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Abstract— Active research on computer vision accelerates
the progress in autonomous driving. Following this trend, we
aim to leverage the recently emerged methods for Intelligent
Vehicles (IV), and transfer them to develop navigation assistive
technologies for the Visually Impaired (VI). This topic grows
notoriously challenging as it requires to detect a variety of
scenes towards higher level of assistance. Computer vision
based techniques with monocular detectors or depth sensors
sprung up within years of research. These separate approaches
achieved remarkable results with relatively low processing time,
and improved the mobility of visually impaired people to a
large extent. However, running all detectors jointly increases the
latency and burdens the computational resources. In this paper,
we put forward to seize pixel-wise semantic segmentation to
cover the perception needs of navigational assistance in a unified
way. This is critical not only for the terrain awareness regarding
traversable areas, sidewalks, stairs and water hazards, but also
for the avoidance of short-range obstacles, fast-approaching
pedestrians and vehicles. At the heart of our proposal is a
combination of efficient residual factorized network (ERFNet),
pyramid scene parsing network (PSPNet) and 3D point cloud
based segmentation. This approach proves to be with qualified
accuracy and speed for real-world applications by a compre-
hensive set of experiments on a wearable navigation system.

I. INTRODUCTION

Navigational assistance aims to enable visually impaired
people to ambulate safely and independently. Challenges
stated in this field are frequently related to scene understand-
ing, which are also similar to the problems of autonomous
driving. In this regard, the impressive developments of
computer vision achieved in Intelligent Vehicles (IV) can
be an enormous boon for the Visually Impaired (VI). Ac-
tually, many navigational assistive technologies have been
developed to accomplish specific goals including avoiding
obstacles [1-4], finding paths [5-9], locating sidewalks [10-
11], ascending [12] or descending stairs [13], and negotiating
water hazards [14]. Sporadic efforts to address the domain
transfer could also been found in international conferences
on intelligent vehicles and computer vision [1, 4, 10, 13].

It is true that each one of these navigational tasks has been
tackled well through its respective solutions. However, as the
demand of the VI increases [15], this topic grows challenging
which requires juggling multiple tasks simultaneously and
coordinating all of the perception needs efficiently. Accord-
ingly, the research community has been spurred to integrate
different detectors beyond traversability awareness, which is
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Fig. 1. Two approaches of perception in navigational assistance for the
visually impaired. A different example image was used for water hazards
detection, but these images are all captured in real-world scenarios and
segmented with the proposed approach.

considered as the backbone for any navigational assistive
tool [9]. As an illustration, the personal guidance system
created in [12] performed two main tasks. It approximately
runs the whole floor segmentation at 0.3FPS with additional
stair detection iteration time ranging from 50 to 150ms. Even
with the high precision in floor detecting and staircase mod-
eling, this approach awaits further optimization to provide
assistance at normal walking speed. Multi-threading is an
effective way to reduce latency but it increasingly burdens
the computational resources. An example is the pair of smart
glasses from KR-VISION [16], which detects obstacles,
stairs and sidesteps across different processing threads by
continuously receiving images from the sensors and multi-
tasking at different frame rates. In a user study of the pRGB-
D framework [14], although traversable directions and water
puddles were feedback concurrently, demand was revealed
for discerning more information of the terrain.

In the literature, a number of systems rely on sensor fusion
to understand more of the surrounding scenes [17-18]. In
another respect, the concept investigated in [19] used a highly
integrated radar to warn against collisions with pedestrians
and cars, taking into consideration that fast moving objects
are response-time critical. However, to the navigation as-
sistance, of even greater concern is the depth data from
almost all commercial 3D sensors, which suffer from limited



Fig. 2. Overview of the wearable navigation system.

depth range and could not maintain the robustness in various
environments [9]. Inevitably, approaches with stereo camera
or RGB-D sensor generally perform range expansion [3],
depth enhancement [6] or depend on both visual and depth
information to complement each other [7]. Not to mention
the time consumption in these steps, underlying assumptions
were frequently made such as the ground plane is the biggest
area [1-2], the area directly in front of the user is accessible
[6] and variant versions of Manhattan World [7, 12] or Stixel
World assumption [4, 8]. These factors all limit the flexibility
in navigational assistive applications.

However, unlike traditional approaches mentioned above,
convolution neural networks, learn and discriminate between
different features directly from the input data using a deeper
abstraction of representation layers. Namely, recent advances
in deep learning have achieved break-through results in most
vision-based tasks including semantic segmentation [20],
which is to partition an image into several coherent semanti-
cally meaningful parts. As depicted in Fig. 1, since traditional
approaches detect different targets independently [21], the
assistance for the VI are treated separately. Naturally, it is
beneficial to provide terrain awareness in a unified way,
because it allows to solve many tasks at once and exploit their
inter-relations and contexts. Semantic segmentation targets at
solving exactly this problem. It classifies a wide variety of
scene classes directly leading to pixel-wise understanding,
which supposes a very rich source of processed information
for higher-level navigational assistance.

Up until very recently, pixel-wise semantic segmentation
was not usable in terms of speed. However, a fraction
of networks has focused on the efficiency by proposing
architectures that could reach near real-time segmentation
[22-25]. These advances have made possible the utilization of
full scene segmentation in time-critical cases like blind assis-
tance. Nonetheless, to the best of our knowledge, no previous
work has developed real-time semantic segmentation to assist
visually impaired pedestrians. Based on this notion, instead
of simply identifying the most traversable direction [14, 26],
we make the first attempt to provide terrain awareness in a
unified way. In this paper, we extend our previous efficient
residual factorized network (ERFNet) [25] by combining a
pyramid scene parsing network (PSPNet) [27] to respond to
the surges in demand. Additionally, a set of fast depth post-
processing are implemented to enhance collision avoidance.
The main contributions of our work are threefold:

• A unification of terrain awareness regarding traversable

areas, obstacles, sidewalks, stairs, water hazards, pedes-
trians and vehicles.

• A real-time semantic segmentation network to learn
both global scene contexts and local textures without
imposing any assumptions.

• A real-world navigational assistance framework on a
wearable prototype for visually impaired individuals.

The remainder of this paper is structured as follows.
In Section II, the framework is elaborated in terms of
the wearable assistance system, the semantic segmentation
architecture and the implementation details. In Section III,
the approach is evaluated and discussed as for real-time and
real-world performance. In Section IV, relevant conclusions
are drawn and future works are expected.

II. APPROACH

A. Wearable navigation system

In this work, the main motivation is to design a prototype
which should be wearable without hurting the self-esteem
of visually impaired people. With this target in mind, we
followed the trend of using head-mounted glasses to acquire
environment information and interact with visually impaired
users. As worn by the user in Fig. 2, the system is composed
of a pair of smart glasses and a laptop in the backpack. The
pair of smart glasses named Intoer, commercially available
at [16], is comprised of a RGB-D sensor of RealSense R200
[28] and a set of bone conducting earphones. We utilize a
laptop with Core i7-7700HQ processor and GTX 1050Ti as
the computing platform, which could be easily carried in a
backpack and is robust enough to operate in rough terrain.

This pair of glasses captures real-time RGB-D streams
and transfers them to the processor, while the RGB images
are fed to the network for semantic segmentation. As for
the depth images, which are acquired with the combination
of active speckle projecting and passive stereo matching, are
preprocessed in the first place. To enforce the stereo matching
algorithm to deliver dense maps, we use a different preset
configuration with respect to the original depth image of
RealSense by controlling how aggressive the algorithm is
at discarding matched pixels. After that, the depth images
are de-noised by eliminating small segments which was
previously presented in [6]. The dense depth image with
noise reduction leads to robust segmentation of short-range
obstacles when using the semantic segmentation output as
the base for higher-level assistance. As far as the feedback
is concerned, the bone conducting earphones transfer the
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Fig. 3. The proposed architecture. From left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

detection results to the VI for both terrain awareness and
collision avoidance. This is important as visually impaired
people need to continue hearing environmental sounds and
the bone conducting interface allow them to hear a layer
of augmented acoustic reality that is superimposed on the
environmental sounds.

B. Semantic segmentation architecture

In order to leverage the success of segmenting a variety
of scenes and maintaining the efficiency, we design the
architecture according to the encoder-decoder architecture
like SegNet [22], ENet [23] and our previous ERFNet [25].
In architectures like FCN [20], feature maps from different
layers need to be fused to generate a fine-grain output. As
indicated in Fig. 3, our approach contrarily uses a more
sequential architecture based on an encoder producing down-
sampled feature maps and a subsequent decoder that up-
samples the feature maps to match input resolution. Table I
gives a detailed description of the integral architecture, where
residual layers were stacked in the encoder. Generally, the
residual layer adopted in state-of-art networks [23, 29] has
two instances: the bottleneck version and the non-bottleneck
design. In our previous work [24-25], “Non-bottleneck-1D”
(non-bt-1D) was proposed, which is a redesign of the residual
layer to leverage the efficiency of the bottleneck and the
learning capacity of non-bottleneck in a judicious trade-off
way by using 1D factorizations of the convolutional kernels.
Thereby, it enables a efficient use of minimized amount of
residual layers to extract feature maps and achieve semantic
segmentation in real time.

However, for the terrain awareness in intelligent assis-
tance, we attach a different decoder with respect to the
previous work. This key modification aims to collect more
contextual information while minimizing the sacrifice of
learning textures. Global context information is of cardinal
significance for terrain awareness in order to prevent gen-
erating confusing feedback. To detail this, if the network
mis-predicts a safe path in front of a lake, the VI would
be left vulnerable in the dynamic environments. This kind
of problem could be remedied by exploiting more context
and learning more relationship between categories. With this

TABLE I
LAYER DISPOSAL OF OUR PROPOSED NETWORK.

“OUT-F”: NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT,
“OUT-RES”: OUTPUT RESOLUTION FOR INPUT SIZE OF 640×480.

Layer Type Out-F Out-Res

E
N

C
O

D
E

R

0 Scaling 640×480 3 320×240
1 Down-sampler block 16 160×120
2 Down-sampler block 64 80×60

3-7 5×Non-bt-1D 64 80×60
8 Down-sampler block 128 40×30
9 Non-bt-1D (dilated 2) 128 40×30
10 Non-bt-1D (dilated 4) 128 40×30
11 Non-bt-1D (dilated 8) 128 40×30
12 Non-bt-1D (dilated 16) 128 40×30
13 Non-bt-1D (dilated 2) 128 40×30
14 Non-bt-1D (dilated 4) 128 40×30
15 Non-bt-1D (dilated 8) 128 40×30
16 Non-bt-1D (dilated 2) 128 40×30

D
E

C
O

D
E

R

17a Original feature map 128 40×30
17b Pooling and convolution 32 40×30
17c Pooling and convolution 32 20×15
17d Pooling and convolution 32 10×8
17e Pooling and convolution 32 5×4
17 Up-sampler and concatenation 256 40×30
18 Convolution C 40×30
19 Up-sampler C 640×480

in mind, we reconstruct the decoder architecture. In this
work, the decoder architecture follows the pyramid pooling
module as introduced by PSPNet. This module is applied
to harvest different sub-region representations, followed by
up-sampling and concatenation layers to form the final
feature representation. As a result, it carries both local and
global context information from the pooled representations
at different locations. Since it fuses features under a group of
different pyramid levels, the output of different levels in this
pyramid pooling module contains the feature map from the
encoder with varied sizes. To maintain the weight of global
feature, we utilize a convolution layer after each pyramid
level to reduce the dimension of context representation to
1/N of the original one if the level size of pyramid is N. As
for the situation in Fig. 3c, the level size N equals to 4 and
we decrease the number of feature maps from 128 to 32.
Subsequently, the low-dimension feature maps are directly
up-sampled to obtain the same size features as the original
feature map through bilinear interpolation. Fig. 3 contains a
depiction of the feature maps generated by each of the block
in our architecture, from the RGB input to the pixel-level
class probabilities and final prediction.



C. Implementation details

Smart glasses. We start a stream of 640×480 RGB image,
a stream of 320×240 infrared stereo pair which produces
a stream of 320×240 depth image. The depth information
is projected to the field of view of color camera so as to
acquire a synchronized 640×480 depth stream. To achieve
high environmental adaptability, the automatic exposure and
gain control are enabled. Most of the depth control thresholds
are in the loosest setting while only the left-right consistency
constraint is adjusted to 30. For the short-range obstacle
avoidance, 5m is set as the threshold to segment directly at
pixel level if not classified as traversable area, stairs, water,
pedestrian or car.

Dataset. The challenging ADE20K dataset [30] is chosen
as it covers both indoor and outdoor scenarios. Also, this
dataset contains the classes of stairs and water areas, which
are very important scenes for the navigation assistance. To
enrich the training dataset, we add the images which have the
classes of sky, floor, road, grass, sidewalk, ground, water and
stairs from PASCAL-Context dataset [31] and COCO-Stuff
10K dataset [32]. Hence, the training involves 37075 images,
within which 20210 images are from ADE20K, 8733 images
are from PASCAL-Context and the remaining 8132 images
come from COCO-Stuff. In addition, we have 2000 images
for validation. To provide awareness regarding the scenes that
visually impaired people care the most during navigation, we
only use the most frequent 22 classes of scenes or objects for
training. Additionally, we merge the water, sea, river, pool
and lake into a class of water hazards. In a similar way, the
stairs, stairway, staircase are merged into a class of stairs.

Data augmentations. To robustify the model against the
varied types of images from real world, we perform a group
of data augmentations. Firstly, random cropping and random
scaling are jointly used to resize the cropped regions into
320×240 input images. Secondly, a random rotation ranges
from −20o to 20o is implemented without cropping. This
intuition comes from that during navigation, the orientation
of the smart glasses would constantly changing and the
images rotate. Thirdly, color jittering in terms of brightness,
saturation, contrast and hue are applied. Jittering factors
regarding brightness, saturation, and contrast here are chosen
uniformly from 0.8 to 1.2. Hue augmentation is performed
by adding a value between -0.2 and 0.2 to the hue value
channel of the HSV representation.

Training setup. Our model is trained using the Adam op-
timization of stochastic gradient descent. Training is operated
with a batch size of 12, momentum of 0.9, weight decay of
2×10−4, and we start with a original learning rate of 5×10−5

and decrease the learning rate exponentially across epochs.
Following the scheme customized in [23], the weights are
determined as wclass = 1/ln(c+pclass), while c is set to 1.001
to enforce the model to learn more information of the less
frequent of classes in the dataset. We first adapt the encoder’s
last layers to produce a single classification output by adding
extra pooling layers and a fully connected layer and finally
train the modified encoder on ImageNet [33]. After that, the

extra layers are removed and the decoder is appended to
train the full network. With this setup, the training reaches
convergence when cross-entropy loss value is used as the
training criterion.

III. EXPERIMENTS AND DISCUSSION

Experiment setup. The experiments are performed with
the wearable navigation system in public spaces around
Westlake, the Zijingang Campus and the Yuquan Campus
at Zhejiang University in Hangzhou, the Polytechnic School
at University of Alcalá in Madrid as well as Venice Beach
and University of California in Los Angeles.

Real-time performance. The total computation time of
a single frame is 16ms, while the image acquisition and
preprocessing from the smart glasses take 3ms, and the time
cost for the semantic segmentation is 13ms. In this sense, the
computation cost is saved to maintain a reasonably qualified
refresh-rate of 62.5FPS on a processor with a single GPU
GTX 1050Ti. This inference time demonstrates that it is able
to run our approach in real time, while allowing additional
time for auditory [2, 6, 14] or tactile feedback [3, 17]. Our
ERF-PSPNet inherits the encoder design but implements a
quite efficient version of decoder. Thereby, the speed is even
slightly faster than our previous approach with ERFNet,
which runs at 55.6FPS on the same processor. Additionally,
on a embedded GPU Tegra TX1 (Jetson TX1) that enables
higher portability while consuming less than 10 Watts at full
load, our approach achieves approximately 22.0FPS.

Segmentation accuracy. The accuracy of our approach
is evaluated on both the challenging ADE20K dataset and
our real-world dataset. This terrain awareness dataset is
publicly available at [34], which contains 120 images with
fine annotations of important classes for navigation as-
sistance including ground, sidewalk, stairs, water hazards,
person and cars. After merging some classes towards better
assistance, we evaluate our approach by comparing the
proposed architecture ERF-PSPNet, an existing deep neural
network ENet [23] and our previous work ERFNet [25] on
the ADE20K validation dataset. Here, the accuracy results
are reported using the commonly adopted Intersection-over-
Union (IoU) metric. From Table II(a), it could be told that
the accuracy of most classes obtained with the proposed
ERF-PSPNet exceeds the state-of-the-art architectures that
are also designed for real-time applications. Our architecture
builds upon previous work but has the ability to collect more
contextual information without major sacrifice of learning
from textures. As a result, only the accuracy of sky and
person are slightly lower than ERFNet.

To analyze the major concern of detection performance for
real-world assistance, we collect results over several depth
ranges: within 2m, 2-3m, 3-5m and 5-10m. In navigational
assistance, 2m is the general distance for avoiding static
obstacles while the warning distance should be longer when
a moving object approaches, e.g. 3m for pedestrians and
5m for cars. In addition, the short-range of ground area
detection helps to determine the most walkable direction,
while superior path planning could be supported by longer



TABLE II
ACCURACY TEST. “WITH DEPTH”: ONLY THE PIXELS WITH VALID DEPTH INFORMATION ARE EVALUATED USING PIXEL-WISE ACCURACY.

Architecture Sky Floor Road Grass Sidewalk Ground Person Car Water Stairs Mean IoU
ENet [23] 89.7% 72.4% 69.4% 56.5% 38.2% 75.0% 26.7% 64.8% 67.3% 23.7% 58.4%

ERFNet [25] 93.2% 77.3% 71.1% 64.5% 46.1% 76.3% 39.7% 70.1% 67.9% 24.1% 63.1%
ERF-PSPNet 93.0% 78.7% 73.8% 68.7% 51.6% 76.8% 39.4% 70.4% 77.0% 30.8% 66.0%

(a) On ADE20K dataset [30]
Approach IoU Pixel-wise Accuracy With Depth Within 2m 2-3m 3-5m 5-10m

3D-RANSAC-F [2] 50.1% 67.2% 73.3% 53.9% 91.8% 85.2% 61.7%
ENet [23] 62.4% 85.2% 88.4% 79.9% 84.3% 89.7% 93.1%

ERF-PSPNet 82.1% 93.1% 95.9% 96.0% 96.3% 96.2% 96.0%
(b) On Real-world dataset [34] in terms of traversability awareness

Accuracy term Sky Traversable area Ground Sidewalk Stairs Water Person Car
IoU 88.0% 82.1% 72.7% 55.5% 67.0% 69.1% 66.8% 67.4%

Pixel-wise Accuracy 95.3% 93.1% 81.2% 93.1% 90.1% 86.3% 90.8% 93.1%
With Depth N/A 95.9% 84.9% 93.1% 90.8% 89.8% 90.4% 92.7%
Within 2m N/A 96.0% 76.9% 95.0% 91.9% 96.2% 97.7% 94.3%

2-3m N/A 96.3% 81.7% 96.5% 91.9% 82.3% 93.7% 95.2%
3-5m N/A 96.2% 87.4% 94.5% 89.4% 76.9% 93.6% 90.8%
5-10m N/A 96.0% 86.6% 93.6% 93.1% 84.3% 87.4% 91.4%

(c) ERF-PSPNet on Real-world dataset [34] in terms of terrain awareness

traversability awareness, e.g. 5-10m. Table II(b) shows both
the IoU and pixel-wise accuracy of traversability awareness,
which is the core task of navigational assistance. Here,
the traversable areas involve the ground, floor, road, grass
and sidewalk. We compare the traversable area detection
of our ERF-PSPNet to a state-of-the-art architecture ENet
and a depth based segmentation approach 3D-RANSAC-F
[2], which estimates the ground plane based on RANSAC
and filtering techniques by using the dense disparity map.
As the depth information of the ground area may be noisy
and missing in dynamic environments, we implemented a
RGB image guided filter [7] to fill holes before detection.
Thereupon, the traditional 3D-RANSAC-F achieves decent
accuracy ranging from 2m to 5m and it excels ENet from
2m to 3m as the depth map within this range is quite dense
thanks to the active stereo design. Still, our ERF-PSPNet
outperforms ENet and 3D-RANSAC-F in both ranges. As far
as terrain awareness is concerned, even if the IoU is not very
high, the segmentation results are still of great use. For the
VI, it is preferred to know that there are stairs or there is an
approaching pedestrian in some direction even if the shape
is not exactly accurate. Also, it is observed in Table II(c)
that most of the pixel-level accuracy within different ranges
are over 90%, which reveals the capacity of our approach
for the unification of these detection tasks. Fig. 4 exhibits a
group of qualitative results generated by our ERF-PSPNet,
ENet and 3D-RANSAC-F. On the one hand, our approach
yielded longer and more consistent segmentation which will
definitely benefit the traversable area detection. On the other
hand, it shows very promising results for providing the
terrain awareness within this unified framework.

IV. CONCLUSIONS
Navigational assistance for the Visually Impaired (VI) is

undergoing a monumental boom thanks to the developments
of Intelligent Vehicles (IV) and computer vision. However,
monocular detectors or depth sensors are generally applied in
separate tasks. In this paper, we derive achievability results
for these perception tasks by utilizing real-time semantic
segmentation. The proposed framework, based on deep neu-
ral network and depth segmentation, not only benefits the

essential traversability awareness at both short and long
ranges, but also covers the needs of terrain awareness in
a unified manner. Future works will involve polarization
imaging and user studies with visually impaired participants.
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