
Efficient ConvNet for Real-time Semantic Segmentation

Eduardo Romera1, José M. Álvarez2, Luis M. Bergasa1 and Roberto Arroyo1

Abstract— Semantic segmentation is a task that covers most
of the perception needs of intelligent vehicles in an unified way.
ConvNets excel at this task, as they can be trained end-to-end
to accurately classify multiple object categories in an image at
the pixel level. However, current approaches normally involve
complex architectures that are expensive in terms of computa-
tional resources and are not feasible for ITS applications. In
this paper, we propose a deep architecture that is able to run
in real-time while providing accurate semantic segmentation.
The core of our ConvNet is a novel layer that uses residual
connections and factorized convolutions in order to remain
highly efficient while still retaining remarkable performance.
Our network is able to run at 83 FPS in a single Titan X,
and at more than 7 FPS in a Jetson TX1 (embedded GPU). A
comprehensive set of experiments demonstrates that our system,
trained from scratch on the challenging Cityscapes dataset,
achieves a classification performance that is among the state of
the art, while being orders of magnitude faster to compute than
other architectures that achieve top precision. This makes our
model an ideal approach for scene understanding in intelligent
vehicles applications.

I. INTRODUCTION

Autonomous driving is a challenging topic that requires
complex solutions in perception tasks such as recognition of
road, traffic signs/lights, vehicles and pedestrians. Traditional
vision approaches were normally focused on patch-based
object detection that aimed to find these objects in the image
independently with different algorithms [1]. However, these
are not independent problems that should be treated sepa-
rately, as they all belong to the same scene. Therefore, it is
beneficial to perform scene understanding in an unified way,
as it allows to solve many tasks at once in order to take their
inter-relations and context into account in the classification
problem. The task of full-image semantic segmentation aims
at solving exactly this problem, by classifying a wide variety
of object classes directly at the pixel level of an image, which
supposes a very rich source of processed information for
higher-level vehicle tasks like navigation.

Convolutional Neural Networks (ConvNets), initially de-
signed for image classification tasks, have demonstrated
impressive capabilities at segmentation by being able to
classify several object categories pixel-wise and end-to-end

*This work has been funded in part from the Spanish MINECO
through the SmartElderlyCar project (TRA2015-70501-C2-1-R) and from
the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la
calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by
Programas de actividades I+D (CAM) and cofunded by EU Structural Funds.
The authors also thank NVIDIA for generous hardware donations.

1Eduardo Romera, Luis M. Bergasa, Roberto Arroyo are with the Elec-
tronics Department, University of Alcalá (UAH), Alcalá de Henares, Spain
{eduardo.romera, roberto.arroyo}@edu.uah.es,
luism.bergasa@uah.es;2José M. Alvarez is with CSIRO-Data61,
Canberra, Australia Jose.Alvarezlopez@data61.csiro.au

Fig. 1. Top: Simple diagram that depicts the proposed segmentation system.
Bottom: Examples of segmentation produced by our ConvNet. Left: input
images; Right: output segmentation of our architecture (19 classes).

on an image with very low error rates (e.g. [2] [3][4]). Recent
works have achieved progressive leaps in the accuracy that
is obtained by these deep architectures, until the point of
making them reliable enough for real world applications.
However, top performing approaches (e.g. [5][6][7][8]) have
been focused on achieving minor improvements in accuracy
at the expense of high increases in network complexity,
making them unfeasible in terms of computational resources.
On the other side, some works have focused on efficiency by
proposing architectures that can reach real-time segmentation
[9][10], but this is normally at the expense of accuracy (e.g.
aggressively reducing network parameters).

In this paper, we propose an architecture that achieves
top efficiency and accuracy without sitting on only one
of these sides. Our network, based on a novel residual
block that uses factorized convolutions, has been designed
to maximize its performance while keeping an efficiency
that is suitable for real-time operation in modern GPUs.
Some examples of our network’s segmentation output can
be seen in Fig. 1. Our experiments demonstrate that it can
learn to segment (at the pixel level) a widely varied set of
object classes from a complex urban scene, with an accuracy
that is as competitively high as the most complex alternative
approaches in the state of the art, while having a computing



cost that is orders of magnitude lower. It can run at several
FPS on a modern GPU, even on embedded devices that can
be mounted on a vehicle. This makes it an ideal solution for
the perception tasks of a self-driving vehicle, which aim to
understand as much as possible of the driving scene while
being able to operate in real-time.

This document is disposed as follows: In Section II, we
discuss about some related works on the task of semantic
segmentation. In Section III, we describe our architecture in
depth, which can be easily reproduced to produce full-image
segmentation in real-time. Finally, in Section IV, we perform
a comprehensive set of experiments that aims at evaluating
both the accuracy of the network and the computational
resources that are required to process it.

II. RELATED WORKS

ConvNets were initially designed for image classification
challenges, which consist in predicting single object cate-
gories from images. Long et al. [2] (FCN) firstly adapted
known classification networks (e.g. VGG16 or GoogleNet)
to perform end-to-end full-image semantic segmentation by
making them fully convolutional and upsampling the output
feature maps. However, directly adapting these networks
results in coarse pixel outputs (and thus low pixel accuracy)
due to the high downsampling that is performed in the
classification task to gather more context. To refine these
outputs, the authors propose to fuse them with activation
maps from shallower layers using skip connections. Kendall
et al. [3] (SegNet) proposed to upsample the features with a
large decoder segment that performs finer unpooling by using
the indices of the encoder’s max-pooling blocks. Other works
like [4] (Deeplab) have proposed to refine the coarse output
by using CRFs, and works like [11] (CRFasRNN) proposed
to integrate them inside the convolutional architecture. How-
ever, relying on algorithms like CRF to refine segmentation
highly increases the network’s computational overload.

Very recent works have achieved top performance by
adapting Residual Networks (ResNets) [12] into the segmen-
tation task, and combining them with dilated convolutions
[13], which allow exponential expansion of the receptive
field without loss of resolution or coverage. The work in [8]
(DeepLab2) combines a ResNet-101 with spatial pyramid
pooling and Conditional Random Fields (CRF) to reach
state-of-the-art performance. Lin et al. [6] (RefineNet) pro-
pose a multi-path refinement network that exploits all the
information available along the downsampling process to
enable high-resolution predictions using long-range residual
connections. Pohlen et al. [7] (FRRN) propose a ResNet-like
architecture that combines multi-scale context with pixel-
level accuracy by using two processing streams, one that
is processed at full resolution and another that performs
downsampling operations. Ghiasi et al. [14] (LRR) propose a
complex architecture that constructs a Laplacian pyramid to
process and combine features at multiple scales. All these ap-
proaches achieve top performance but the required resources
make them extremely expensive in terms of resources in
modern GPUs, becoming unfeasible for ITS applications.

The recent ENet [9] sits on the opposite side in terms
of efficiency, in which authors also adapt ResNet to the
segmentation task, but make important sacrifices in the
network layers to gain efficiency at the expense of a lower
classification performance compared to the other approaches.
In this paper, we propose an architecture that aims at
obtaining the best possible trade-off between accuracy and
efficiency, without neglecting any of them independently.

III. ARCHITECTURE

Our ConvNet builds upon an efficient redesign of convo-
lutional blocks with residual connections. Residual connec-
tions [12] supposed a breakthrough because they avoid the
degradation problem that is present in architectures with a
large amount of stacked layers. This has allowed very deep
networks (with hundreds of layers) to achieve outstanding
classification performances. As described in Sec. II, various
works have recently adapted large ResNets to the semantic
segmentation task, achieving top performances in the state
of the art. However, the trend of indiscriminately enlarging
the depth of ConvNets to improve classification performance
has been proven very inefficient in recent works focused in
the image classification task [15][16]. Instead, we propose a
“wider” architecture (as opposed to “deeper”) that makes an
extremely efficient use of its minimized amount of layers to
achieve accurate segmentation in real time.

Our architecture is built in a sequential way by stacking
layers based on our novel redesign of the residual layer.
Residual layers were initially proposed in [12] and are widely
used in several recent top-performing architectures. Authors
in [12] proposed two designs: bottleneck and non-bottleneck.
Both are similar but the bottleneck one is commonly used
for efficiency reasons (e.g. ENet), as it internally reduces
the computed feature maps in order to reduce computation.
However, the non-bottleneck design can be beneficial in
shallow versions of ResNet (like our architecture) due to their
increased internal “width” (feature dimensions) compared
to the bottleneck version. We believe that dense-prediction
tasks like semantic segmentation can greatly benefit from this
additional width, despite of their lower efficiency. In order
to compensate efficiency, we repurpose the non-bottleneck
design to be entirely built with convolutions with factorized
(1D) kernels [17], which results in faster execution, reduced
number of parameters and better regularization, without
significant impact in its learning performance. We refer to
this design as “Non-bottleneck-1D” (in short non-bt-1D),
which is displayed in Fig. 2a. This proposed block combines
the strengths of both designs: the efficiency of the bottleneck
and the width of the non-bottleneck.

Our architecture is fully depicted in Table I. We follow an
encoder-decoder architecture like SegNet [3] and ENet [9].
These avoid the need of using skip layers to refine the output
(like FCN architectures [2]), by keeping a more sequential
architecture based on an encoder segment, which is similar
to original classification architectures (it produces downsam-
pled feature maps), and a subsequent decoder segment that
upsamples these features to the original input resolution.



(a) Non-bottleneck-1D (b) Downsampler block

Fig. 2. Diagram depicting each of the blocks that compose our architecture.
“w”: width (number of output feature maps) of the convolution. “s”: stride

TABLE I
LAYER DISPOSAL OF OUR CONVNET. ”OUT-F”: NUMBER OF FEATURE

MAPS AT LAYER’S OUTPUT.”OUT-RES”: OUTPUT RESOLUTION, GIVEN

FOR AN EXAMPLE INPUT SIZE OF 1024X512.

Layer Type out-F out-Res
1 Downsampler block 16 512x256
2 Downsampler block 64 256x128

3-7 5 x Non-bt-1D 64 256x128
8 Downsampler block 128 128x64
9 Non-bt-1D (dilated 2) 128 128x64
10 Non-bt-1D (dilated 4) 128 128x64
11 Non-bt-1D (dilated 8) 128 128x64
12 Non-bt-1D (dilated 16) 128 128x64
13 Non-bt-1D (dilated 2) 128 128x64
14 Non-bt-1D (dilated 4) 128 128x64
15 Non-bt-1D (dilated 8) 128 128x64
16 Non-bt-1D (dilated 16) 128 128x64
17 Deconvolution (upsampling) 64 256x128

18-19 2 x Non-bt-1D 64 256x128
20 Deconvolution (upsampling) 16 512x256

21-22 2 x Non-bt-1D 16 512x256
23 Deconvolution (upsampling) C 1024x512

Layers from 1 to 16 in our architecture form the encoder,
composed of residual blocks and downsampling blocks.
Downsampling (reducing the spatial resolution) has the draw-
back of reducing the pixel accuracy (coarser outputs), but it
also has two benefits: it lets the deeper layers gather more
context (to improve classification) and it helps to reduce
computation. Therefore, to keep a good balance we perform
three downsamplings: at layers 1, 2 and 8. The decoder is
formed by layers from 17 to 23. It upsamples the feature
maps to match the input resolution. As opposed to SegNet
and ENet, we do not use max-unpooling operation for the
upsampling, but we use simple deconvolution layers with
stride 2 (also known as full-convolutions). Fig. 3 contains a
depiction of the feature maps generated by each of the blocks
in our architecture, from the RGB image (encoder’s input)
to the pixel class probabilities (decoder’s output).

Our downsampler block (Fig. 2b), inspired by the initial
block of ENet [9], performs downsampling by concatenating
the parallel outputs of a single 3x3 convolution with stride 2

Fig. 3. Diagram depicting the feature maps produced by each of our
architecture blocks, for an example input image of 1024x512. Each top value
depicts the spatial resolution and each bottom value depicts the “width” or
number of feature maps (C: number of classes).

and a Max-Pooling module. ENet uses it only as the initial
block to perform early downsampling, but we use it in all
the downsampling layers that are present in our architecture.
Additionally, we also interleave some dilated convolutions
[13] in our layers to improve classification by gathering
more context. In Table I, in those blocks that are marked
as “dilated”, we change the second pair of 3x1 and 1x3
convolutions for a pair of dilated 1D convolutions. In the
training phase, we also include Batch-Normalization [18] to
accelerate convergence, and Dropout [19] as a regularization
measure, although we triplicate its probability (0.3 in contrast
to 0.1 used in ENet), as this yielded better results in our
architecture. BN layers are placed after each 1D pair (after
the 1x3 convolutions), and Dropout is placed at the end of
each non-bt-1D layer (between the last 1x3 convolution and
the add operation). Additional training details, regarding how
to train our architecture end-to-end on a fully labeled dataset
and our recommended hyperparameters, are described in the
following section.

IV. EXPERIMENTS

We conduct an extensive set of experiments to validate the
potential of our architecture. These are described below:

Dataset. We use the Cityscapes dataset [20], a recent
dataset of urban scenes that has been widely adopted in
semantic segmentation benchmarks due to its highly varied
set of scenarios and challenging set of 19 labeled classes.
It contains a train set of 2975 images, validation set of 500
images and a test set of 1525 images. The test labels are not
available but it is possible to evaluate them on an online test
server. We train our model on the Train set uniquely (fine
annotations), without using the validation set for training.
We train directly from scratch (e.g. not pre-training on
larger datasets like ImageNet) to keep simplicity and to
fully understand the capacity of our network. We perform
simple data augmentation at training time by doing random
horizontal flips and translations of 0-2 pixels in both axes. All
pixel-level accuracy results are reported using the commonly
used Intersection-over-Union (IoU) metric. More details can
be found in [20]. The dataset resolution is 2048x1024, and



all accuracy results are reported at this resolution. We train
our model to perform inference at 1024x512, but the output
is rescaled (by simple interpolation) to the original dataset
resolution for evaluation.

Setup. All experiments are conducted using the Torch7
framework [21]. Our model is trained using the Adam
optimization [22] of stochastic gradient descent. Training
is performed with a batch size of 12, momentum of 0.9,
weight decay of 2e−4, and we start with a learning rate of
5e−4 that we divide by a factor of 2 every time that the
training error becomes stagnant (usually every 50 epochs), in
order to accelerate convergence. We used the class weighing
technique proposed in [9]: wclass = 1

ln(c+pclass)
, setting

c = 1.10, which gave better results in our case. We firstly
train the encoder segment with downsampled annotations
and then attach the decoder to continue training end-to-end
to produce segmentation with the same resolution as the
input. With this setup, both reach convergence between 200-
250 epochs. Training directly with the decoder from scratch
(without training the encoder separately) is also possible, but
it yielded slightly lower results in our experiments.

Comparison to the state of the art. Table II displays the
results of our architecture at the Cityscapes test server com-
pared to all other state-of-the-art approaches that are present
at the Cityscapes benchmark at the date of submission, are
not anonymous submissions (i.e. have an associated paper)
and use comparable data (i.e. the fine annotations). Results
are evaluated at a resolution of 2048x1024. “Pretrain” dis-
plays if the model has been pretrained using external data
like ImageNet or Pascal. “fwt” displays the forward time
in seconds evaluated on a single Titan X (Maxwell). Times
are obtained from the benchmark’s web and “n/a” indicates
that this value was not published. Our architecture, trained
from scratch (without pretraining) on the 2975 fine train
images, achieves a 68% mean IoU at 19 classes and a 86.5%
mean IoU at the 7 categories, while running at 24 ms.
This comparison reflects that our architecture achieves a
significantly better accuracy than most approaches focused
on efficiency, while keeping an efficiency as competitive
as the fastest one and being able to run in real-time on a
single GPU. Most of the top-accuracy approaches have not
published the time required to process a forward pass nor
evaluated their efficiency. However, these approaches achieve
top results by highly increasing the complexity and resources
of their networks: RefineNet [6] and FRRN [7] employ large
ResNets-like architectures in multiple pipelines that work
with high resolution feature maps; Deeplabv2 [8] uses a
large ResNet (101-layers) to improve their previous result
in the Deeplab [23] model; And LRR-4x [14] constructs a
Laplacian pyramid that processes and combines features at
multiple scales. In summary, Deep ResNets demand high
computational resources (more if they are computed at high
resolution), and using multiple pipelines equals multiple
architectures in parallel, which is also extremely demand-
ing in resources. Therefore, it can be assumed that these
approaches are not efficient and our network achieves the
best available trade-off between segmentation accuracy and

TABLE II
LIST OF RESULTS IN THE CITYSCAPES TEST SET OF OUR ARCHITECTURE

COMPARED TO OTHER APPROACHES IN THE STATE OF THE ART, AS

REPORTED IN THE ONLINE BENCHMARK OF THE DATASET.
“CLA”=CLASS, “CAT”=CATEGORY, “FWT”= FORWARD PASS TIME.

Network Pretrain Cla-IoU Cat-IoU fwt [s]
RefineNet [6] ImageNet 73.6 87.9 n/a
FRRN [7] - 71.8 88.9 n/a
Adelaide-cntxt [5] ImageNet 71.6 87.3 35+
Deeplabv2-CRF [8] ImageNet 70.4 86.4 n/a
LRR-4x [14] ImageNet 69.7 88.2 n/a
Ours - 68.0 86.5 0.024
Dilation10 [13] ImageNet 67.1 86.5 4.0
DPN [24] ImageNet 66.8 86.0 n/a
Scale inv.+CRF [25] ImageNet 66.3 85.0 n/a
FCN-8s [2] ImN+Pasc 65.3 85.7 0.5
Uhrig et al [26] ImageNet 64.3 85.9 n/a
DeepLab [23] ImageNet 63.1 81.2 4.0
CRFasRNN [11] ImageNet 62.5 82.7 0.7
SQ [10] ImageNet 59.8 84.3 0.06
ENet [9] - 58.3 80.4 0.013
SegNet basic [3] ImageNet 57.0 79.1 0.06
SegNet extended [3] ImageNet 56.1 79.8 0.06

computational resources. Furthermore, our architecture has
not required to pretrain on additional datasets like ImageNet,
and it reaches its result directly trained from scratch with the
fine Cityscapes annotations. This helps to keep simplicity in
design and the training process, as pretraining on ImageNet
would probably boost the accuracy (due to transferability of
features) but would also require adapting the network and a
long pretraining process of several days on that dataset.

Per-class accuracy Table III displays the results on every
one of the 19 classes evaluated on the Cityscapes test set
at 2048x1024 for our architecture compared to the ones
that have the fastest reported speed in the benchmark. Our
architecture achieves the top accuracy by significant margins
on all the 19 evaluated classes, while keeping a similar speed
as the fastest ones. It achieves slight improvements on the
general classes (Road, Sidewalk, Building, Vegetation, Sky,
Car), while obtaining a significant accuracy improvement
on all the challenging classes (Wall, Fence, Pole, Traffic
Light, Traffic Sign, Terrain, Pedestrian, Rider, Truck, Bus,
Train, Motorbike, Bicycle). These are challenging because
the dataset contains significantly less training samples (e.g.
train/truck compared to road) or they have more challenging
shapes (e.g. pedestrian vs car). Our network leverages the
improved design of our proposed residual layers to increase
the performance on these classes, even when trained using
the same amount of samples as the other approaches.

Processing time comparison Table IV displays inference
time (forward pass) for different resolutions on a single
Tegra TX1 (Jetson TX1) and on a single NVIDIA Titan X
(Maxwell), compared to other architectures that had these
results available. For comparison, we use the same set of
resolutions as in their papers. At 640x360, a resolution that is
enough to recognize any urban scene accurately, our network
achieves around 83 FPS on a single Titan X and more than
7 FPS on a Tegra TX1, an embedded GPU that uses less
than 10 Watts at full load. At 1024x512 (the ratio used in



TABLE III
PER-CLASS IOU (%) ON THE CITYSCAPES TEST SET OF OUR ARCHITECTURE COMPARED TO THE FASTEST ARCHITECTURES. LIST OF CLASSES (FROM

LEFT TO RIGHT): ROAD, SIDE-WALK, BUILDING, WALL, FENCE, POLE, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY, PEDESTRIAN,
RIDER, CAR, TRUCK, BUS, TRAIN, MOTORBIKE AND BICYCLE. “CLASS”: MEAN IOU (19 CLASSES); “CAT” MEAN IOU (7 CATEGORIES).

Network Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic Class Cat
SegNet [3] 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 56.95 79.13
ENet [9] 96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.28 80.39
SQ [10] 96.9 75.4 87.8 31.59 35.7 50.9 52.0 61.7 90.9 65.8 93.0 73.8 42.6 91.5 18.8 41.2 33.3 34.0 59.9 59.84 84.31
Ours 97.7 81.0 89.8 42.5 48.0 56.3 59.8 65.3 91.4 68.2 94.2 76.8 57.1 92.8 50.8 60.1 51.8 47.3 61.7 68.02 86.46

TABLE IV
INFERENCE TIMES OF FASTEST ARCHITECTURES ON TEGRA TX1 AND TITAN X AT DIFFERENT RESOLUTIONS

NVIDIA TEGRA TX1 (Jetson) NVIDIA TITAN X (Maxwell)
Model 480x320 640x360 1280x720 640x360 1280x720 1920x1080

ms fps ms fps ms fps ms fps ms fps ms fps
SegNet [3] 757 1.3 1251 0.8 - - 69 14.6 289 3.5 637 1.6
ENet [9] 47 21.1 69 14.6 262 3.8 7 135.4 21 46.8 46 21.6
SQ [10] 60 16.7 86 11.6 389 2.6 n/a
Ours 93 10.8 141 7.1 535 1.9 12 83.3 41 24.4 88 11.4

the Cityscapes tests), our network achieves 24 ms (41 FPS)
on a Titan X. In summary, our network achieves a speed that
is as competitively fast as the fastest ones (ENet and SQ),
while having a significantly better accuracy. These inference
times demonstrate that it is possible to run our network in
real-time to provide full-image semantic segmentation, even
in embedded systems that can be mounted on a vehicle.

Qualitative experiments. Fig. 4 contains various exam-
ples of segmentation produced by our architecture (d) and
ENet (c), compared to the ground truth (b). While both
networks can accurately segment the road that is immediately
ahead of the vehicle, ENet gives much coarser predictions
for objects that are more distant or that require finer accu-
racy at the pixel level (e.g. pedestrians, traffic signs). Our
architecture yields consistent results for all classes, even at
far distances in the scene. The IoU measurement used in
the quantitative results is a challenging measurement that
takes into account the confusion between all classes and aims
to even the impact between small ones (e.g. traffic light)
and large ones (e.g. road), but it does not reflect the fact
that the total pixel accuracy (i.e. percentage of correct pixel
predictions) is over 95%. This explains why the segmentation
is qualitatively good already, even though 68% mean IoU
(19 classes) and 86.5% category IoU (7 categories) might
seem like low values. Despite of having lower accuracy
on specific challenging classes like “train” or “wall”, the
network already has an excellent accuracy on important
classes like “road”, “pedestrians” or “vehicles”. This makes
the network suitable for ITS applications like self-driving
cars, as it can already provide accurate and complex scene
understanding to higher level algorithms like navigation.

V. CONCLUSIONS

In this paper, we have proposed an architecture that
achieves accurate pixel-wise semantic segmentation in real
time, even in embedded GPUs that can be mounted on
a vehicle. In contrast to top-performing approaches in the
state of the art, that develop complex architectures that are
expensive in computational resources, and in contrast to
the alternative efficient architectures, that perform signifi-

cant sacrifices in the network design to gain efficiency in
exchange of parameters, our design maximizes its accuracy
while remaining extremely efficient. This results in an ar-
chitecture that achieves a performance that is as competitive
as the state of the art, while being as efficient as the fastest
networks available. Such a network provides an excellent
trade-off between reliability and efficiency, which makes
it suitable for countless ITS applications such as scene
understanding in self-driving vehicles.

Future works will involve in-depth experiments regarding
the power consumption of the model, compression tech-
niques (e.g. binarization of weights) for further reduction
of the model’s computational resources, and experiments on
different datasets and images taken on other environments of
smart vehicles (e.g. rural environments and highways).

REFERENCES

[1] E. Romera, L. M. Bergasa, and R. Arroyo, “Can we unify monocular
detectors for autonomous driving by using the pixel-wise semantic
segmentation of cnns?” arXiv preprint arXiv:1607.00971, 2016.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in IEEE Conf. on Computer Vision and
Pattern Recog. (CVPR), 2015, pp. 3431–3440.

[3] V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for robust semantic pixel-
wise labelling,” arXiv preprint arXiv:1505.07293, 2015.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

[5] G. Lin, C. Shen, A. Hengel, and I. Reid, “Efficient piecewise training
of deep structured models for semantic segmentation,” in IEEE Conf.
on Computer Vision and Pattern Recog. (CVPR), 2016, pp. 3194–3203.

[6] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refine-
ment networks with identity mappings for high-resolution semantic
segmentation,” arXiv preprint arXiv:1611.06612, 2016.

[7] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution
residual networks for semantic segmentation in street scenes,” arXiv
preprint arXiv:1611.08323, 2016.

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” arXiv preprint
arXiv:1606.00915, 2016.

[9] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[10] M. Treml, J. Arjona-Medina, T. Unterthiner, and et al., “Speeding
up semantic segmentation for autonomous driving,” in MLITS, NIPS
Workshop, 2016.



Fig. 4. Examples of segmentation produced by our ConvNet compared to ENet. From left to right: (a) Input image, (b) Ground truth, (c) ENet, (d) Ours.

[11] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr, “Conditional random fields as recurrent
neural networks,” in IEEE International Conf. on Computer Vision
(ICCV), 2015, pp. 1529–1537.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” arXiv preprint arXiv:1512.03385, 2015.

[13] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[14] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction
and refinement for semantic segmentation,” in European Conf. on
Computer Vision (ECCV), 2016, pp. 519–534.

[15] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[16] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
arXiv preprint arXiv:1603.05279, 2016.

[17] J. Alvarez and L. Petersson, “Decomposeme: Simplifying convnets for
end-to-end learning,” arXiv preprint arXiv:1606.05426, 2016.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[19] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[20] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in IEEE Conf. on Computer
Vision and Pattern Recog. (CVPR), 2016, pp. 3213–3223.

[21] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, no.
EPFL-CONF-192376, 2011.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille, “Weakly-and
semi-supervised learning of a dcnn for semantic image segmentation,”
arXiv preprint arXiv:1502.02734, 2015.

[24] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic image
segmentation via deep parsing network,” in Proceedings of the IEEE
International Conf. on Computer Vision, 2015, pp. 1377–1385.

[25] I. Krešo, D. Čaušević, J. Krapac, and S. Šegvić, “Convolutional scale
invariance for semantic segmentation,” in German Conf. on Pattern
Recog. (GCPR), 2016, pp. 64–75.

[26] J. Uhrig, M. Cordts, U. Franke, and T. Brox, “Pixel-level encoding
and depth layering for instance-level semantic labeling,” arXiv preprint
arXiv:1604.05096, 2016.


