set for testing.

The remapping process implies a big scale loss on the
images. In order to deal with this and also to adapt the
final images to our ConvNet we scale images after the
remapping to 576x640 resolution. We transform the entire
training and validation sets, using bilinear interpolation for
original images and nearest-neighbor for label images. For
the remapping process we initially use an arbitrary focal
length of fp = 159 as in [1], but additionally a new data
augmentation strategy is tested.

III. DATA AUGMENTATION PROPOSAL

Data augmentation is used to enlarge the training data
using label-preserving transformations. There are many tech-
niques typically applied in semantic segmentation such as
flipping, rotation, scaling, cropping and color jittering. Au-



(a) Original images
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Fig. 2: Original images and remapping for different focal length values

thors in [1] proposed a new data augmentation method spe-
cially designed for fisheye image and called zoom augmenta-
tion. They augmented training dataset with additional images
by changing the focal length of the fisheye camera with
two empirically calculated values regarding the baseline, a
smaller one (f; = 96) and a bigger one (f; = 242).

For comparison reasons we reproduce the same values
for the focal length and results are shown in Fig.2. As a
general conclusion, higher scales introduce lower distortion
and smaller scales higher distortion. In the experimental
results section semantic segmentation performance will be
analyzed according to this parameter.

We implement a variation regarding the explained zoom
augmentation technique consisting in randomly changing,
following a Gaussian distribution, the focal length between
the two defined values (f] =96, f> =242). Theoretically, this
is the best strategy to obtain an optimal zoom augmentation
in a range if the number of samples is representative.

IV. CNN ARCHITECTURE

Last trends in top-performance network designing have led
to the development of large deep architectures for networks
pushed by the appearance of residual layers that avoid the
degradation problem allowing the gradient to be propagated
through a big number of layers, making possible very deep
networks with hundreds of layers. However, very large
networks are not adequate for real-time applications and they
have even been proven inefficient in certain works focused in
the image classification [13] [14] and semantic segmentation
tasks [15], [16].

Different trends have tried to achieve more efficient net-
works by aggressively reducing the number of network
parameters. This works led to real-time working architectures
but with a poor accuracy performance.

Our ERFNet [17] proposal presents a “wider” (as op-
posed to “deeper”) architecture while still took advantage
on residual convolutional layers but with a different novel
approach, leading to an extremely efficient model with

real-time performance in computationally heavy tasks like
semantic segmentation.

Residual layers were originally proposed in [18] with
two possible designs: bottleneck and non-bottleneck. Bot-
tleneck layers are more extended due to efficiency reasons,
but non-bottleneck has demonstrated performance benefits
in certain shallow architectures like ResNet. The proposed
architecture is built by stacking layers based on a novel
redesign of the non-bottleneck residual layer. To keep this
efficiency-performance trade-off, the ERFNet repurposes the
non-bottleneck design to be entirely built with convolutions
with factorized (1D) kernels in order to reduce computation.

The model follows an encoder-decoder architecture like
SegNet [19] and ENet [20], avoiding the need of using
skip layers to refine the output, as shown on Fig.3. The
encoder block is formed by a total number of 16 lay-
ers, including both downsampling and the redesigned non-
bottleneck convolutional layers. The decoder block consists
of 7 layers that perform the deconvolution (upsampling) of
the feature maps to the original input image size and a
final log-softmax loss layer that provides class probabilities.
The model also includes Batch-Normalization to accelerate
convergence, and dropout with a probability of 0.3 trying
to avoid overfitting and as a measure of regularization. This
sequential architecture has the ability of handling complex
fisheye images by using a simple downsampled-upsampled
feature maps process.

V. EXPERIMENTAL RESULTS

To validate our proposal we plan two kind of experiments.
The first one is focused on the data augmentation strategy
and the second one in comparing results with other similar
proposals of the state of the art.

We use the Cityscapes dataset according to the explained
in Section II. We train our models on the training set
uniquely, without using the validation set. All accuracy re-
sults are reported using the commonly adopted Intersection-
over-Union (IoU) metric. Our model is trained using the deep
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Fig. 3: Diagram that depicts the proposed segmentation net
(ERFNet). Volumes correspond to the feature maps produced by
each layer. All spatial resolution values are with regard to an
example input (640x576).

learning framework Pytorch which stands out in efficiency
and speed terms. All of our code is open source and it is
available at hrtps:github.com/Eromeraerfnet_pytorch.

Training is performed using a batch size of 6, 180 epochs
and the Adam optimization of Stochastic Gradient Descent
with a starting learning rate of Se-4 and a weights decay
parameter of le-4, adjusting the learning rate on each epoch.
The class weighing technique proposed in [20] is used
during the training w;s = m setting ¢ = 10, which
empirically gave good results in our case.

The training process takes place in two phases: on a
first stage the encoder block is trained during 90 epochs
with downsampled annotations and then, on a second phase,
during another 90 epochs the decoder is included as well to
train the network end-to-end and generate segmented images
with the same resolution that the input images.

A. Data Augmentation

To analyze the benefits of our data augmentation proposal,
we train our ERFNet using distorted images and performing
simple data augmentation by doing random horizontal flips
and translations of 0-2 pixels in both axes. Rotation and
scale augmentation are not used because, according to [1],
do not give additional improvements for these images. In
addition, zoom augmentation for the three different focal
lengths (f1 = 96, fy = 159, f» = 242) are carried out. As
baseline, we include the original ERFNet pre-trained on the
Imagenet dataset and trained on CityScapes by using non-
distorted images, to demonstrate that standard training is not
suitable for this new challenge (fish eye images) due to their
strong distortion. Finally, zoom augmentation with random
focal length is evaluated.

Once we get the fifth trained models, we test them on the
validation set corresponding to the same focal length used
for the training. For the original ERFNet we use the test
set with the a priori most favorable focal length and for the
random zoom augmentation we use the validation set for the
central focal length (fy = 159).

As shown on Table I, the original ERFNet gets the worse
results when fisheye distortion is added. It obtains a 38,2 %
IoU for the validation set with the most favorable distortion
level (f>» =242). Experiments also demonstrate that stronger
distortions over the fisheye images degrade the segmentation
performance. Obtained IoU average varies from 46,6 % to
60,2 % respectively from the weakest distortion level (f2) to
the strongest one (f; = 96), as we depict on Table I. Stronger
distortions imply higher variations on the appearance of the
objects in the scene, which forces the CNN to learn better and
more generalizable features. Finally, results for our random
zoom augmentation proposal are close the most favorable
case (f2), but using the validation set for (fy), which shows
the generalization capability of this technique.

B. Comparison to the State of the Art

We compare our trained model with others used on similar
experiments. Our network shows better performance than one
of the best state-of-art method consisting on the Overlapping
Pyramid Pooling Net (OPP-Net) [1] trained with and without
the additional data augmentation technique named zoom aug-
mentation. We use the same process during the training and
the test for the two networks, consisting in fusing the data
obtained for the three focal length in the training and validate
with the (fy) set. Results are shown in Table II. The OPP-
Net without zoom augmentation achieves an IoU of 52,6%,
improving until the 55,6% for the ERFNet. Adding zoom
augmentation improves previous results, achieving 54,5%
for the OPPNet+AUG and 57,0% for the ERFNet+AUG,
with an increase of 1,4%. Using some empirically calculated
distortions in the zoom augmentation strategy (AUG) helps to
obtain more generalizable features. Choosing random values
for the focal length (ERFNet + rnd AUG) reaches similar
results and does not improve AUG performance. Finally, the
ERFNet obtains its best score with an IoU of 59,3% starting
from a pre-trained Imagenet model and using additional data
augmentation (AUG2) that includes adding random cropping,
color jittering and randomly modifying the aspect ratio of the
images as used in [21]

As an additional advantage, our network is able to run at
more than 45 frames per second (fps) on an unique Titan X
(approximately 0,022 s per image), achieving a clearly real-
time data processing capability even at embedded systems
like Jetson TX2 (> 15 fps).

In a final set of experiments, we focus on enhancing our
results by modifying the initial architecture of our network.
We substitute the original decoder of our ConvNet with
the pyramidal module of the PSPNet [22] that, presumably,
keeps better the contextual information of the scene by
combining data from different sub-regions of the image. The
sub-region pyramid pooling module uses a global pooling
layer and three finer non-overlapping pooling layer with four
different bin sizes. We performed training with the basic
dataset (ERFNet PSP) and adding the previously proposed
data augmentation (ERFNet PSP + AUG).

As it can be seen in Table II, the modified network
obtains slightly worse results for both with and without



TABLE I: Per-class IoU (%) on the fisheye CityScapes validation set for different focal lengths

Network Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic ToU
Original ERFNet 84.1 51.2 60.6 19.1 8.55 20.0 194 32.1 71.8 36.3 85.6 432 29.7 63.6 335 42 0.9 21.9 35.0 38.2
ERFNet f; =96 95.6 56.9 73.2 20.7 16.8 27.5 23.0 40.8 78.8 36.1 82.6 60.4 373 83.5 24.6 49.9 6.9 20.9 49.7 46.6
ERFNet 96.8 65.7 79.3 28.8 213 35.1 32.8 48.3 84.6 45.6 87.9 67.9 443 87.4 42.8 66.1 27.6 38.4 38.4 55.6
ERFNet f, =242 97.4 || 704 || 83.8 || 283 | 38.0 || 389 || 39.6 || 562 || 868 | 48.7 || 89.4 || 71.0 || 49.2 || 89.0 || 512 || 634 | 39.1 || 428 | 60.0 || 60.2
ERFNet + random f | 96.9 67.6 80.7 31.1 219 36.2 37.4 49.1 84.7 46.4 88.5 68.5 48.8 87.7 42.7 6775 249 415 58.4 56.8
TABLE II: Per-class IoU (%) on the fisheye CityScapes validation set compared to similar works
Network Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic ToU
OPPNet 965 || 614 || 784 || 237 || 228 || 24.6 || 284 | 41.1 || 82.5 || 39.1 | 87.2 | 63.3 || 342 | 858 | 402 || 56.7 || 39.2 || 41.2 || 539 || 526
ERFNet 96.8 || 657 || 793 || 288 || 21.3 || 351 || 32.8 | 483 || 84.6 | 456 | 879 | 679 | 443 | 874 | 428 || 66.1 || 27.6 || 384 || 384 || 556
OPPNet + AUG 96.7 || 635 || 79.6 || 269 || 254 || 256 || 30.6 | 44.0 || 832 | 43.0 | 88.8 | 657 | 394 | 86.7 | 48.6 || 553 || 37.2 || 40.1 || 554 || 545
ERFNet + AUG 96.9 || 66.8 || 803 || 344 || 238 || 363 || 362 | 50.1 || 85.0 || 47.9 || 87.3 || 69.0 || 47.6 || 87.7 || 47.6 || 64.6 | 229 || 41.8 || 57.0 || 57.0
ERFNet + rnd AUG 969 || 67.6 || 80.7 || 31.1 || 21.9 || 362 || 374 | 49.1 || 84.7 || 464 | 88.5 | 68.5 | 48.8 | 87.7 | 42.7 || 6775 || 249 || 415 || 584 || 568
ERFNet PSP 96.6 || 645 || 77.4 || 33.1 || 229 || 285 || 302 || 444 || 822 || 459 | 857 || 62.2 || 41.9 | 86.0 || 42.6 || 588 | 332 || 219 || 544 || 533
ERFNet PSP + AUG 96.8 || 64.8 || 79.4 || 327 || 255 || 312 || 34.1 | 464 || 838 | 46.1 | 87.8 | 67.8 || 455 | 87.5 || 50.0 || 651 || 235 || 381 || 562 || 559
Pretrained ERFNet + AUG2 | 97.1 67.6 81.5 35.0 26.3 373 38.8 524 85.0 48.1 88.9 69.8 50.2 89.0 56.6 71.5 24.9 45.2 60.5 59.3

data augmentation cases. Nevertheless, this network achieves
better scores on classes with few training data. Also, data
augmentation works better for this case achieving a 2,6%
IoU improvement.

Qualitative results shown on Fig.4 prove that the specific
fisheye training designed for the network noticeably im-
proves the segmentation of the objects placed on the borders
of the image, which have the higher distortion level. Some
pedestrians, vehicles, traffic signals and riders are ignored by
the original network due to strong changes on their shape, but
are precisely detected by the modified network. Segmentation
on the central region slightly gets better as well, but demon-
strates a minor improvement. These facts evidence that the
ERFNet correctly learns different features for the same class
with different distortion levels depending on the area of the
image where the class appears. Besides, zoom augmentation
markedly improves segmentation results, adding a higher
generalization capability, and random zoom augmentation
works in a similar way. White region on the ground-truth and
distorted images is an empty area consequence of the fisheye
remapping process. All the pixels associated with that region
are ignored during the classifying process. In the evaluated
images, the region appears as wrongly classified, as shown
on Fig.4. Real fisheye cameras also present this region due
to their projective model. Characterizing this area just by
adding a simple region of interest will be needed on a real
application in order to avoid wrong conclusions.

VI. CONCLUSIONS

This paper proposes a real time CNN-based image se-
mantic segmentation solution adapted to fisheye cameras
for urban traffic images. The ERFNet has shown better
performance than the OPP-Net, which uses a pyramidal

pooling module, in the exploration of context information
in the images. In addition, the original decoder of our CNN
gives better results than using the pyramidal pooling module
of the PSPNet, especially designed to have a good contextual
information of the image by combining data from different
regions. As conclusion, the sequential architecture based on
an encoder block producing downsampled feature maps and a
subsequent decoder that upsamples feature maps to match the
input resolution, gives better results that using ad-hoc pyra-
midal pooling strategies for fisheye images for the ERFNet.
Besides, our proposal is the only one able to run in real-time.
To solve the lack of large-scale training dataset, a new fisheye
image dataset for semantic segmentation is generated from
CityScapes. Finally, a proposal for the data augmentation
strategy presented in [1] and based on random changes of
focal length for zoom augmentation is tested showing that
does not improve the zoom augmentation strategy.

Our final goal is to install fisheye cameras in our au-
tonomous vehicle in order to take advantage of their wider
field of view. The perception system should provide real-time
semantic segmentation of the car surrounding to complement
other sensors as a LIDAR, a stereo camera and a GPS. To
do that, we plan to apply our model with the images taken
from our own perception system, using additional training
and data augmentation processes to fine tune the model to
our environment.
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