Train Here, Deploy There: Robust Segmentation in Unseen Domains

Eduardo Romera!, Luis M. Bergasa', Jose M. Alvarez? and Mohan Trivedi®

Abstract— Semantic Segmentation methods play a key role
in today’s Autonomous Driving research, since they provide a
global understanding of the traffic scene for upper-level tasks
like navigation. However, main research efforts are being put
on enlarging deep architectures to achieve marginal accuracy
boosts in existing datasets, forgetting that these algorithms
must be deployed in a real vehicle with images that weren’t
seen during training. On the other hand, achieving robustness
in any domain is not an easy task, since deep networks are
prone to overfitting even with thousands of training images.
In this paper, we study in a systematic way what is the gap
between the concepts of “accuracy” and ‘robustness”. We
propose simple yet effective techniques that can be applied
at the training phase to achieve robust segmentation models
that can be deployed in any driving scenario. A comprehensive
set of experiments, by training models with augmented data
regarding geometry (position and shape) and texture (color and
illumination), throws insightful hints about how CNNs learn
about pixel localization and texture to produce robust semantic
segmentation outputs in any domain. Additionally, we look into
the concept of network calibration as a measure for robustness.

I. INTRODUCTION

In the last years, the research fields of Computer Vision
(CV) and Intelligent Vehicles (IV) have grown together with
the aim of solving many of the perception challenges that
autonomous vehicles will have in the future. One of the
best examples of this alliance is Semantic Segmentation
(SS), a vision task that consists of labeling categories in an
image at the pixel-level. It has gained high interest in the IV
community since it provides a global understanding of the
scene at once, allowing to unify several perception tasks that
are needed for safe vehicle navigation [1].

Convolutional Neural Networks (CNNs) have recently
gained momentum as the best algorithms to perform SS.
They have proliferated in the last years due to an incessant
increase in affordable computational resources and due to
the appearance of large datasets to train these data-hungry
methods. In the particular context of autonomous driving,
embedded devices have grown more computationally pow-
erful, and large datasets like CamVid [2] and Cityscapes [3]
have extremely facilitated the tasks of training and testing

*This work has been funded in part from the Spanish MINECO/FEDER
through the SmartElderlyCar project (TRA2015-70501-C2-1-R) and from
the RoboCity2030-III-CM project (S2013/MIT-2748), funded by Programas
de actividades I+D (CAM) and cofunded by EU Structural Funds. The
authors also thank NVIDIA for generous hardware donations.

Eduardo Romera and Luis M. Bergasa are with the
Electronics Department, University of Alcald (UAH), Spain
eduardo.romera@edu.uah.es, luism.bergasa@uah.es

2José M. Alvarez is with CSIRO and the Australian National University
(ANU), Australia Jose .Alvarez@nicta.com.au

3Mohan Trivedi is with the Laboratory for Intelligent and Safe
Automobiles, University of California San Diego (UCSD), USA
mtrivedi@ucsd.edu

TRAINING ANNOTATED LABELS

TRAIN DATASET

,/'

DEPLOYMENT

REAL WORLD SELF-DRIVING
IMAGES "APPLICATIONS

| &

r OUTPUT1 ™\

OUTPUT 2

OUTPUT 3

DOMAIN 3: CALIFORNIA

Static environment
Dynamic objects
Driving path

Day, dusk or night
Diverse weather
Diverse cameras

N\ ..DOMAINN Any input Full scene understanding |

/
~ OUTPUTN 2

Fig. 1. Overview diagram depicting the proposed end-to-end solution
for training and deployment of deep models for robust segmentation. The
displayed outputs are real segmentation results produced in our experiments.

deep models for segmentation. However, main efforts on
improving segmentation methods have been focused on
increasing accuracy while leaving efficiency as a second
priority [4][5][6]. In this context, we presented ERFNet, a
convolutional architecture that produces SS both accurately
and efficiently, supposing a good trade-off that is convenient
for IV applications like autonomous driving [7][8]. However,
what remains practically unexplored is robustness to unseen
driving scenarios. After all, CNNs are trained from a limited
set of data and there is no guarantee that the knowledge
learned (from a dataset) is transferred properly to any do-
main. For any deep model trained with limited data, there
is a question that remains unanswered: How well does it
perform in unseen environments?

In this paper, we aim to solve this question, for the specific
task of semantic segmentation, by analyzing what is the gap
between the concepts of “accuracy” and “robustness”. We
analyze what specific measures can be addressed to improve
CNN’s robustness to make them perform more accurately
in environments/domains that were unseen during training.
More precisely, we experiment with our publicly available
architecture ERFNet [8], but we study these problems in a
general way that is applicable to any other deep architecture.
Our comprehensive set of experiments with datasets from
multiple domains demonstrates that data augmentation plays
an essential role in achieving robustness in deployed end-to-
end segmentation architectures.

II. RELATED WORKS

SS advanced rapidly since Long et al. [9] proposed to
adapt known CNNs to produce pixel-wise classification
outputs by using convolutions as the last layers. These
Fully Convolutional Networks (FCNs) achieved surprising
results in segmentation datasets while supposing an excellent
end-to-end solution. However, SS does not only require a
classification output per image, but one per pixel. In practice,
this involves that the output produced by pretrained CNNs
(i.e. transferred from the classification task) is coarse, since
these features have not been specifically trained to learn
pixel localization. To address this issue, there have been
several works that have tried to enhance the way that CNNs
learn about context. The work in [4] (Deeplab) proposed
to add Conditional Random Fields as a post-processing
step to refine the coarse convolutional output. SegNet [5]
proposed to attach a full classification network with max-
unpooling layers as a decoder that produces end-to-end pixel-
wise classification from encoded features. The work in [6]
proposed to virtually “dilate” the convolutional kernels to
make them gather more context information.

All these works contributed to achieve substantial accu-
racy improvements in well-known segmentation benchmarks.
However, their main efforts were focused on accuracy by
assuming that efficiency wasn’t a top priority. On the other
hand, other networks like ENet [10] were proposed as an
efficient alternative to perform fast semantic segmentation
in real-time. One hundred layers tiramisu [11] is also an
efficient extension of DenseNet to perform SS. However,
these works sacrify some of the accuracy earned by more
complex architectures in order to remain efficient. In a
previous work, we proposed ERFNet [7][8], which aimed
to maximize the trade-off between accuracy/efficiency and
make CNN-based segmentation suitable for IV applications
in current embedded hardware platforms.

Despite these recent advances, it is still unclear how
these networks generalize in unseen domains in everyday
driving situations. For now, segmentation networks must
learn from labeled data in a supervised way to achieve
top accuracy. Datasets like CamVid [2] and Cityscapes [3]
have hundreds of images, but even their diversity does not
guarantee top performance in any unseen scenario in the real
world. In the field of domain adaptation, Ros et al. [12]
proposed an unsupervised color transformation approach to
adapt the images of the training domain to other illumination
conditions (e.g. transfer between daytime and dusk). Other
works have addressed the lack of samples by generating
synthetic data (e.g. SYNTHIA [13]). However, transferring
learned features from the virtual domain to the real one
is not an easy task. Even though simulators are constantly
improving and they currently produce more realistic images
than ever, deep models trained specifically with synthetic
data still don’t perform well in real domains. We argue that
simulators are still producing noise that is not correlated to
the real domain and the capacity of current deep models is
making them overfit that noise. In this context, where data

annotation is extremely time consuming and synthetic data
isn’t helping, the deep learning community is shifting their
efforts to unsupervised models (e.g. GANS) to avoid this high
dependence on annotated data. However, we argue that there
are existing measures that can be applied now in order to
produce robust segmentation models that can be deployed in
any domain and can be used to address current IV challenges.

III. METHOD

Deep architectures have a high dependence on the data
that is used for training, since the features that are learned
by a CNN rely almost entirely on the data that is fed in
this process. Therefore, data diversity plays an essential role
in achieving models that are more general, due to the wide
variety of patterns that CNNs need to learn to be able to
discriminate between categories. In this section, we describe
a wide range of methods that aim at augmenting a limited
set of data to improve robustness. Most of these techniques
are known and some of them are widely used as a common
practice while training CNNs. Among these techniques, some
have an effect on the geometry of the categories (i.e. position
and shape) and others have an effect in the texture (i.e. illu-
mination and color). Both, geometry and texture, affect how
the CNN learns patterns from the training images in order
to produce the semantic segmentation output. Therefore, it
is essential to augment both in order to improve the network
performance in unseen domains.

Geometric augmentations:

1) Horizontal flip: mirroring the image horizontally helps
to add invariance to orientation (e.g. a pedestrian can
appear with diverse orientations). Vertical flipping is
not recommended since the vertical appearance of
objects adds important consistency in the scene (e.g.
the network knows what sky is due to its position).

2) Translation: Moving the image prevents the CNN
from seeing always the same position of the training
images, so it doesn’t always generate the same activa-
tions from the very first layer (shift invariance). We use
random translation of 0-2 pixels since the first layer of
ERFNet is a 3x3 convolution.

3) Scaling and Cropping: random resizing images helps
the model see diverse scales of each object and im-
proves network invariance to diverse image resolutions.
We perform random scaling uniformly between 0.5
and 1.0 times the original size. We combine it with
randomly cropped regions of the image to keep the
same resolution in the training batch. Please note that
crops also add shift invariance like Translation.

4) Aspect ratio: Rescaling the image in one dimension
(width or height) helps adding invariance against di-
verse aspect ratios (e.g. 4:3, 16:9) that can be specific
to each camera. In our experiments, we rescale the
width between (0.7 and 1.0) times uniformly.

5) Rotation: Rotating a small random degree to the image
adds invariance against objects that might appear with
slight angle variations in the scene. We rotate the

whole image a random amount of radians following a
Gaussian distribution with mean 0 and 0.05 variance.

Texture augmentations:

1) Brightness: how clear the objects appear in the image
depends on the scene illumination and camera sensitiv-
ity. Adding virtual alterations to the input images by
randomly increasing or decreasing the image bright-
ness improves network’s illumination invariance. In our
experiments, we alter brightness following an uniform
distribution between 0 and 0.4.

2) Contrast: separation between the darkest and brightest
areas of the image. Increasing this range with random
augmentations helps adding invariance against shad-
ows and generally improves network’s performance
in low lighting conditions. We augment contrast uni-
formly between 0 and 0.4 w.r.t. grayscale mean.

3) Saturation: depth or intensity of the color. The lower
the saturation, the less intense are the colors. Augment-
ing this parameter adds invariance to different camera
sensitivities to capture color. We augment saturation by
altering color channels uniformly between 0 and 0.4.

4) Color Jitter: Adding small random noise to each RGB
pixel helps obtaining invariance against some camera
distortions. We add gaussian distributed jitter to each
channel’s pixel with 0 mean and 0.05 variance.

5) Salt & Pepper: similar to color jitter, but saturating
specific pixels to black or white with random probabil-
ity. Old cameras had this kind of distortion in the past
but this is uncommon in recent ones. In our tests we
tried saturating 2.5%, 5% and 10% pixels, and none
helped improving accuracy in recent datasets.

IV. EXPERIMENTS

Accuracy is normally measured in specific datasets and
it is often taken as a measure of how robustly will per-
form the model in any scenario. However, datasets are
normally recorded on specific conditions and they do not
represent the diversity of the real world. On the other hand,
evaluating robustness numerically is challenging due to the
lack of labeled data in different domains. In this paper,
we experiment with well-known labeled datasets Cityscapes
and CamVid for the main quantitative experiments (ablation
studies and comparison with other networks) and finally we
show challenging qualitative examples in these datasets and
additional data captured in California in diverse conditions.
Additionally, we look into the concept of network calibration
as a possible metric to measure robustness.

A. Experimental setup

Cityscapes [3] contains 2975 images for training, 500
for validation and 1525 for testing (not publicly available).
CamVID [2] has 701 images in total, split into 367 images
for training, 101 for validation and 233 for testing. These
images come from 4 sequences, where one was recorded at
dusk (124) and the rest were recorded at daylight (577). In
order to evaluate the effect of each augmentation technique,
we train all models in Cityscapes train set with 19 classes and

TABLE I
ABLATION STUDY ON DIVERSE DATA AUGMENTATION TECHNIQUES.
MODELS ARE TRAINED IN CITYSCAPES TRAIN SET, RESULTS ARE IN
CITYSCAPES VALIDATION SET (500) AND CAMVID FULL SET (701).

[| Random augments | Cityscapes | CamVid |

[- [0. Baseline [69.2 [419]
o 1. Horizontal flip 71.0 52.6
s 2. Translation 70.9 43.1
g | 3. Scale & Crop 70.3 453
é’» 4. Aspect Ratio 695 763

5. Rotation 70.4 459

1. Brightness 68.4 59.4
© | 2. Contrast 69.0 56.6
£ [3. Saturation 695 524
& [4. Color Jitter 69.3 498

5. Salt & Pepper 67.1 37.8
- Geometry 142 70.0 45.7
§ [Texmre 142 68.9 65.8
S | Geometry-I + Texture-1 69.4 522
8 | Top-4 Geometry (1,3,4,5) 69.9 46.4
E [Top4 Texture (1,2,3.4) 69.7 65.9
© [TATl combined (T4-G + T4-T) 71.2 71.5

then test in other domains. Since the categories of CamVid
are not easily compatible with the 19 used for training, in
CamVid we adapt the main 11 classes (common ones used
in the literature) to the closest one in cityscapes and set the
rest to unlabeled (black). About the CNN training setup, we
train all models in the same conditions using Adam optimiza-
tion with initial LR=5e-4 and WD=2e-4, and decrease LR
exponentially until cross-entropy loss converges. For more
details about optimal training setup or architecture details
please refer to ERFNet papers [7][8]. All numerical results
are shown in the widely used “Intersection over Union”
(IoU = zpriprrw):

B. Data Augmentations (Ablation study)

In this experiment, we analyze the effect of each specific
data augmentation technique in a systematic way. Results
are shown in Table I. All listed models are trained in the
same conditions (in Cityscapes Train set) and evaluated in
the Cityscapes Val set and in the full Camvid dataset. Since
the optimization algorithm (Adam) does not always converge
to the same result (around 1% IoU difference), we train 3
models per augmentation and list the best one in each case.

The results show that there are specific augmentations that
have a very high impact in improving the result in CamVid
domain while others have a very slight effect. For instance,
horizontal flip supposes a high boost in IoU (52.6%) com-
pared to the rest of geometric augmentations (43-46%). In the
case of texture, all augmentations except Salt&Pepper have
a very high effect in boosting CamVid accuracy with respect
to the baseline. In the case of brightness augmentation, it
almost boosts the IoU to 60%, while contrast, saturation and
jitter also reach 50-56%. Compared to Cityscapes, CamVid
sequences look much darker in general, so it makes sense that
illumination augmentations suppose a larger improvement
compared to geometric ones. On the other hand, geomet-
ric augments have a slight effect in improving result in

TABLE II
RESULTS IN CITYSCAPES AND CAMVID SUBSETS FOR THE MAIN
MODELS TRAINED IN TABLE I. ALL RESULTS ARE IN IoU. RESULTS IN
TRAIN SET ARE SHOWN TO GIVE AN INTUITION ABOUT OVERFITTING.

Model CITYSCAPES CAMVID
Train Val Dusk | Day Day Day
2975) | (500 01TP | 06RO | 16E5 | 05VD
(124) | (101) | (305) | (170)
Baseline 85.2 69.2 13.5 35.6 49.3 51.9
Top4 Geom. 77.4 69.9 10.7 40.5 55.1 57.9
Top4 Texture 84.9 69.7 473 56.6 70.4 68.4
All (T+G) 78.3 71.2 61.9 58.3 74.6 70.3

Cityscapes Val set while texture transforms even deteriorate
it in some cases. This makes sense since Train and Val sets in
Cityscapes have similar lighting conditions, so augmenting
data with texture transforms does not help much while
augmenting the train set with geometric transforms helps the
CNN see additional patterns (hence reducing overfitting in
the train set and slightly boosting result in val set).

On the other hand, the experiments with combined aug-
ments do not confirm the intuition that adding all transfor-
mations together by “brute force” always improves result in
all domains. For example, adding two geometric transforms
(hflip+translation) does not boost CamVid as much as H-flip
(52%) but results in a 45.7% IoU. On the other hand, combin-
ing the two top texture augmentations (brightness+contrast)
does achieve a very high result in CamVid (65.8%), almost
like combining the top 4 texture augments (65.9%). These
results are reasonable considering that augmentations are in
fact virtual transformations of the real images, so adding
many augments up may make the model train with too
many images that are not similar to the real domain that
the CNN will see in deployment (hence reducing the result).
In order to train a model that behaved well in both domains
(Cityscapes and CamVid), we had to reduce the variance of
each augmentation a bit and train significantly more epochs
until convergence. The result is a model that achieves very
high accuracy in CamVid full set (71.5% IoU) without having
seen any image from that domain.

Table II summarizes additional results for the subsets
of each dataset: Cityscapes Train and Val sets, and the
four CamVID sequences. The results in Cityscapes subsets
give insight on how augmenting data with the proposed
techniques highly prevents overfitting and helps achieving
robust models for deployment. Please note that the IoU in
the training set slightly decreases as the IoU in all other
unseen data highly increases. The results in CamVid confirm
the analysis that the texture augmentations have a greater
effect in CamVid data because illumination conditions are
very different compared to Cityscapes domain. Please note
the high boost in the Dusk sequence (01TP) for the texture-
augmented model compared to the baseline and geometry
transforms. The result for the “All-augments” model achieves
very high accuracy in all sequences while also keeping a high
result in Cityscapes domain.

10 mmm confidence (Gap)
W Accuracies (Output)

mm Confidence (Gap)
W Accuracies (Output)

0.2

(a) ERFNet (baseline) (b) ERFNet (all augments)

Fig. 2. Calibration metric measured in Cityscapes Val set for ERFNet
trained with diverse amounts of data-augmentation. Output predictions are
divided in uniform bins and the “gaps” reflect the distribution shift of
network predictions. Larger gaps (a) mean that the network is less calibrated
than in the case of smaller gaps (b). Therefore (b) is more calibrated.

C. Network calibration through data augmentation

The network output is usually taken as a confidence
measure of how sure is the model when it predicts a specific
category (class probabilities), compared to the real category
that it should be predicting (i.e. the real class). However, if
the network is not well “calibrated” (e.g. CNN overfits the
train set), this may make the model overly optimistic about
its predictions. To solve this issue, in [14] the authors propose
to adapt network output with temperature scaling as a post-
processing step. Our experiments with data augmentations
reflect that adding variety to the data via augmentation does
already achieve the desired effect of calibrating the network.
In Fig. 2, we show this effect by comparing the baseline
model (a) with the model trained with all augmentations (b).
The gaps in each bin reflect the difference between the
predicted categories (max probability in each pixel) and the
average confidence that there is in each range of output
probabilities (bins). Larger gaps as in (a) mean that the
network is less calibrated compared to the smaller gaps
in (b), since the difference in each bin between the output
probability and the confidence is smaller. In practice, larger
gaps mean more abrupt outputs, which is dangerous in IV
applications since the network is very “sure” about accuracy
of its segmented output when it shouldn’t be.

D. Comparison with other networks

In Table III, results are displayed in CamVid Test set and
compared with other State-of-the-Art networks. We show
results for the 11 main classes like in their papers. All results
are in IoU. The percentage of correct pixels per image, or
Global accuracy (Acc TPT_F%), is also shown for an
easier comparison with previous works. Additionally, we
have trained ERFNet in CamVid data in the same conditions
as the other networks for comparison reasons. The results
confirm that using only one domain (Cityscapes data) with
a wide range of augmentations reduces the need to train in
the specific domain to achieve high accuracy. As shown, the
results for our model are similar (or even higher) to the top
models in all specific classes. In general, the ToU result for
ERFNet with augmentations (68.6) is higher than all other
models, even compared to ERFNet trained in CamVid data.

TABLE III
RESULTS FOR STATE-OF-THE-ART MODELS IN CAMVID TEST SET COMPARED TO OUR MODEL TRAINED USING ONLY CITYSCAPES DATA.

= =) 3

2l el ol e l=e |l sle| 52|22

=~] _— —_—

Model S E|& | S| 2| &| 5|8 |2 L2 5%

= & s | Y1 =]8
SegNet [5] 68.7 [520 [87.0 [585 [134 [86.2 [253 | 17.9 [16.0 [60.5 | 24.8 464 | 62.5
ENet [10] Per-class IoU values are not available in [10] 51.3 | 68.3
FCN8 [9] 77.8 | 71.0 | 88.7 | 76.1 | 32.7 | 91.2 | 41.7 | 244 | 199 | 72.7 | 31.0 57.0 | 88.0

Deeplab-LFOV [4] 81.5 | 74.6 | 89.0 | 82.2 | 423 | 922 | 484 | 272 | 143 | 754 | 50.1 61.6 -
Dilation8 [6] 84.0 | 772 | 91.3 | 85.6 | 49.9 | 925 | 59.1 | 37.6 | 169 | 76.0 | 57.2 66.1 | 88.3
FC-DenseNet103 [11] 83.0 | 77.3 | 93.0 | 77.3 | 439 | 945 | 59.6 | 37.1 | 37.8 | 822 | 50.5 66.9 | 91.5
ERFNet (Camvid-trained) 80.5 | 76.8 | 92.6 | 83.8 | 16.0 | 929 | 652 | 459 | 46.2 | 87.8 | 63.2 68.3 | 94.3

[ERFNet (Cityscapes+augments) [| 85.4 | 722 [83.8 | 82.0 [41.1 | 93.7 [66.6 | 54.7 [446 | 855 | 485]| 68.9 [91.2 |

vegetation sky rider

road building

truck

(a) Input image (b) Ground truth

Fig. 3.

train bicycle sidewalk| wall

unlabeled

(c) Baseline (no augments) (d) All-augments model

Examples in Cityscapes Validation Set (500) for a model trained in Cityscapes train set. Each row corresponds to a challenging image in diverse

cities (Frankfurt, Lindau and Miinster). The color leyend for the 19 cityscapes classes (+ unlabeled) has been added on top for visualization reasons.

E. Qualitative results

For an easier evaluation of how the proposed techniques
improve robustness, we display diverse segmentation results
in challenging frames of multiple datasets. In Fig. 3, we
show results for Cityscapes Validation set (one image per
city: Frankfurt, Lindau and Miinster). In Fig. 4, results are
shown for CamVID dataset (one image row per sequence).
Both datasets have pixel-annotated labels available. For addi-
tional examples, we have tested our models in an additional
domain: California. We show results for data recorded in
San Diego (LISA dataset [15]) in Fig. 5. Diverse results
with different illumination conditions (cloudy vs. sunny)
and different cameras have been combined in the Figure. In
summary, it can be seen in all qualitative examples that data-
augmentation has an extremely positive effect in improving
robustness in all kinds of domains and camera conditions.

V. CONCLUSIONS

In this paper, we have analyzed techniques to be applied to
existing deep networks in order to improve their robustness
when deployed in any domain. After training models with
diverse combinations of data augmentation methods, it has
been demonstrated both numerically and qualitatively that
these models are ready to produce accurate segmentation
in many domains (regardless of place conditions or camera

quality). Our systematic and comprehensive set of experi-
ments demonstrates that robustness to unseen domains is
reachable with existing techniques that can be applied to any
data-driven architecture.

REFERENCES
[1] E. Romera, L. M. Bergasa, and R. Arroyo, “Can we unify monocular
detectors for autonomous driving by using the pixel-wise semantic
segmentation of cnns?” arXiv preprint arXiv:1607.00971, 2016.
G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in ECCV,
2008, pp. 44-57.
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in IEEE Conf. on Computer
Vision and Pattern Recog. (CVPR), 2016, pp. 3213-3223.
C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and
A. Yuille, “Semantic image segmentation with deep convolutional nets
and fully connected crfs,” in International Conference on Learning
Representations, 2015.
V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for robust semantic pixel-
wise labelling,” arXiv preprint arXiv:1505.07293, 2015.
F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.
E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Efficient
convnet for real-time semantic segmentation,” in [EEE Intelligent
Vehicles Symp. (IV), 2017, pp. 1789-1794.
E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation,”
IEEE Transactions on Intelligent Transportation Systems, 2017.

[2]

[3]

[4]

[51

[6]
[71

[8]

(a) Input image (b) Ground truth (c) Baseline (no augments) (d) All-augments model
Fig. 4. Examples in CamVID sequences for models trained uniquely with Cityscapes data. Each row corresponds to a challenging image in each of the
4 CamVid sequences. Please note that the CamVID ground truth is only colored for its 11 main classes and the trained models output 19 classes. For
example, in CamVID labels, Bicycle and rider are an unique class (dark red) while in Cityscapes they are labeled as two classes (rider and bicycle).

(a) Input image (b) Baseline (no augments) (c) All-augments model

Fig. 5. Examples in LISA data [15], recorded in the University of California San Diego with diverse cameras and illumination conditions.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks 2015 IEEE. 1IEEE, 2015, pp. 537-542.
for semantic segmentation,” in IEEE Conf. on Computer Vision and [13] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
Pattern Recog. (CVPR), 2015, pp. 3431-3440. synthia dataset: A large collection of synthetic images for semantic
[10] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A segmentation of urban scenes,” in Proceedings of the IEEE Conference
deep neural network architecture for real-time semantic segmentation,” on Computer Vision and Pattern Recognition, 2016, pp. 3234-3243.
arXiv preprint arXiv:1606.02147, 2016. [14] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
[11] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, modern neural networks,” arXiv preprint arXiv:1706.04599, 2017.
“The one hundred layers tiramisu: Fully convolutional densenets for [15] A. Rangesh, K. Yuen, R. K. Satzoda, R. N. Rajaram, P. Gunaratne,
semantic segmentation,” arXiv preprint arXiv:1611.09326, 2016. and M. M. Trivedi, “A multimodal, full-surround vehicular testbed
[12] G. Ros and J. M. Alvarez, “Unsupervised image transformation for for naturalistic studies and benchmarking: Design, calibration and

outdoor semantic labelling,” in Intelligent Vehicles Symposium (IV), deployment,” arXiv preprint arXiv:1709.07502, 2017.

