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Abstract—Automated vehicle detection is a research field in
constant evolution due to the new technological advances and
security requirements demanded by the current intelligent trans-
portation systems. For these reasons, in this paper we present
a vision-based vehicle detection and tracking pipeline, which
is able to run on an iPhone in real time. An approach based
on smartphone cameras supposes a versatile solution and an
alternative to other expensive and complex sensors on the vehicle,
such as LiDAR or other range-based methods. A multi-scale
proposal and simple geometry consideration of the roads based on
the vanishing point are combined to overcome the computational
constraints. Our algorithm is tested on a publicly available road
dataset, thus demonstrating its real applicability to ADAS or
autonomous driving.

I. INTRODUCTION

In 2014, more than 25, 700 people died on the roads of
the European Union [1]. Studies about accident causation,
like NHTSA’s [2], attribute 94% of accidents to driver-related
reasons, such as distraction or inattention. Therefore, research
and development of prevention measurements focused on
drivers is essential for reducing fatality on the roads.

In this direction, researchers and manufacturers have sig-
nificantly progressed in the development of algorithms and
systems that are able to perceive the vehicle environment with
inference capabilities that are close to human ones. On the one
hand, systems that learn about the static environment (i.e. road
markings, traffic signs) have been studied in the state of the art
with remarkable results [3]. On the other hand, the dynamic
environment (i.e. pedestrians, vehicles) is still a challenging
aspect, due to the high variability of the objects to be avoided.

Over the last decades, sensors like RADAR and LiDAR
have been widely studied as a solution to this problem.
However, the high cost and space constraints of these sensors
have situated computer vision as one of the most common
alternatives [4]. Cameras have become cheaper, smaller and
of higher quality than ever before. In addition, computational
costs associated with computer vision have been reduced due
to the improvements in processing units.

Specifically, today smartphones have the computing capabil-
ities of a full computer from few years ago and a high market
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(UAH). Alcalá de Henares, Madrid, Spain. e-mail: eduardo.romera
@edu.uah.es, roberto.arroyo@depeca.uah.es,
luism.bergasa@uah.es

Fig. 1. DriveSafe App running in a real environment.

penetration. These devices provide good embedded units to
solve computer vision problems because of their integrated
cameras and their powerful processing and communication
capabilities. That is why in the last years there has been an
active work on using smartphones as a low-cost platform for
monitoring and assisting drivers.

In previous work [5], authors introduced DriveSafe, a smart-
phone app that detects and alerts inattentive driving behaviours
by making use of the camera, microphone, GPS, and inertial
sensors. This supposes an affordable way to provide safety
features that are normally only available in top-end vehicles.
With the aim of expanding the analysis about dangerous
behaviours (e.g. tailgating), we present an algorithm for ahead
vehicle detection and tracking that is integrated in DriveSafe
application (see Fig. 1). Our proposal is based on a multi-
scale approach that takes into consideration the road geometry
to overcome the computational constraints. The algorithm
is evaluated on a publicly available motorway dataset [6],
demonstrating its viability for Advanced Driver Assistance
Systems (ADAS) and autonomous driving applications.

II. RELATED WORK

Vision-based object detection has been widely studied over
the last years. One of the key works that supposed a break-
through is the Viola-Jones algorithm [7], which is based on a
sequential classifier with Haar-like features that demonstrated
real-time performance on the face detection problem. Since
then, researchers have proposed several approaches based on
multiple classification algorithms (SVM [8], AdaBoost and
variants [9], [6]) and varied features (Haar [10], LBP [6],
HOG [8], ICF [9] and ACF [11]).



On the specific research area of vehicles, detection in static
images is a widely studied topic. The recent appearance of
vehicle-annotated motorway datasets (i.e. LISA [12] and TME
Motorway [6]) has allowed to evaluate detection performance
on real driving environments. Thus, performance is measured
not only as a theoretical amount of true positives in a set
of images but as real execution in a dynamic motorway
environment, where tracking and filtering techniques are as
important as detection.

In this way, there have been several recent works that have
focused on developing improved tracking algorithms by mak-
ing minimal changes to the Viola-Jones detection framework.
Particle Filtering (PF) has been a widely used technique. An
example based on PF is [13], which proposes a full integration
between lane and vehicle tracking modules to complement
each other. In [6], an algorithm based on Flock of Trackers
and a Learn and re-detect module is implemented following
TLD method (Tracking-Lerning-Detection). The work in [14]
proposes the use of a Probability Hypothesis Density (PHD)
filter to track features detected within the bounding box of the
vehicle, with some pruning techniques to counteract the high
computational requirements of the filter.

Additionally, the motorway environment allows to apply
expert knowledge from the road. Several works focus on
applying geometrical constraints, mostly to satisfy real-time
requirements by pruning the detection search window. For
instance, methods like [8] implement an adaptative coarse-
to-fine object search to restrict possible scan-ROI positions.
This work also applies a multi-scale feature preprocessing
stage to award more resolution to distant ROIs and reduce
processed pixels over 50%, similarly to what is done in the
present work. The approach in [9] proposes reducing scales
per octave depending on uncertainty from tracked object and
giving computation priority to near vehicles. Both works use
variants of AdaBoost that early reject regions with low object
probability: Boosted Cascade in [8] and Soft-Cascade in [9].

With the aim of satisfying both computational and detection
requirements, we combine multi-scale approaches with low-
computational tracking methods. Simple considerations of the
road geometry are taken into account by means of a lane
detector. The result is an efficient algorithm that is suitable
for smartphones. At the end of the document, it is evaluated
on a motorway dataset to prove its performance on a real
environment.

III. SYSTEM DESIGN

This work is focused on developing a vehicle detection
and tracking algorithm suitable for smartphones. Hence, a key
aspect in the system is the computational efficiency. As seen
in the state of the art, scanning a full image with a classifier
is an expensive operation. Thus, applying knowledge from the
road geometry to prune the search window is more efficient
than scanning the image by brute force. Considering any road
environment, vehicles in the scene may either appear from
behind as near vehicles (if they move faster than us) or either
be approached from far (if they move slower than us or they

Fig. 2. Full system diagram. DA, OF, and EKF stand for Data Association,
Optical Flow, and Extended Kalman Filter respectively.

are in the opposite direction lane). With this assumption, we
propose a multi-scale approach that optimizes the discovery of
new vehicles by making use of different detection windows.

The detection can be divided into three main stages, as can
be seen in Fig. 2. They are based on an AdaBoost classifier.
Firstly, a large image patch with low resolution is scanned
by the detector to mainly discover near vehicles (Sec. III-A).
Secondly, a small image patch in the surroundings of the
vanishing point is scanned at a higher resolution in order to
discover far vehicles (Sec. III-B). Thirdly, the detector scans
specific image patches corresponding to previously discovered
vehicles in order to reaffirm detections and to cover those that
do not fit in the near nor the far scan windows (Sec. III-C).
Fig. 3 shows a video-frame where each of the stages is relevant
to perform the detection of a specific vehicle in the scene.

Data association between detections in each frame and their
corresponding tracked candidates is decided by a simple over-
lapping formula (Sec. III-D). Position estimation is enhanced
with Optical Flow (Sec. III-E). Tracking is performed by an
Extended Kalman Filter (Sec. III-F). Lane detection (Sec.
III-G), which is performed by DriveSafe App, is seized to
enhance the detection by providing estimated distance to the
car and road vanishing point.

The whole implementation is oriented towards simplicity in
order to fulfil real-time constraints. Thus, the input image is
reduced to 640x480, from which all detection windows are
extracted. All stages are performed in every frame.

A. Detector 1: Near window

In this stage, the image resolution is resized to a half
resolution (320x240). This extremely reduces computational
cost in the AdaBoost detector, although it has two negative
consequences. Firstly, the detector recall rate is reduced for
vehicles that are farther than a distance (≈30m), as the lower
resolution diffuses the vehicle features. Secondly, the training
process is done with a fixed model size (20 pixels in our case),
so the objects with a pixel width lower than this threshold will
not be detected by the classifier. Therefore, the function of this
detection ROI is only to detect near vehicles, leaving those that
are further than 30 meters to the intermediate or far window.



Fig. 3. [Best viewed in color] Example of the three vehicle detection stages
working. Green boxes represent detections, blue the near-window, red the
far-window, yellow the intermediate window (vehicle-specific) and the points
depicted in blue in the vehicle of the left represent Optical Flow.

Additionally, the sky is filtered out to avoid unnecessary
computation. Considering that the camera will be perpen-
dicular to the ground, the horizon provided by DriveSafe is
approximately situated at half of the image. With the aim of
leaving a margin for near cars or trucks, only about 30% of
the top is removed. About 20% of the bottom of the image
is also removed in order to avoid the car bonnet (estimated
by DriveSafe) and a small part of the nearby road that does
not affect detection. Thus, a total of around 50% of the
vertical size of the image is removed, reducing considerably
the computation cost of this stage.

B. Detector 2: Far window (zoom)

The far window covers the deficits of the previous stage
for detecting distant vehicles. Thus, a small patch is extracted
from the input image in the neighbourhood of the vanishing
point, which is provided in our system by the lane detector
module of DriveSafe (Sec. III-G). This approach using the
vanishing point of the image supposes an improvement over
using a fixed window in the half of the image in cases of
curved roads.

The size of this window must be small enough to have
a light computational cost and large enough to fit most far
vehicles Therefore, this size is experimentally set to 500x110
pixels (see red rectangle in Fig. 3).

Considering that this far window is overlapped within the
near one, this region will be scanned twice by the detection.
Thus, some vehicles could be detected by both detectors. In
these cases, the score of the AdaBoost detector (a weighted
sum of the weak classifiers) is used to determine which of
both detections is predominant.

C. Detector 3: Intermediate window

Once a vehicle has been discovered by any of the previous
windows, a third detection is performed on the surroundings
of the last position of the car. This ensures re-detection
independently of road position, covering intermediate areas
where the other windows have deficiencies. Thus, it reaches all
those vehicles that have moved far enough to not be correctly

detected by the near window but are not far enough to fit inside
the far window.

The intermediate window is vehicle-specific. It is focused
on the surroundings of the previously known vehicle position.
An extra size is given by a margin of half the width and height
on each of the sides of the previously detected bounding box.
The image used to extract this window is the full 640x480
one. As it will be seen in Sec. IV-C, the computing cost of
this window is extremely low.

D. Data association
In order to associate new detections in the current frame and

tracked candidates, an overlap matrix is computed as follows:

overlap =
area(BBi ∩BBj)

area(BBi ∪BBj)
(1)

where BB is the bounding box of new vehicle i and tracked
candidate j. Vehicles are associated if the overlap is higher
than a certain threshold.

When a new vehicle is discovered and it does not overlap
with any previous candidate, it is saved as a new candidate if
it is detected by either the near-window or the far-window at
least twice in the last three frames. This significantly reduces
false positives and avoids that these detections are kept in the
system by the tracking algorithm. When a candidate does not
have a new detection associated in the current frame, this is
moved using optical flow of local features.

E. Optical Flow
Local features from detected vehicles are used to enhance

tracking. On detection, a small image patch containing the
vehicle is saved. This image patch is used to compute features
that are searched in the next frame in the proximity of the last
known position. Thus, corners are computed by Shi-Tomasi
method and are tracked using the optical flow obtained by
Lucas-Kanade algorithm [15]. The median of the flow from
all found points is used to compute the vehicle motion, which
is used to correct the previously known position of an unpaired
candidate in the current frame. When less than ten points have
been tracked by the algorithm, the candidate is considered not
valid and removed. This step has low computational cost, as
the corner search happens only in a reduced region.

F. Extended Kalman Filter
Tracking is performed with an Extended Kalman Filter

(EKF). The pinhole camera model is used to set the following
3D states of each candidate: lateral position, longitudinal
position (distance to camera), vehicle width (detection pattern
is square), and their respective derivatives. 3D measurements
are calculated by the lane detection module of DriveSafe.

This filter is essential to keep a stable detection and avoid
the flicker produced when the detection is noisy or when there
is a change between windows in the multi-scale approach.

G. Lane detection
Lane detection is carried out by DriveSafe App to enhance

vehicle detection by providing road information. Reader may
refer to [5] in order to learn more about implementation.



IV. RESULTS

A Gentle AdaBoost classifier is trained based on LBP. Haar
was also tested and demonstrated much slower performance
with no significant improvement. HOG, ICF and ACF were
discarded due to computational constraints. The classification
is performed on 20x20 pixel patterns. This defines the model
size, and thus the minimum vehicle width that can be detected
in the image. This value affects at the image resolution
used by the detector (640x480). In the charts, pixel values
are translated to 1024x768 for comparison with the original
dataset, so the minimum vehicle width is shown as 32 pixels.

All images used for the training are publicly available and
they correspond to a mixture between public datasets. Positives
are only obtained from GTI dataset [16], corresponding to
3425 images of rears of cars and trucks. Negatives are obtained
from multiple datasets: GTI [16], KITTI [17], Caltech Cars
(Rear) background [18] and GRAZ-02 [19] (only images of
background without cars), forming a total of 13868 negatives.

To the best of our knowledge, there are only two pub-
licly available vehicle-annotated datasets for motorway video
sequences: LISA Vehicle Detection [12] and TME Motor-
way [6]. The first includes 2 motorway sequences for a
total duration of one minute, while the latter is formed by
28 motorway clips for a total of approximately 27 minutes
(30000+ frames). We present the results on the larger one
(TME), as it allows evaluating the performance in a real
motorway situation. Recent works on vehicle detection have
presented results on it: [6], [8], [9] and [14] (this one only
presents results about tracking error). It contains two subsets:
“Daylight”, which is larger and its light conditions might be
more common in daily situations, and “Sunset”, which was
recorded in challenging conditions where the sun is low and
its light significantly affects visibility, allowing the evaluation
of the algorithm robustness.

A. Detection performance

In Figs. 4 and 5 we present the evaluation statistics collected
for the algorithm performed on the dataset. As explained in
[6], the dataset’s approximate ground truth (GT’) was obtained
from laser scans, hence the reliability limitation beyond 60-70
meters, when less than 3 laser reflections per vehicle become
available. The results are presented in the same format and
evaluation process as the original paper, for comparison.

Results show that precision remains over 90% for both
dataset subsets (Daylight and Sunset). Recall rate is over 95%
for near cars and it remains very high until 60m. The difference
in performance between trucks and cars corresponds to the
lower proportion of truck samples that is used in the training
set. Ideally, cars and trucks should be detected by different
classifiers due to the remarkable model difference, but this
would not be a computationally efficient solution. Thus, both
are used together to train the same classifier, which results in
an acceptable overall performance.

Despite the fact that the GT’ is less reliable over 60m, the
algorithm detection rate decays over this distance due to the
low resolution that is kept for computational constraints. Our

work is focused on providing high detection rates within a
reasonable distance. Ahead vehicles under 60m have the most
impact on driving behaviour, and are the ones to be utterly
considered by ADAS or autonomous driving algorithms.

As can be seen in Fig. 5, detection performance remains
similar in the more challenging “Sunset” subset. This demon-
strates that the algorithm is robust against light variations.
Additionally, further tests in a real driving environment have
also demonstrated robustness under severe rain conditions,
although we cannot provide quantitative results due to the lack
of ground truth.

B. Comparison with related works

The objective of this work was not to improve the detection
performance of an existing system, but obtain similar results
with state-of-the-art works, considering the smartphone com-
putational constraints. In Fig. 6, we show our results compared
to state-of-the-art methods that made use of this dataset: [8]
(Boosted Cascade + Haar + LRF + Road constraints), [6]
(WaldBoost + LBP + FoT) and [9] (SoftBoost + ICF).

As can be seen in Fig. 6a and 6c, the precision of our
algorithm is slightly lower than other results because high
recall has been preferred in the trade-off between precision
and recall, as we give more importance to detect all cars in a
range and noisy detections are easier to filter with further lane
analysis. Fig. 6b and 6d show that recall rate is higher than
other state-of-the-art works until 60m. Additionally, the results
for “Sunset” show that our algorithm is the least affected by
bad light conditions.

C. Computing performance

Table I shows the computation time for each of the modules
of the detection algorithm for three different devices (iPhone5,
iPhone6, and iPhone Simulator). The most expensive stage is
the far-window due to its high resolution, even though it covers
a smaller region. This demonstrates the advantage of multi-
scaling, as a single full-resolution window would be inviable.

The detector runs inside our DriveSafe application, simul-
taneously with the rest of its ADAS modules. The hermetic
character of iOS does not allow to isolate the application
from other unrelated background processes, so it was not
possible to guarantee full CPU dedication to the algorithm.
This produces a slight decay in the expected performance.
Nevertheless, it supposes a more realistic evaluation, since the
results obtained correspond to an application running in the
smartphone OS along with other several routines (e.g. call
management), which is the case for the average user.

These results represent the total time needed by one CPU
core to process one frame. Considering the camera has a
rate of 30 fps, not all frames are processed. In DriveSafe
App, the detection algorithm runs as a medium-priority thread
providing detections. From experimental tests in a motorway
environment, we have inferred that 5-10 fps is enough for a
robust detection performance. Running the algorithm on the
TME dataset with lower frame rates (5 and 10 Hz) by skipping
frames has also produced similar results to those presented in



(a) Precision in function of width (b) Recall rate in function of width (c) Recall rate in function of distance

(d) All detections, grouped by width (e) All detections, grouped by distance (f) Representative image from subset

Fig. 4. [Best viewed in color] Detection algorithm evaluated on the “Daylight” subset of the TME Dataset. A grey box is placed over the chart region where
the GT’ is not considered reliable due to a laser limitation. Vehicle pixel width corresponds to a resolution of 1024x768, for comparison with original charts.

(a) Precision in function of width (b) Recall rate in function of width (c) Recall rate in function of distance

(d) All detections, grouped by width (e) All detections, grouped by distance (f) Representative image from subset

Fig. 5. [Best viewed in color] Detection algorithm evaluated on the “Sunset” subset of the TME Dataset.

Fig. 4 and 5. The worst case scenario are vehicles that overtake
or brake suddenly near the camera sides, thus producing the
largest motion in image pixels. Even in these cases, the relative
speed between the detected vehicle and the camera carrier has
to be immensely high to produce a loss in the tracking process.

Results are also provided for an iPhone 6 simulator run by
an Intel Core i7@2.2GHz processor for comparison with other
works. Although the simulator supposes a significant computa-
tional overhead and the algorithm would achieve higher frame
rates as a standalone code, it doubles the standardized real-
time rate of 30 fps. This demonstrates its portability to other
devices such as in-vehicle computers.

V. CONCLUSION

We have presented a vehicle detector and tracker that can
run in real time on an iPhone, in parallel with other ADAS

AVERAGE COMPUTATION TIME [ms]
Module iPhone 5 iPhone 6 Simulator (i7)

Near-window 48 26 6
Far-window 70 41 8

Intermediate-win. 6 4 1
Optical Flow 3 2 <0.5

Extra operations 5 3 <0.5
TOTAL 132 76 16

FPS 7.6 13.2 62.5
TABLE I

AVERAGE COMPUTATION TIME FOR DETECTION MODULES.

processes such as a lane detector. A multi-scale approach and
geometrical considerations have been used to overcome the
computational constraint. The result is a versatile algorithm
that can be implemented on any smartphone and performs well
on motorway environments without the requirement of large
training sets. Experiments on a publicly available motorway
dataset demonstrate that our detection performance is similar
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(c) Precision in function of width (Sunset subset)
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Fig. 6. [Best viewed in color] Comparative charts of state of the art results for “ALL” (cars and trucks) between our approach (“Ours”), results presented in
[8] (“Gabb”), in [6] (“Caraffi”) and in [9] (“Castangia”). Results of Sunset subset are not available in [9].

to state-of-the-art works and it is robust against light changes.
Its low computational cost allows an efficient integration in
ADAS or autonomous vehicles.

Future work will involve producing a higher-level of driving
behaviour analysis based on the vehicle detection and the
techniques applied in [5]. Improvements of the detection and
tracking algorithm could be based on a higher integration
of the lane and vehicle modules to complement each other
in a more complex way. In addition, other preprocessing
stages could be added for minimizing issues associated with
shadowing or sunset conditions in vehicle detection, such as
the illumination invariance techniques presented in [20].
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