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ERFNet: Efficient Residual Factorized ConvNet for
Real-time Semantic Segmentation
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Abstract—Semantic segmentation is a challenging task that
addresses most of the perception needs of Intelligent Vehicles (IV)
in an unified way. Deep Neural Networks excel at this task, as
they can be trained end-to-end to accurately classify multiple
object categories in an image at pixel level. However, a good
trade-off between high quality and computational resources is yet
not present in state-of-the-art semantic segmentation approaches,
limiting their application in real vehicles. In this paper, we
propose a deep architecture that is able to run in real-time
while providing accurate semantic segmentation. The core of
our architecture is a novel layer that uses residual connections
and factorized convolutions in order to remain efficient while
retaining remarkable accuracy. Our approach is able to run
at over 83 FPS in a single Titan X, and 7 FPS in a Jetson
TX1 (embedded GPU). A comprehensive set of experiments on
the publicly available Cityscapes dataset demonstrates that our
system achieves an accuracy that is similar to the state of the
art, while being orders of magnitude faster to compute than
other architectures that achieve top precision. The resulting
trade-off makes our model an ideal approach for scene under-
standing in IV applications. The code is publicly available at:
https://github.com/Eromera/erfnet

Index Terms—Intelligent Vehicles, Scene understanding, Real-
time, Semantic segmentation, Deep learning, Residual Layers.

I. INTRODUCTION

THE perception tasks of Intelligent Vehicles (IV) suppose
important challenges due to the high complexity of the

environments in which they are required to operate (e.g.
urban streets). While most systems rely on sensor fusion to
understand as much as possible of their surrounding scene,
cameras have gained significant importance in the community
due to the remarkable advances in the computer vision field.
Images are a rich multi-dimensional signal that is cheap
to capture, but that requires complex algorithms to process.
Traditional vision-based approaches were initially aimed at
developing specific techniques for detecting traffic elements
such as the road pavement, pedestrians, cars, signs or traffic
lights independently [1]. However, recent advances in deep
learning have allowed to unify all of these classification
problems into one single task: semantic segmentation.

The task of semantic segmentation aims at labeling cate-
gories at the pixel-level of an image and has direct applications
in the computer vision field. It is a challenging task because
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Fig. 1. Diagram that depicts the proposed segmentation system (ERFNet)
for an example input image and its corresponding output (C=19 classes). The
depicted volumes correspond to the feature maps produced by each layer. All
spatial resolution values are with regard to the example input (1024x512), but
the network can operate with arbitrary image sizes.

it requires combining dense pixel-level accuracy with multi-
scale contextual reasoning [2]. Convolutional Neural Networks
(ConvNets), initially designed for classification tasks [3][4]
and recently adapted to segmentation [5], have demonstrated
impressive capabilities at solving these complex challenges.
ConvNets are able to achieve end-to-end full-image seg-
mentation with an accuracy that outperforms any traditional
method. However, a good trade-off between high quality and
computational resources is yet not present in state-of-the-art
segmentation architectures.

Recently, the residual layers proposed in [6] have supposed
a new trend in ConvNets design. Their reformulation of the
convolutional layers to avoid the degradation problem of deep
architectures has allowed recent works to achieve very high
accuracies with networks that stack large amounts of layers.
This strategy has been commonly adopted in new architectures
that obtain top accuracy at both image classification challenges
[6][7] and semantic segmentation challenges [8][9][10]. De-
spite these achievements, we consider that this design strategy
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is not an effective way to obtain a good trade-off between
accuracy and efficiency. Considering a reasonable amount of
layers, enlarging the depth with more convolutions achieves
only small gains in accuracy while significantly increasing the
required computational resources.

Computational resources are a key limitation in IV applica-
tions. Algorithms are not only required to operate reliably, but
they are required to operate fast (real-time), fit in embedded
devices due to space constraints (compactness), and have low
power consumption to affect as minimum as possible the
vehicle autonomy. Regarding ConvNets, all this is translated
into the GPU resources that are required to process the
network parameters. With this in mind, some works have
aimed at developing efficient architectures that can run in
real-time [11][12]. However, these approaches usually focus
on obtaining this efficiency by an aggressive reduction of
parameters, which highly detriments accuracy.

In this paper, we aim at solving this trade-off as a whole,
without sitting on only one of its sides. We propose ERFNet
(Efficient Residual Factorized Network), a ConvNet for real-
time and accurate semantic segmentation. The core element
of our architecture is a novel layer design that leverages skip
connections and convolutions with 1D kernels. While the skip
connections allow the convolutions to learn residual functions
that facilitate training, the 1D factorized convolutions allow a
significant reduction of the computational costs while retaining
a similar accuracy compared to the 2D ones. The proposed
block is thus stacked sequentially to build our encoder-decoder
architecture, which produces semantic segmentation end-to-
end in the same resolution as the input (see Fig. 1 for an
example). A comprehensive set of experiments on the chal-
lenging Cityscapes [13] dataset of urban scenes demonstrates
the remarkable trade-off between accuracy and efficiency of
our architecture, reaching an accuracy as competitive as the
top networks, while also being among the fastest ones. This
paper is an extension of our conference paper [14], which
has been extended with a detailed description of the proposed
residual block and the full architecture ERFNet, along with an
extended set of experiments.

II. RELATED WORKS

ConvNets were initially designed for image classification
challenges, which consist in predicting single object categories
from images. Long et al. [5] (FCN) first adapted known clas-
sification networks (e.g. VGG16 [15]) to perform end-to-end
semantic segmentation by making them fully convolutional
and upsampling the output feature maps. However, directly
adapting these networks results in coarse pixel outputs (and
thus low pixel accuracy) due to the high downsampling that
is performed in the classification task to gather more context.
To refine these outputs, the authors propose to fuse them with
activation maps from shallower layers using skip connections.
Kendall et al. [16] (SegNet) proposed to upsample the features
with a large decoder segment that performs finer unpooling by
using the indices of the encoder’s max-pooling blocks. Other
works like [17] (Deeplab) proposed to refine the coarse output

by using Conditional Random Fields (CRF), and works like
[18] (CRFasRNN) proposed to integrate them inside the con-
volutional architecture. However, relying on algorithms like
CRF to refine segmentation highly increases the computational
overload of the architecture.

Recent works have achieved top segmentation accuracy
by adapting ResNets [6] to the segmentation task. The core
element of these networks is a residual block that incorporates
identity connections from the input to output to alleviate
the degradation problem present in networks with a large
number of layers. Experiments based on ResNet demonstrated
that a thiner (simpler layers) but deeper (using more layers)
architecture with residual connections achieved state-of-the-
art accuracy and can outperform more complex designs like
VGG16 [15], that use regular convolutional layers without skip
connections.

The work in [8] (DeepLab2) combines a ResNet-101 with
spatial pyramid pooling and CRF to reach state-of-the-art
segmentation accuracy. Lin et al. [9] (RefineNet) propose a
multi-path refinement network that exploits all the information
available along the downsampling process to enable high-
resolution predictions using long-range residual connections.
Pohlen et al. [10] (FRRN) propose a ResNet-like architecture
that combines multi-scale context with pixel-level accuracy
by using two processing streams, one that is processed at
full resolution and another that performs downsampling opera-
tions. Ghiasi et al. [19] (LRR) propose a complex architecture
that constructs a Laplacian pyramid to process and combine
features at multiple scales. All these approaches achieve top
accuracy but the required resources make them extremely
expensive in terms of resources in modern GPUs, becoming
unfeasible for IV applications. The recent ENet [11] sits on the
opposite side in terms of efficiency, in which authors also adapt
ResNet to the segmentation task, but make important sacrifices
in the network layers to gain efficiency at the expense of a
lower accuracy compared to the other approaches.

III. ERFNET: PROPOSED ARCHITECTURE

In this section, we introduce our efficient architecture for
real-time semantic segmentation. Our proposal aims at solving
an efficiency limitation that is inherently present in commonly
adopted versions of the residual layer, which is used in several
recent ConvNets that achieve top accuracy in classification [6]
and segmentation tasks [8][20][11]. By solving this limitation,
we manage to develop a semantic segmentation architecture
that makes a much more efficient use of parameters compared
to existing architectures, allowing our network to obtain a very
high segmentation accuracy while keeping top efficiency in
order to satisfy the constraints present in IV applications.

A. Factorized Residual Layers

Residual layers [6] have the property of allowing convolu-
tional layers to approximate residual functions, as the output
vector y of a layer vector input x becomes:

y = F(x, {Wi}) +Wsx (1)
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where Ws is usually an identity mapping and F(x, {Wi})
represents the residual mapping to be learned. This residual
formulation facilitates learning and significantly reduces the
degradation problem present in architectures that stack a large
amount of layers [6]. The original work proposes two instances
of this residual layer: the non-bottleneck design with two 3x3
convolutions as depicted in Fig. 2 (a), or the bottleneck version
as depicted in Fig. 2 (b). Both versions have similar number
of parameters and almost equivalent accuracy. However, the
bottleneck requires less computational resources and these
scale in a more economical way as depth increases. Hence, the
bottleneck design has been commonly adopted in state-of-the-
art networks [6][8][20][11]. However, it has been reported that
non-bottleneck ResNets gain more accuracy from increased
depth than the bottleneck versions, which indicates that they
are not entirely equivalent and that the bottleneck design still
suffers from the degradation problem [6][7][21].

We propose to redesign the non-bottleneck residual module
in a more optimal way by entirely using convolutions with 1D
filters (Fig. 2 (c)). As demonstrated in [22], any 2D filter can
be represented by a combination of 1D filters in the following
way. Let W ∈ RC×dh×dv×F denote the weights of a typical
2D convolutional layer, where C is the number of input
planes, F is the number of output planes (feature maps) and
dh×dv represents the kernel size of each feature map (typically
dh ≡ dv ≡ d). Let b ∈ RF be the vector representing
the bias term for each filter and f i ∈ Rdh×dv

represent the
ith kernel in the layer. Common approaches first learn these
filters from data and then find low-rank approximations as
a post-processing step [23]. However, this approach requires
additional fine tuning and the resulting filters may not be
separable. Instead, [24] demonstrates that it is possible to relax
the rank-1 constraint and essentially rewrite f i as a linear
combination of 1D filters:

f i =

K∑
k=1

σi
kv̄

i
k

(
h̄ik
)T

(2)

where v̄ik and
(
h̄ik
)T

are vectors of length d, σi
k is a scalar

weight, and K is the rank of f i. Based on this representation,
Alvarez et al. [22] propose that each convolutional layer can
be decomposed with 1D filters that can additionally include
a non-linearity ϕ(·) in between. Thus, the i-th output of a
decomposed layer, a1i can be expressed as a function of its
input a0∗, in the following way:

a1i = ϕ

(
bhi +

L∑
l=1

h̄Til ∗

[
ϕ

(
bvl +

C∑
c=1

v̄lc ∗ a0c

)])
(3)

where, L represents the number of filters in the intermedi-
ate layer, and ϕ(·) can be implemented with ReLU [4] or
PReLU [25]. The resulting decomposed layers have intrinsi-
cally low computational cost and simplicity. Additionally, the
1D combinations improve the compactness of the model by
minimizing redundancies (as the filters are shared within each
2D combination) and theoretically improve the learning ca-
pacity by inserting a non-linearity between the 1D filters [22].
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Fig. 2. Depiction of the two residual layers originally proposed in [6] (Non-
bottleneck and Bottleneck), and our proposed design (Non-bottleneck-1D).
w represents the number of feature maps input to the layer, internally reduced
by 4 in the bottleneck design. In the convolutional blocks, “d1×d2, f” indicate
their kernel sizes (d1,d2) and number of output feature maps (f).

Considering an equal kernel size d for simplicity, it is trivial
to see that the decomposition reduces W2D ∈ RC×d×d×F

of any 2D convolution into a pair of W1D ∈ RC×d×F ,
resulting the equivalent dimensions of each 1D pair in dim =
2× (C × d× F ). Therefore, this factorization can be ap-
plied to reduce the 3x3 convolutions on the original residual
modules. While larger filters would be more benefited by
this decomposition, applying it on 3x3 convolutions already
yields a 33% reduction in parameters and further increases its
computational efficiency.

By leveraging this decomposition, we propose a new imple-
mentation of the residual layer that makes use of the described
1D factorization to accelerate and reduce the parameters of the
original non-bottleneck layer. We refer to this proposed mod-
ule as “non-bottleneck-1D” (non-bt-1D), which is depicted in
Fig. 2 (c). This module is faster (as in computation time)
and has less parameters than the bottleneck design, while
keeping a learning capacity and accuracy equivalent to the
non-bottleneck one. Table I summarizes the total dimensions
of the weights on the convolutions of every residual block,
comparing original ones with our proposed 1D factorizations.
Both non-bottleneck and bottleneck implementations can be
factorized into 1D kernels. However, the non-bottleneck design
is clearly more benefited, by receiving a direct 33% reduction
in both convolutions and greatly accelerating its execution
time. As demonstrated in our experiments, this acceleration
even makes it faster than the bottleneck design, whose original
purpose according to [6] was to accelerate training time.

Although the focus of this paper is the segmentation task,
the proposed non-bottleneck-1D design is directly transferable
to any existing network that makes use of residual layers,
including both classification and segmentation architectures.
Additionally, this design facilitates a direct increase in the
“width” (seen as the number of filters or of feature maps
computed), while keeping at a minimum the computational
resources. Increasing width has already been proven effective
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TABLE I
COMPARISON OF WEIGHT SIZES BETWEEN ORIGINAL RESIDUAL BLOCKS

AND OUR PROPOSED 1D DESIGN (#FM = NUMBER OF FEATURE MAPS
RECEIVED AT MODULE INPUT (EXT) AND COMPUTED INTERNALLY (INT)

Residual block #ext-fm (#int-fm) #Weights
bottleneck 256 (64) 69K
non-bottleneck 64 (64) 73K
bottleneck-1D 256 (64) 57K
non-bottleneck-1D 64 (64) 49K

in classification-aimed residual networks [7][21]. The segmen-
tation architecture proposed in the next section demonstrates
that dense prediction tasks like semantic segmentation can also
benefit from the increased width, while remaining computa-
tionally efficient due to the proposed 1D factorization.

B. Architecture design

In this work, our main motivation is to obtain an architecture
that gets the best possible trade-off between accuracy and
efficiency. With this target in mind, we followed the current
trend of using convolutions with residual connections as the
core elements of our architecture, in order to leverage their
success in classification and segmentation problems. However,
as stated in the previous section, the commonly used residual
layers inherited some limitations in terms of learning capacity
and efficiency, which we aimed to minimize with our proposed
non-bottleneck-1D (non-bt-1D) layer. This novel block, that
leverages residual connections with factorized convolutions
and combines the strengths of bottleneck and non-bottleneck
designs, is the core of our architecture. Our network is de-
signed by stacking sequentially the proposed non-bt-1D layers
in a way that best leverages their learning performance and
efficiency.

Our architecture is fully depicted in Table II. We follow an
encoder-decoder architecture like SegNet [16] and ENet [11].
Contrary to architectures like FCN [5], where feature maps
from different layers need to be fused to obtain a fine-grain
output, our approach follows a more sequential architecture
based on an encoder segment producing downsampled feature
maps and a subsequent decoder segment that upsamples the
feature maps to match input resolution. Long-range skip
connections between the encoder and the decoder have been
used to improve accuracy in other works like [26]. However,
our architecture does not include these long-range skip connec-
tions as we did not obtain any empirical improvement. Fig. 1
contains a depiction of the feature maps generated by each of
the blocks in our architecture, from the RGB image (encoder’s
input) to the pixel class probabilities (decoder’s output).

The layers from 1 to 16 in our architecture form the encoder,
composed of residual blocks and downsampling blocks. Down-
sampling (reducing the spatial resolution) has the drawback
of reducing the pixel precision (coarser outputs), but it also
has two benefits: it lets the deeper layers gather more context
(to improve classification) and it helps to reduce computation.
Therefore, to keep a good balance we perform three downsam-
plings: at layers 1, 2 and 8. Our downsampler block, inspired
by the initial block of ENet [11], performs downsampling by
concatenating the parallel outputs of a single 3x3 convolution

TABLE II
LAYER DISPOSAL OF OUR PROPOSED NETWORK (ERFNET). “OUT-F”:

NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT. “OUT-RES”: OUTPUT
RESOLUTION FOR AN EXAMPLE INPUT SIZE OF 1024X512.

Layer Type out-F out-Res

E
N

C
O

D
E

R

1 Downsampler block 16 512x256
2 Downsampler block 64 256x128

3-7 5 x Non-bt-1D 64 256x128
8 Downsampler block 128 128x64
9 Non-bt-1D (dilated 2) 128 128x64
10 Non-bt-1D (dilated 4) 128 128x64
11 Non-bt-1D (dilated 8) 128 128x64
12 Non-bt-1D (dilated 16) 128 128x64
13 Non-bt-1D (dilated 2) 128 128x64
14 Non-bt-1D (dilated 4) 128 128x64
15 Non-bt-1D (dilated 8) 128 128x64
16 Non-bt-1D (dilated 16) 128 128x64

D
E

C
O

D
E

R 17 Deconvolution (upsampling) 64 256x128
18-19 2 x Non-bt-1D 64 256x128

20 Deconvolution (upsampling) 16 512x256
21-22 2 x Non-bt-1D 16 512x256

23 Deconvolution (upsampling) C 1024x512

with stride 2 and a Max-Pooling module. ENet uses it only
as the initial block to perform early downsampling, but we
use it in all the downsampling layers that are present in
our architecture. Additionally, we also interleave some dilated
convolutions [27] in our non-bt-1D layers to gather more
context, which led to an improvement in accuracy in our
experiments. This technique has been proven more effective
(in terms of computational cost and parameters) than using
larger kernel sizes. In Table II, for those blocks that are
marked as “dilated”, we change the second pair of 3x1 and
1x3 convolutions for a pair of dilated 1D convolutions. We
also include Dropout [28] in all our non-bt-1D layers as a
regularization measure, although we triplicate its probability
(0.3 in contrast to 0.1 used in ENet), as this yielded better
results in our architecture.

The decoder segment is composed of the layers from 17
to 23. Its main task is to upsample the encoder’s feature
maps to match the input resolution. While SegNet had a
relatively symmetric encoder-decoder shape (i.e. decoder of
equal size to encoder), we follow a similar strategy to ENet
in having a small decoder whose only purpose is to upsample
the encoder’s output by fine-tuning the details. In contrast to
SegNet and ENet, we do not use max-unpooling operation
for the upsampling. Instead, our architecture includes simple
deconvolution layers with stride 2 (also known as transposed
convolutions or full-convolutions). The main advantage of
using deconvolutions is not requiring to share the pooling
indexes from the encoder. Therefore, deconvolutions simplify
memory and computation requirements. In addition, we em-
pirically obtained similar (or slightly better) accuracy.

IV. EXPERIMENTS

We conduct a set of experiments to demonstrate the po-
tential of our factorized residual layers and the high accuracy-
efficiency trade-off of our proposed segmentation architecture.
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A. General Setup

We use the Cityscapes dataset [13], a recent dataset of urban
scenes that has been widely adopted in semantic segmentation
benchmarks due to its highly varied set of scenarios and
challenging set of 19 labeled classes. It contains a train set
of 2975 images, a validation set of 500 images and a test
set of 1525 images. The test labels are not available but it is
possible to evaluate them on an online test server. There are
also available 20K coarsely annotated images that we did not
use in our experiments. We train our models on the train set
uniquely (fine annotations), without using the validation set for
training. All accuracy results are reported using the commonly
adopted Intersection-over-Union (IoU) metric:

IoU =
TP

TP + FP + FN
(4)

where TP, FP and FN are respectively the number of true
positives, false positives and false negatives at pixel level. This
can be calculated for each specific class, or as an average value
for all the 19 classes (Class-IoU) or the 7 categories (Cat-IoU).

All experiments are conducted using the Torch7 frame-
work [29] with CUDA and CuDNN backends. Our model
is trained using the Adam optimization [30] of stochastic
gradient descent. Training is performed with a batch size of
12, momentum of 0.9, weight decay of 2e−4, and we start
with a learning rate of 5e−4 that we divide by a factor of 2
every time that the training error becomes stagnant, in order to
accelerate convergence. The code for training and evaluation
is publicly available at https://github.com/Eromera/erfnet.

B. Comparison of residual layers

To analyze the benefits of our proposed non-bottleneck-1D
block in a known architecture, we experiment by replacing the
different residual layers in an existing segmentation network
(ENet [11]) and training them on the same conditions on the
train set. We equally evaluate the effect of using three different
layer designs as described in Sec. III-A: the bottleneck (bt)
[6], the non-bottleneck (non-bt) [6] and our proposed non-
bottleneck-1D (non-bt-1D) designs. ENet is composed of
layers with the bottleneck design (Fig. 2 (b)), which uses 1x1
convolutions to reduce the number of feature maps computed
internally in the 3x3 convolution by a factor of 4 (relative to
the layer input). Therefore, for a fair comparison, the non-
bottleneck designs should receive 4 times less feature maps
at the layer’s input. We compare this by equally reducing, all
feature maps used in the original network by a factor of 4
with respect to its original value in ENet (denoted with an x).
As a second experiment, we directly replace the bottleneck
design with the non-bottleneck one (which does not internally
reduce feature maps), supposing an effective 4x increase of
the computed feature maps (which is equally comparable to
increasing input features in the bottleneck design by 4x). For
these 6 cases, we train on the Cityscapes train set and evaluate
on the validation set, at a resolution of 512x256.

Results of this experiment are displayed in Table III. Both
Validation (Vl) and Train (Tr) IoU measures are displayed to
better analyze the network learning capacity of the evaluated

TABLE III
RESULTS BY REPLACING LAYERS IN AN EXISTING SEGMENTATION

NETWORK (ENET). #FM: NUMBER OF FEATURE MAPS AT THE BLOCK’S
INPUT. (VL-IOU, TR-IOU): AVG. CLASS-IOU ON THE CITYSCAPES

(VALIDATION,TRAIN) SETS (MAX. VALUE AFTER 200 EPOCHS). #PAR:
NUMBER OF PARAMETERS. FWT: FORWARD PASS TIME IN SECONDS.

Module #FM Vl-IoU Tr-IoU #Par fwt [s]
bt (orig.) x 52.3% 77.7% 626K 0.013
non-bt x/4 49.7% 75.1% 903K 0.009
non-bt-1D x/4 50.1% 74.2% 454K 0.007
bt 4x 55.79% 99.3% 9.89M 0.032
non-bt x 55.43% 98.8% 13.2M 0.027
non-bt-1D x 58.37% 96.3% 6.87M 0.021

Fig. 3. Training and Validation Error during training between epochs 1 and
120, of ENet[11] “bt (original)” compared to replacing the residual layers
with: bt-4x, non-bt and non-bt-1D (ours).

models. The number of parameters (#Par) is calculated as the
total number of weights and biases of each network. “fwt”
is the forward-pass time in seconds for each model. Top side
of the table compares the original ENet version (bt) against
equivalent networks with both non-bt designs (by reducing x/4
the original network feature maps), while bottom side of the
table compares the effect of replacing the bt block with non-bt
versions directly (equivalent to using 4x more feature maps at
the bottleneck’s input). Additionally, Fig. 3 shows the Training
and Validation errors (Loss value used as training criterion)
during training of “bt (original)” compared to replacing the
residual layers with: bt-4x, non-bt and non-bt-1D. For clarity,
only epochs 1-120 are shown, and non-bt (x/4) and non-bt-1D
(x/4) versions are not displayed, as these are not related to the
presented architecture.

Analysis: As seen in Table III and Fig. 3, the higher accu-
racy of the architectures with wider layers (those presented in
the bottom side of the table) demonstrates that computing more
feature maps per layer allows networks to better approximate
the loss functions that they are trying to learn. The extremely
high Tr-IoU (and low train error) achieved by these wider
networks indicates that they have enough capacity to approx-
imate the complex differences between the 19 classes on the
train set with almost perfect accuracy. Therefore, making a
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network wider is an effective way of increasing the learning
capacity of a model. On this regard, our proposed non-
bottleneck-1D design is the most effective choice to increase
capacity of a network with the lowest impact on efficiency.
Switching a bottleneck design to a non-bottleneck increases
parameters by a large factor (4x more filters that results on
an effective 16x increase on the number of parameters). With
the non-bt-1D design, this increase is equivalently done with
a reduced parameter increase of 11x compared to increasing it
with the bottleneck design (33% reduction). This reduction is
even larger compared to the original non-bottleneck design.
Despite of this high increase in parameters, the impact in
computational cost is minimal (only 1.5x slower relative to
the original bottleneck), and much faster than bottleneck and
non-bottleneck versions with increased input features.

On the other hand, the large gap between Training and
Validation errors, and the positive slope of the Val error (after
a certain epoch) in Fig 3 indicates that the wider networks
are using part of the increased capacity to overfit the train set.
Although a similar validation accuracy between non-bt and
non-bt-1D was expected, the results in Table I show a higher
accuracy on the non-bt-1D case. This contrasts with their
slightly lower result on the train set, which might indicate that
the proposed non-bt-1D layers are in fact better at leveraging
the increased learning capacity, by having better regularization.
This property of the 1D factorization was already reported
in [22]. Despite this better regularizing behavior of our pro-
posed layer, the model still overfits, which indicates that the
increased capacity is still not effectively translated into better
accuracy. In the case of ERFNet, we leveraged this fact by
designing an architecture that fully translates the increased
capacity provided by our block into an accuracy improvement.

C. Evaluation of the proposed architecture

To evaluate the potential of our architecture, we measure its
accuracy quantitatively on the widely used Cityscapes dataset.
We train encoder and decoder in separate steps, training
first the encoder uniquely and then attaching the decoder to
continue training the full architecture. To train the encoder
we consider two strategies: “from scratch”, where we only
use Cityscapes images; and “pretrained”, where the weights
are initialized by training the network using a larger dataset
such as ImageNet [31]. In the “from scratch” strategy, we
train the encoder with downsampled (1/8 size) segmentation
annotations from Cityscapes by attaching an extra convolu-
tional layer at the end of the encoder. Once the encoder is
trained, we remove this last layer and attach the decoder to
train the full network (using Cityscapes). In the “pretrained”
strategy, we first adapt the encoder’s last layers to produce a
single classification output by adding extra pooling layers and
a fully connected layer, and then, train the modified encoder
on ImageNet [31] (1000 classes). Once this modified encoder
is trained, we remove the extra layers, attach the decoder, and
train the full network using Cityscapes. On both approaches,
we perform simple data augmentation at training time by doing
random horizontal flips and translations of 0-2 pixels in both
axes. The dataset resolution is 2048x1024, and all accuracy

results are reported at this resolution. We train our model
to perform inference at 1024x512, but the output is rescaled
(by simple interpolation) to the original dataset resolution
for evaluation. Table IV shows the inference results on both
Val and Test sets of Cityscapes for both “from scratch” and
“pretrained” models. Results are shown in IoU for each of the
19 classes and the average Class and Category IoU values.

Analysis: The results displayed in Table IV show that
our architecture achieves an excellent accuracy in all classes,
almost perfect (>90%) on the general classes (road, building,
vegetation, sky, car), while still having a remarkable accuracy
in challenging classes that are easily confused (e.g. wall, fence,
truck, motorcycle). Most errors in the IoU of these challenging
classes are due to confusion between elements in the same
category (e.g. truck vs. bus or traffic light vs. sign), which
explains why the Category IoU is significantly higher than the
Class IoU. Besides, the IoU is a challenging metric because
the small classes greatly affect the overall IoU: on small or
distant objects, a few bad pixels suppose a great part of these
classes, which greatly increases false predictions that affect
IoU. In terms of per-class pixel accuracy (i.e. percentage of
pixels correctly segmented), our experiments report over 95%
mean pixel accuracy on the validation set, which means that
this percentage of pixels has correct predicted labels.

Additionally, the small difference (<2%) between Val and
Test demonstrates that the model generalizes well to large
amount of images like the 1525 images (test set) taken
in different cities and conditions. About the results “from
scratch” and “pretrained”, we reported results on both due
to the growing concern on industry related to models that can
be only trained on a single dataset (e.g. a company’s internal
set of images). Although the transferability of features and
the benefits of pretraining the model on a large dataset like
ImageNet has been demonstrated in the literature [32] and
in our experiments (with higher IoU), the provided results
demonstrate that our model can also reach good accuracy
trained on a single dataset (“from scratch”), without the
need of pretraining on large datasets, which adds training
complexity and may suppose commercial limitations.

D. Comparison to the state of the art

Table V displays the results of our architecture at the
Cityscapes Test server compared to all other state-of-the-art
approaches that are present at the Cityscapes benchmark at the
date of submission, are not anonymous submissions (i.e. have
an associated paper) and use comparable data (i.e. the fine
annotations). “Pretrain” refers to the models that have been
pretrained using external data like ImageNet or Pascal. “fwt”
displays the forward time in seconds evaluated on a single
Titan X (Maxwell). Times are obtained from the benchmark’s
web and “n/a” indicates that this value was not published.
Table VI displays the results on every one of the 19 classes
evaluated on the Cityscapes test set at 2048x1024 for our
architecture compared to the ones that have the fastest reported
speed in the benchmark.

Analysis: This comparison reflects that our architecture
achieves the best available trade-off between accuracy and
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TABLE IV
PER-CLASS IOU (%) RESULTS OF OUR ARCHITECTURE ON THE CITYSCAPES VALIDATION (TOP) AND TEST (BOTTOM) SETS. LIST OF CLASSES (FROM
LEFT TO RIGHT): ROAD, SIDE-WALK, BUILDING, WALL, FENCE, POLE, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY, PEDESTRIAN,

RIDER, CAR, TRUCK, BUS, TRAIN, MOTORBIKE AND BICYCLE. “CLASS”: MEAN IOU (19 CLASSES); “CAT” MEAN IOU (7 CATEGORIES).

ERFNet Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic Class Cat
Scratch (VAL) 97.4 80.6 90.3 55.8 50.1 57.5 58.6 68.2 90.9 61.2 93.1 73.0 53.2 91.8 59.1 70.1 66.7 44.9 67.1 70.0 86.0
Pretrained (VAL) 97.5 81.4 90.9 54.6 54.1 59.8 62.5 71.6 91.3 62.9 93.1 75.2 55.3 92.9 67.0 77.4 59.8 41.9 68.4 71.5 86.9
Scratch (TEST) 97.7 81.0 89.8 42.5 48.0 56.3 59.8 65.3 91.4 68.2 94.2 76.8 57.1 92.8 50.8 60.1 51.8 47.3 61.7 68.0 86.5
Pretrained (TEST) 97.9 82.1 90.7 45.2 50.4 59.0 62.6 68.4 91.9 69.4 94.2 78.5 59.8 93.4 52.3 60.8 53.7 49.9 64.2 69.7 87.3

TABLE V
LIST OF RESULTS IN THE CITYSCAPES TEST SET OF OUR ARCHITECTURE

COMPARED TO OTHER APPROACHES IN THE STATE OF THE ART, AS
REPORTED IN THE ONLINE BENCHMARK OF THE DATASET. “CLA”=CLASS,

“CAT”=CATEGORY, “FWT”= FORWARD PASS TIME.

Network Pretrain Cla-IoU Cat-IoU fwt [s]
RefineNet [9] ImageNet 73.6 87.9 n/a
FRRN [10] - 71.8 88.9 n/a
Adelaide-cntxt [33] ImageNet 71.6 87.3 35+
Deeplabv2-CRF [8] ImageNet 70.4 86.4 n/a
LRR-4x [19] ImageNet 69.7 88.2 n/a
ERFNet (pretrained) ImageNet 69.7 87.3 0.024
ERFNet (scratch) - 68.0 86.5 0.024
Dilation10 [27] ImageNet 67.1 86.5 4.0
DPN [34] ImageNet 66.8 86.0 n/a
Scale inv.+CRF [35] ImageNet 66.3 85.0 n/a
FCN-8s [5] ImN+Pasc 65.3 85.7 0.500
Uhrig et al [36] ImageNet 64.3 85.9 n/a
DeepLab [37] ImageNet 63.1 81.2 4.0
CRFasRNN [18] ImageNet 62.5 82.7 0.700
SQ [12] ImageNet 59.8 84.3 0.060
ENet [11] - 58.3 80.4 0.013
SegNet basic [16] ImageNet 57.0 79.1 0.060
SegNet extended [16] ImageNet 56.1 79.8 0.060

efficiency, obtaining a significantly better accuracy than most
approaches focused on efficiency, while keeping an efficiency
as competitive as the fastest one and being able to run in real-
time on a single GPU. Our architecture ERFNet, achieves a
69.7% Class IoU and a 87.3% Category IoU on the Cityscapes
Test set, which supposes a similar accuracy to the state of the
art, while taking only 24 ms per image on a single GPU, which
makes it one of the fastest networks available.

Compared to top-accuracy networks, ERFNet achieves a
similar accuracy in both class and category IoU, while being
significantly faster. Most of the top-accuracy approaches have
not published the time required to process a forward pass nor
evaluated their efficiency. However, these approaches achieve
top results by highly increasing the complexity and resources
of their networks: RefineNet [9] and FRRN [10] employ large
ResNets-like architectures in multiple pipelines that work with
high resolution feature maps; Deeplabv2 [8] uses a large
ResNet (101-layers) to improve their previous result in the
Deeplab [37] model; And LRR-4x [19] constructs a Laplacian
pyramid that processes and combines features at multiple
scales. In summary, deep ResNets demand high computational
resources (more if they are computed at high resolution),
and using multiple pipelines equals multiple architectures in
parallel, which is also extremely demanding in resources.
Therefore, it can be assumed that these approaches are not
comparable in efficiency to the proposed network, which
achieves the best available trade-off between segmentation

accuracy and computational resources.
Compared to fastest architectures, our network achieves the

second fastest speed while being significantly superior in ac-
curacy. The per-class accuracy values shown in Table VI show
that our architecture achieves the top accuracy by significant
margins on all the 19 evaluated classes, while keeping a similar
speed as the fastest ones. It achieves slight improvements on
the general classes (Road, Sidewalk, Building, Vegetation, Sky,
Car), while obtaining a significant accuracy improvement on
all the challenging classes (Wall, Fence, Pole, Traffic Light,
Traffic Sign, Pedestrian, Rider, Truck, Bus, Train, Motor-
bike and Bicycle). These are challenging because the dataset
contains significantly less training samples (e.g. train/truck
compared to road) or they have more challenging shapes (e.g.
pedestrian vs car). Therefore, our network highly improves on
these because its improved learning capacity allows it to learn
better from the same amount of samples.

E. Computational resources

Table VII displays inference time (forward pass) for differ-
ent resolutions on a single Tegra TX1 (Jetson platform) and
on a single NVIDIA Titan X (Maxwell), compared to other
architectures that had these results available in their papers. All
times on both GPUs are considered using FP16 (half-precision
floating point), although this is only leveraged by the Tegra
TX1 due to GPU-architectural reasons1. For a fair comparison,
the values are displayed on the same set of resolutions as
it was used in their papers (top side of the table). We also
display results on the same aspect ratio as the Cityscapes
dataset (bottom side). The exact values for SegNet, ENet and
SQ are obtained from their papers, while ENet* values were
obtained reproducing their model, in order to display results
in the Cityscapes ratio for an easier comparison.

Analysis: At 640x360, a resolution that is enough to recog-
nize any urban scene accurately, our network achieves over
83 FPS on a single Titan X and over 7 FPS on a Tegra
TX1, an embedded GPU that uses less than 10 Watts at full
load. At 1024x512 (the ratio used in the Cityscapes tests), our
network achieves 24ms (41 FPS) on a Titan X. In summary,
our network achieves a speed that is as competitively fast as
the fastest ones (ENet and SQ), while having a significantly
better accuracy. These inference times demonstrate that it is
possible to run our network in a single GPU to provide real-
time and accurate full-image semantic segmentation. On the

1The Titan X (Maxwell) does not have native FP16 compute support,
so the difference between FP16 and FP32 is negligible in the Titan X
because Maxwell architecture is not able to translate it into an effective speed
improvement. This is not the case for the new Pascal-based Titan X, which
was not used in this work.
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TABLE VI
PER-CLASS IOU (%) ON CITYSCAPES TEST SET FOR ERFNET COMPARED TO THE FASTEST NETWORKS. *CLASSES ARE THE SAME AS IN TABLE IV.

Network Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic Class Cat
SegNet [16] 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 56.95 79.13
ENet [11] 96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.28 80.39
SQ [12] 96.9 75.4 87.8 31.59 35.7 50.9 52.0 61.7 90.9 65.8 93.0 73.8 42.6 91.5 18.8 41.2 33.3 34.0 59.9 59.84 84.31
ERFNet 97.9 82.1 90.7 45.2 50.4 59.0 62.6 68.4 91.9 69.4 94.2 78.5 59.8 93.4 52.3 60.8 53.7 49.9 64.2 69.7 87.3

TABLE VII
INFERENCE TIMES OF FASTEST ARCHITECTURES ON TEGRA TX1 AND TITAN X AT DIFFERENT RESOLUTIONS

Model
NVIDIA TEGRA TX1 (Jetson) NVIDIA TITAN X (Maxwell)

ms fps ms fps ms fps ms fps ms fps ms fps
480x320 640x360 1280x720 640x360 1280x720 1920x1080

SegNet [16] 757 1.3 1251 0.8 - - 69 14.6 289 3.5 637 1.6
ENet [11] 47 21.1 69 14.6 262 3.8 7 135.4 21 46.8 46 21.6
SQ [12] 60 16.7 86 11.6 389 2.6 n/a
ERFNet 93 10.8 141 7.1 535 1.9 12 83.3 41 24.4 88 11.4

512x256 1024x512 2048x1024 512x256 1024x512 2048x1024
ENet* [11] 41 24.4 145 6.9 660 1.5 7 142.9 13 76.9 49 20.4

ERFNet 85 11.8 310 3.2 1240 0.8 8 125.0 24 41.7 89 11.2

embedded GPU, our network also achieves several FPS, which
allows execution in real scenarios like intelligent vehicles.
Although the common practice only considers 30 FPS as real-
time, the provided values must be considered as detections per
second, or times per second that the model provides full-image
segmentation. This means that higher-level algorithms could
already operate in real-time from a decent amount of detec-
tions per seconds, because objects could be tracked between
frames with tracking techniques. Additionally, compression
techniques (e.g. binarization of weights) were not considered
in this work but they will be available in the near future and
will allow further increase in speed.

F. Quality of the segmentation

Fig. 4 shows various examples of segmentation produced
by our architecture ERFNet (d) and ENet (c), compared to
the ground truth (b). These images are from the Cityscapes
validation set.

Analysis: These results demonstrate that our architecture
yields consistent qualitative results for all classes, even at far
distances in the scene. While both networks can accurately
segment the road that is inmediately ahead of the vehicle, ENet
gives much coarser predictions for objects that are more distant
or that require finer accuracy at the pixel level (e.g. pedestrians,
traffic signs). As stated before, the IoU measurement used
in the quantitative results is a challenging measurement that
takes into account the confusion between all classes and aims
to even the impact between small ones (e.g. traffic light)
and large ones (e.g. road), but it does not reflect the fact
that the total pixel accuracy (i.e. percentage of correct pixel
predictions) is over 95%, which can be well appreciated in
the qualitative results. Despite the lower accuracy on specific
challenging classes like “train” or “wall”, the network already
has an excellent accuracy on the main important categories like
“road”, “pedestrians” or “vehicles”. This makes the network
suitable for IV applications like self-driving cars, as it can
already provide accurate and complex scene understanding to
higher level algorithms like navigation.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an architecture that achieves
accurate and fast pixel-wise semantic segmentation. In contrast
to top-accuracy approaches in the state of the art, that develop
complex architectures that are computationally expensive,
and in contrast to the alternative efficient architectures, that
perform significant sacrifices in the network design to gain
efficiency in exchange of accuracy, our approach is focused on
improving the core elements of our architecture: the convolu-
tional blocks. We propose a re-design of the commonly used
residual layers to make them more efficient while retaining a
similar learning performance. While this design can be used in
existing architectures to make them more efficient, we propose
a full architecture that completely leverages its benefits to
reach state-of-the-art segmentation accuracy and efficiency.
Our experiments demonstrate that the resulting architecture
provides an excellent trade-off between reliability and speed,
which makes it suitable for countless IV applications such as
scene understanding in self-driving vehicles, that require both
robustness and real-time operation.

Future works will involve in-depth experiments regarding
the power consumption of the model, compression techniques
(e.g. binarization of weights) for further reduction of the
model’s computational resources, and experiments on different
datasets and images taken on other environments of smart
vehicles (e.g. rural environments and highways).
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(Robótica aplicada a la mejora de la calidad de vida de los
ciudadanos, fase III; S2013/MIT-2748), funded by Programas
de actividades I+D (CAM) and cofunded by EU Structural
Funds. The authors also thank NVIDIA for generous hardware
donations.



9

(a) Input image (b) Ground truth (c) ENet [11] (d) ERFNet (ours)

Fig. 4. Qualitative examples of the segmentation produced by our architecture ERFNet (d) compared to the ground truth labels (b) and ENet [11].
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