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Abstract— The goal of this paper is to study a noisy WiFi In addition, these techniques can be used in the same way in
range-only sensor and its application in the development of gutdoor environments.
localization and mapping systems. Moreover, the paper shows \ynije the UWB systems achieve a high accuracy in both
several localization and mapping techniques to be compared. . . f
These techniques have been applied successfully with otherSyStéms (localization and mapping), by mean of adding UWB
technologies, like ultra-wide band (UWB), but we demonstrate reference beacons in the environment, WiFi technology uses
that even using a much more noisier sensor these systems car802.11b/g network infrastructure to estimate a devicetjoosi
be applied correctly. We use two trilateration techniques and a jithout using additional hardware. Unfortunately, sigpedp-
particle filter to develop the localization and mapping Systems qaiqn s affected by reflection, refraction and diffrantin
based on the range-only sensor. Some experimental results and. . . ! -
conclusions are presented. indoor environments. This effect, known as multipath dffec
turns the received SL into a complex function of the distance
. INTRODUCTION To solve this problem, several localization systems use a
For most outdoor applications, i.e. surveillance tasks grevious map and then, in the estimation phase, the received
vehicle navigation systems, Global Positioning SystemSJGPsignal measure from each Access Point (AP) is compared with
[1] provide enough accuracy. On the contrary, when GRBe map to obtain the estimated position [12] [13] [14]. This
receiver is in urban environments with high buildings oetre last technique is not recommended when the environment is
the signal can suffer multipath fading or even Line-Of-$igtdynamic or when its size increases.
(LOS) blockage. In addition, it is important to remark th&®&  In this work, we use the combination of the WiFi signal
signal is not strong enough to penetrate inside buildirtg=n t measure and a propagation model to obtain a range-onlyrsenso
this problem discards this technique to use it like an indogat can be used both indoor and outdoor. We compare two
localization system. deterministic and one probabilistic techniques to obthia t
Vehicle navigation systems use a combination of a prevaccuracy of all of them. These techniques are used in the same
ous map with localization information to guide the vehiclgvay for localization and mapping with slightly modificatin
through a mesh of connected ways. Maps are usually obtairEls work represents a previous step before obtaining a WiFi
in a semi-autonomous way process known as mapping [Pdnge-only SLAM system.
Mapping is based on sensor observations which extract mainrhe rest of the paper is organized as follows: section 2
features of the environment and allow to represent them indRows propagation models and WiFi signal variations; eacti
a topolocical or metric map. 3 shows the localization with propagation model technigues
Autonomous localization and mapping are two problemgection 4 shows the mapping process; section 5 describes the
with similar features. It is not possible to built a map if theesults obtained by WiFi localization and mapping systems;

localization process does not work well, and it is imposstbl and finally, section 6 shows some conclusions and future
locate a device with high precision without an accurate maggrks.

The SLAM(Simultaneous Localization And Mapping) tech-

nigues [3] [4] are used to solve these problems simultargous 1. WIFI RANGE-ONLY SENSOR
because the uncertainty of both processes can be reduced by
doing localization and mapping at the same time . This section provides an introduction about the WiFi signal

Several systems for localization and mapping have bemeasure and its application as a range-only sensor. It is
proposed and successfully deployed for indoor environmaenimportant to highlight that WiFi technology works at 2.4Ghaz
These systems are based on: infrared sensors [5], compgteser frequency to water resonant one, then it can be affect
vision [6], ultrasonic sensors [7], laser [8] or radio freqay by several variations.

(RF) [9] [10] [11] [4]. Within the last group we can find lo- In a previous work [15] authors have throughly studied the
calization systems that use WiFi and Ultra Wide Band (UWBjain variations that affect to WiFi signal. We identified five
signal level (SL). In order to estimate the vehicle or mamain variations that can appear when working with robots.
feature location, these systems measure the signal ¢trandt Among this five ones, there are three main variations to take
then apply a deterministic (i.e. trilateration) or probahic into account when we want to develop WiFi range-only sensor
(i.e. particle filter) algorithm to infer the estimated pgami. localization and mapping systems:



« Temporal variations: when the robot is standing at aA. Spherical trilateration

fixed position, the signal strength measure can vary over.
time. SL variations can be up to 2 dBm. These variatio
are usually due to changes in the physical environm
such as people in movement.

Small-scale variations these variations occur when the *°
robot moves in a small distance, under the wavelength

As a result, there are significant changes in the average’
received SL. For the 802.11b networks working at the

This technique estimates the robot position using the APs
rbsositions and the distances between the mobile and the APs.
“Phe algorithm is based on the next constraints:

The n APs positions are known, and are placed in the
coordinateSx1,y1, 21), (T2, Y2, 22)s - (T, Yns 2n)-

The robot position is defined ds..,y., ), and it is the
position to estimate by the algorithm.

The distances between the robot and each AP are known

2.4 GHz rangey is 12.5 cm. This kind of variations are *
generated by multipath effect. Small-scale variations in-
troduce a high uncertainty in the system. These variationsThe trilateration elements are showed in Figure 1.
make difficult to estimate the device position because
they can be up to 10 dBm for positions around the same
location.

« Large-scale variations signal strength varies over a long
distance due to attenuation of the RF signal [16]. Large-
scale variations can be used to estimate the distance be-
tween the robot and reference positions (APs locations).

A propagation model [17] is an empirical mathematical
formulation for the characterization of radio wave propama
as a function of frequency, distance and other conditions.

A single model is usually developed to predict the behavior The algorithm is based on these constraints to estimate the

of propagation for all similar links under similar constr&s. gpot position using the equations (2), (3), (4) and (5).
Created with the goal of formalizing the way in which the

radio waves are propagated from one place to another, su%h ) ) )

models typically predict the path loss trough link or thé&: = (r —@i)" + (yr —¥i)" + (2r — 2;)" =

effective coverage area of a transmitter. 22 b y? 422 el by 4 2R - 2wy — 2y, — 2202 — T
In our system, we use a propagation model to estimaie _ 1,2,..n

T1,72y...Tn.
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Fig. 1. Trilateration elements
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the distance between the APs and the robot through received )
SL. Our work is based on Hata-Okumura propagation model,
which is studied in [18]. The equation (1) describes this @lod  Wheret and S? are obtained as shown in (3):

d— 10PTX—PRX+GTX+GRI§H—XQ+201og,\—2ulog4w (1) t = x% + yg T ZE (3)

202 42 4 2
Where: Si=wityt

« d: is the distance between transceiver and receiver.
o Prx andPgx: are the transceiver and the receiver power

It is possible to show the equations using the matrix way:

(dBm).
o Grx andGrx: are the transceiver and receiver antenna AX =B 4
gain (dBi).
« X,: represents the error. It is a normal random variable
with standard deviatiom. z
« \: is the wavelength (12.5 cm). "
« n: denotes influence of walls and other obstacles. In X = ZT
outdoors environments with LOS it is defined in the range tr
from 2 to 3. In [19], the authors determine that the vari-
ablen must be approximately 2 in outdoor environments. 201 2y 2z
A= 2.]32 2y2 22’2 -1 (5)
l1l. L OCALIZATION WITH RANGE-ONLY SENSORS 2Tn 2Yn 2zp 1
Localization is the technique that estimates the positibn o Sz - T;
a mobile device using reference positions and the distance B — Sy =73
provided by the range-only sensor. In this section we descri s
the three techniques that we have compared. S5 =73



B. Spherical trilateration. Gauss-Newton algorithm The system can be solved by least squares and it is possible

This method is based on the same elements than #Reobtain the algorithm increases according to equatio. (12
previous trilateration (Figure 1). Moreover, a random posi
is used as initial one to estimate the robot positionp =

A AX = (ATA)'ATB (12)
('rTv Yr, ZT)' - .

The distance between the robot and the’; is defined  Finally, the estimated robot position is updated using the
according to equation (6). previousemp and the new increase (equation (13)).
Ti:\/(xi_xr)2+(yi_yr)2+(2i—27)2 i=1...n

(6) empy1 = empy — AXy, (13)

Now, we can define the distance between the and the  The process continues running until the increagses
emp (7). become acceptable by the system.

C. Particle filter

' '(7;) The particle filter is a sequential Monte Carlo algorithre, i.

a sampling method to approximate a distribution that uses it

This method is based on equations (6) and (7) and Gaugsmporal structure. A “particle representation” of distrions
Newton algorithm. This method is used to solve non-lineg ysed. In particular, we will be concerned with the distrib
least squares problems like this. It makes possible to nimeim o P(X,4|20.¢) Where X,; = (2,4, yrs,0r¢) is the observed

a sum of squared function values through an iterative Waynot state at time, andzo. = (r1, 72, .., m,) is the sequence
(equation (8)). of observations from time to timet. The transition and sensor
models, P(X,+|zo.t) are represented using a collection /gf
5o s ~ . - LA s ighted samples or particle$X(” N wherer!? is
F(&r, 9r, 2r) = Ty — 7T 2= iy Yr, 2p 2 8 weig ‘ rt s Nt Si=1 t
(Frst20) Z( ) ; e G 201 (8) the weight of particIeX,(? (equation (14)).

Py = \/(Iz - i‘r)Z + (yz - ﬁr)Q + (ZZ - 27’)2 i=1.

i=1
Where f; is obtained as shown (9): ,
P(Xyt|20:t) = Zﬂ—tfl(;(Xrt - Xr(?,l) (14)

J— . A )2 .4 )2 5 )2 _ .
fi= V@i= 2+ = 0 4+ (@ = 2)2 =i ) The particles are propagated using the movement model
Deriving the equation (9) respectto,, §,, Z,) itis possible p(X,,|X,; 1,a;) and the verisimilitudeP(z;| X,).
to obtain the equation (10). Firstly, the particles are uniformly distributed at thetsta
space. Next, the particles are updated by the previousnactio

OF " 0f; a:—1, the actual observation; and the movement model.
o7, = ZZfi%? Finally, the updated particles are weighted, so the density
’j} probability function of the particles represents the eated
oF _ 2Zf'%' (10) robot position.
op &g,
an IV. MAPPING WITH RANGE-ONLY SENSORS
3{7 — QZ fi%; Mapping is the process that makes possible to estimate the
0z, —~ 0% APs positions using the distance between them and the robot.
Equation (10) can be showed using the matrix way: First of all, to map the positions of the reference is needed t
AX = B (equation (11)). know the trajectory of the mobile, and then estimate the APs
A positions using this knowledge. This problem is similarhe t
Aw localization one but with a different point of view, we sugpo
AX = Ay that the robot position is known and static at different step
' o _ e : and then it seems like the APs are moving around it.
Tyr—2T1 Yr—Y1 Zr—Zz1
Grten)  Gun) (Beien) A. Spherical trilateration and Gauss-Newton Sphericdhbtri
A 72 ) 72 eration
: : : (11) These algorithms are used on mapping in a similar way
(-ir;—xn) (z)rf—yn) (2’{2”') than trilateration algorithms are used on the localizatibime
(7 " ") " " main difference between both is the previous knowledge.
(fl B rl) Localization algorithms know the APs location and estimate
B = 2702 the robot position, however, mapping algorithms know the
: robot trajectory and they estimate the APs position. Figure

(Frn —Tn) 2 shows the elements used to estimate the position of one AP.
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Fig. 2. Mapping elements

Finally, the algorithm is based on the equations (2), (3), (4
and (5), swapping referende;, y;, z;) by beacon(zy, yp, )
positions.

Work [20] puts forward some situations that can make the (c) 1 hypothesis
system fails:

« When the reference positions are align.
« If the beacon position and the reference are on the same
plane. Figure 3 shows the particle filter process, at the beginning

« If the reference position is over one reference. there are 360 possible positions (one per angle) where the

According to these constraints, close positions of the rob8P can be. Then, the possible positions are less and usually
trajectory are useless to map the APs position because #émey tere are only 2 possible positions: the real AP position and
be aligned. Moreover, it is recommended to design a “zigzatjte "mirror” one. Finally, only one hypothesis is followedd
path for the robot to avoid the alignment of the referendbis position usually corresponds with the real AP position

Fig. 3. Mapping with particle filter

positions. It is important to highlight that this algorithm does not
. _ need to collect a high number of samples to estimate the AP
B. Particle filter position. It is a online process and the accuracy is impgvin

A particle filter like 11I-C is also used to map the APs. Thévhen the time is increasing.
main difference between both particle filters is the origota
In this case, only a measurement of distance is obtained and V. IMPLEMENTATION AND RESULTS
then the AP can be everywhere within a circumference. To

. : . e This section describes some implementation features and
adapt the previous filter for mapping some modifications ha¥ﬁe experimental results obtained W?th the designed tests
been performed. These modifications are: '

» Measurement vectots are the distances between the AE _ Test-Bed Environment
and the robot. The measures depend on the robot location.

« The verisimilitude P(z;|X,;) uses a vectorial space to The environment to test the localization and mapping sys-
represent the observations. Thus, we use a circumferet@@s is established outdoor and close to the Polytechniedbch
equation based on a vectorial space. It is written in parat the University of Alcéd (UAH).
metric form using trigonometric functions as is shown in The environment dimensions are approximately 20x20 me-
equation (15). Then, 360 observations (one per amjyle tres. Moreover, three APs are used, these APs are located
are generated. These observations form a circumfere@tecoordinates (x, y, z)5.35, —2.36, 1.70), (14, —2.36,1.67),
with radius equal to the distance between the AP and thE5.10,7.4,1.61). The WiFi antenna is placed at the mobile
robot. robot at 0.71 metres height. The robot trajectory is a pseudo

rectangle, this path is showed in Figure 4. The localization
process in this work is calculated in 3D, and it has been

P = Xyo + r(cos ¢,sin §) (15) necessary to convert the measurements from 3D to 2D to
simplify the problem.

Where: The tests have been performed with a laptop using an
— X, is the actual robot position. Orinoco Gold PCMCIA card, Linux Kubuntu 8.04, Wireless

— r is the radius or the distance between the AP angols v29 and Matlab 2008a. Signal level measure is obtained
the robot. by the WiFi interface installed in the laptop. This intedac

— ¢ is the angle. scans the APs close to the device. Samples are got at 4 Hz,

P are the observed AP coordinates,, y,). which is the highest frequency that the interface supports.
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TABLE | Fig. 5. Large-scale variations on propagation model

WIFI RANGE ONLY SENSOR SAMPLES

TABLE II
PROPAGATION MODELS ERROR

d (m) 2 4 8 12 16 20

LSL (::m) -443.40 -535.25 —615.44 —665.00 -747.24 —787.04 Distance (m | 2 3 2 8 e 5T 20

751 (dBm) - - - - - _ EM error (m) | 0.28 | 0.01 | 0.00 | 0.29 | 3.01 | 0.83 | 0.44

HOM error (m) | 0.35 | 1.08 | 1.41 | 7.01 | 19.08 | 2.09 | 0.16

B. WiFi range only sensor

To study the WiFi range only sensor a real test has begyhest error of the three algorithms. On the other hand,
performed, which consists of measuring the signal level @fayss-Newton obtains better results, the mean error is 6.26
different distances. The collected samples are processled getres and the error is more constant than the trilateratien
culating the mean and the variance of them. Table | showgth algorithms estimate the robot position without presio
the mean and the variance values of the samples for eggfdrmation, which decreases the accuracy, but these can be
distance. The mean values shows how the SL decreases WiRd with a low computational cost. However, the particterfil
the diStanCE, however, the variance increases with thamdist uses the previous information to estimate the position todav
A high variance in the samples, produced by the noise, makggh changes in the error. Then, it makes the particle fitter t

difficult to estimate a distance from a SL value. most accurate algorithm, it gets a mean error of 3.16 metres
Based on Table | values, and paying attention to large-scalgd a maximum error of 9.24 metres.

variations it is possible to estimate a propagation modglrié
5 shows an estimated propagation model and a comparisdbnMapping results

with Hata-Okumura model (HOM) using a set of training data. The mapping techniques obtain the following results: tri-

The propagation model has been estimated obtaining the mgan o algorithm gets the smallest mean error, 9.7 @aetr

SL of ea_ch ol_lstance and fitting a polynorryal function usin ing 125 reference positions to estimate the AP positiath W
a approximation by least squares. The estimated model (E

! L ower number of 100 positions it is impossible to estimate
obtains better results than HOM because it fits perfectly tl?ﬁe position P P

training data, however, HOM is a generic model and it can beGauss—Newton algorithm uses 125 robot positions to obtain

ad_?plt)led Itlo r;]ew e?r\]/lronmer;ts. h dist In both deﬁ,lﬁmean error of 10.58 metres, this error is higher than the
aple 1l shows the error for €ach distance. In both mo lateration one. This method obtains better results iressd

the grrlijr 'tendst tot [nctrﬁasgovx/llth tthlez dlst?nce..tThlz errtor dRtuations but in some occasions it finds a local minimum and
specially important in the a MELres, 11 1S due 10 ga it does not obtain the optimal solution. Moreover, &abl

high noise in the training samples. H_OM does nqt fit well tﬂ/ shows that this method obtains good results using only
the training samples when they contain a huge noise, hoywever

the EM obtains better results in this case. It is important to

remark that in other cases the samples can contain moresor les TABLE 11l
noise and the EM will not obtain good results. Then, the EM LOCALIZATION ERROR
is a better choice in an under control environment, however,

the HOM is more general and adaptable to new environments. Method | Trilateration | Gauss-Newton| Particle filter
. Mean (m) 9.04 6.26 3.16
. Localization resul
C. Localization results Max (m) 23.48 22.13 9.24
Localization results are showed in Table lll. Trilateratio Min (m) 0.56 01 0.31

algorithm gets a mean error of 9.04 metres, which is the



TABLE IV
GAUSS-NEWTON ERROR

(2]

Num_pos 5 10 30 50 100 | 150 [3]
Mean (m) | 15.92 | 15.80 | 15.49 | 13.48 | 14.68 | 9.16
Max (m) | 27.10 | 36.01 | 41.47 | 25.40 | 16.82 | 9.40 [4]

Min (m) 1.99 6.40 5.09 6.13 | 11.23| 8.92

TABLE V [5]
PARTICLE FILTER ERROR

(6]

Particles | 100 | 1000 | 1500 | 2500 | 3500 | 4000
Mean (m) | 5.50 | 4.41 | 4.10 | 3.95 | 3.62 | 3.51 (7]

(8]

50 robot positions to estimate the AP location. Then, it is
necessary to spend only 12 seconds to localize the AP positio
Both methods are affected by the robot trajectory, thiégl
problem was previously commented and we have obtaingd]
better results using other robot paths in simulation mode.
Finally, the particle filter has been tested varying the nemb
of particles in 100 experiments. Table V shows the meat]
error obtained in 100 experiments, it has been obtained from
the moment that filter converges to the real beacon position.
Sometimes, the filter converges to the mirror position due ]
the high noise, this noise is approximately 10 dBm and it can
introduce an error of 10 metres in the observation. Then, i
several executions the observation can be near to the mirror
position. Results show an error that tents to decrease. The
smallest error, 3.51 metres, was obtained using 4000 tmtic[M]

VI. CONCLUSIONS AND FUTURE WORKS [15]

In this work has been presented a WiFi range-only sensor
and its application to localization and mapping system. |ig
the first time, we have analyzed the main variations of this
sensor and we have proposed to use a propagation mOdeﬁ.ﬁ?
obtain the distance between the robot and a certain referenc
positions (APs). Three different techniques have been com-
pared to localization and mapping process. Each technic{ﬁ@
has been configured and performed to obtain the best possible
accuracy. We have obtained an accuracy of 3.16 metres to
localize the mobile and 3.51 metres to map the environméht!
references. In the future, we have the intention of imprgvin
the localization and mapping systems using a WiFi ranggo]
only SLAM algorithm and using an Inertial Measurement Unit
(IMU) to improve the movement model and then the accuracy
of the system.
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