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Abstract— The goal of this paper is to study a noisy WiFi
range-only sensor and its application in the development of
localization and mapping systems. Moreover, the paper shows
several localization and mapping techniques to be compared.
These techniques have been applied successfully with other
technologies, like ultra-wide band (UWB), but we demonstrate
that even using a much more noisier sensor these systems can
be applied correctly. We use two trilateration techniques and a
particle filter to develop the localization and mapping systems
based on the range-only sensor. Some experimental results and
conclusions are presented.

I. I NTRODUCTION

For most outdoor applications, i.e. surveillance tasks or
vehicle navigation systems, Global Positioning System (GPS)
[1] provide enough accuracy. On the contrary, when GPS
receiver is in urban environments with high buildings or trees,
the signal can suffer multipath fading or even Line-Of-Sight
(LOS) blockage. In addition, it is important to remark that GPS
signal is not strong enough to penetrate inside buildings, then
this problem discards this technique to use it like an indoor
localization system.

Vehicle navigation systems use a combination of a previ-
ous map with localization information to guide the vehicle
through a mesh of connected ways. Maps are usually obtained
in a semi-autonomous way process known as mapping [2].
Mapping is based on sensor observations which extract main
features of the environment and allow to represent them into
a topolocical or metric map.

Autonomous localization and mapping are two problems
with similar features. It is not possible to built a map if the
localization process does not work well, and it is impossible to
locate a device with high precision without an accurate map.
The SLAM(Simultaneous Localization And Mapping) tech-
niques [3] [4] are used to solve these problems simultaneously,
because the uncertainty of both processes can be reduced by
doing localization and mapping at the same time .

Several systems for localization and mapping have been
proposed and successfully deployed for indoor environments.
These systems are based on: infrared sensors [5], computer
vision [6], ultrasonic sensors [7], laser [8] or radio frequency
(RF) [9] [10] [11] [4]. Within the last group we can find lo-
calization systems that use WiFi and Ultra Wide Band (UWB)
signal level (SL). In order to estimate the vehicle or map
feature location, these systems measure the signal strength and
then apply a deterministic (i.e. trilateration) or probabilistic
(i.e. particle filter) algorithm to infer the estimated position.

In addition, these techniques can be used in the same way in
outdoor environments.

While the UWB systems achieve a high accuracy in both
systems (localization and mapping), by mean of adding UWB
reference beacons in the environment, WiFi technology uses
802.11b/g network infrastructure to estimate a device position
without using additional hardware. Unfortunately, signalprop-
agation is affected by reflection, refraction and diffraction in
indoor environments. This effect, known as multipath effect,
turns the received SL into a complex function of the distance.
To solve this problem, several localization systems use a
previous map and then, in the estimation phase, the received
signal measure from each Access Point (AP) is compared with
the map to obtain the estimated position [12] [13] [14]. This
last technique is not recommended when the environment is
dynamic or when its size increases.

In this work, we use the combination of the WiFi signal
measure and a propagation model to obtain a range-only sensor
that can be used both indoor and outdoor. We compare two
deterministic and one probabilistic techniques to obtain the
accuracy of all of them. These techniques are used in the same
way for localization and mapping with slightly modifications.
This work represents a previous step before obtaining a WiFi
range-only SLAM system.

The rest of the paper is organized as follows: section 2
shows propagation models and WiFi signal variations; section
3 shows the localization with propagation model techniques;
section 4 shows the mapping process; section 5 describes the
results obtained by WiFi localization and mapping systems;
and finally, section 6 shows some conclusions and future
works.

II. W IFI RANGE-ONLY SENSOR

This section provides an introduction about the WiFi signal
measure and its application as a range-only sensor. It is
important to highlight that WiFi technology works at 2.4Ghz, a
closer frequency to water resonant one, then it can be affected
by several variations.

In a previous work [15] authors have throughly studied the
main variations that affect to WiFi signal. We identified five
main variations that can appear when working with robots.
Among this five ones, there are three main variations to take
into account when we want to develop WiFi range-only sensor
localization and mapping systems:



• Temporal variations: when the robot is standing at a
fixed position, the signal strength measure can vary over
time. SL variations can be up to 2 dBm. These variations
are usually due to changes in the physical environment
such as people in movement.

• Small-scale variations: these variations occur when the
robot moves in a small distance, under the wavelengthλ.
As a result, there are significant changes in the average
received SL. For the 802.11b networks working at the
2.4 GHz range,λ is 12.5 cm. This kind of variations are
generated by multipath effect. Small-scale variations in-
troduce a high uncertainty in the system. These variations
make difficult to estimate the device position because
they can be up to 10 dBm for positions around the same
location.

• Large-scale variations: signal strength varies over a long
distance due to attenuation of the RF signal [16]. Large-
scale variations can be used to estimate the distance be-
tween the robot and reference positions (APs locations).

A propagation model [17] is an empirical mathematical
formulation for the characterization of radio wave propagation
as a function of frequency, distance and other conditions.
A single model is usually developed to predict the behavior
of propagation for all similar links under similar constraints.
Created with the goal of formalizing the way in which the
radio waves are propagated from one place to another, such
models typically predict the path loss trough link or the
effective coverage area of a transmitter.

In our system, we use a propagation model to estimate
the distance between the APs and the robot through received
SL. Our work is based on Hata-Okumura propagation model,
which is studied in [18]. The equation (1) describes this model:

d = 10
PT X−PRX+GT X+GRX−Xα+20 log λ−20 log 4π

10n (1)

Where:

• d: is the distance between transceiver and receiver.
• PTX andPRX : are the transceiver and the receiver power

(dBm).
• GTX andGRX : are the transceiver and receiver antenna

gain (dBi).
• Xα: represents the error. It is a normal random variable

with standard deviationα.
• λ: is the wavelength (12.5 cm).
• n: denotes influence of walls and other obstacles. In

outdoors environments with LOS it is defined in the range
from 2 to 3. In [19], the authors determine that the vari-
ablen must be approximately 2 in outdoor environments.

.

III. L OCALIZATION WITH RANGE-ONLY SENSORS

Localization is the technique that estimates the position of
a mobile device using reference positions and the distance
provided by the range-only sensor. In this section we describe
the three techniques that we have compared.

A. Spherical trilateration

This technique estimates the robot position using the APs
positions and the distances between the mobile and the APs.
The algorithm is based on the next constraints:

• The n APs positions are known, and are placed in the
coordinates(x1, y1, z1), (x2, y2, z2), ... (xn, yn, zn).

• The robot position is defined as(xr, yr, zr), and it is the
position to estimate by the algorithm.

• The distances between the robot and each AP are known
r1, r2, ... rn.

The trilateration elements are showed in Figure 1.

Fig. 1. Trilateration elements

The algorithm is based on these constraints to estimate the
robot position using the equations (2), (3), (4) and (5).
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It is possible to show the equations using the matrix way:

AX = B (4)
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B. Spherical trilateration. Gauss-Newton algorithm

This method is based on the same elements than the
previous trilateration (Figure 1). Moreover, a random position
is used as initial one to estimate the robot positionemp =
(x̂r, ŷr, ẑr).

The distance between the robot and theAPi is defined
according to equation (6).

ri =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 i = 1 . . . n

(6)

Now, we can define the distance between theAPi and the
emp (7).

r̂i =
√

(xi − x̂r)2 + (yi − ŷr)2 + (zi − ẑr)2 i = 1 . . . n

(7)

This method is based on equations (6) and (7) and Gauss-
Newton algorithm. This method is used to solve non-linear
least squares problems like this. It makes possible to minimize
a sum of squared function values through an iterative way
(equation (8)).

F (x̂r, ŷr, ẑr) =

n
∑

i=1

(r̂i − ri)
2 =

n
∑

i=1

[fi(x̂r, ŷr, ẑr)]
2 (8)

Wherefi is obtained as shown (9):

fi =
√

(xi − x̂r)2 + (yi − ŷr)2 + (zi − ẑr)2 − ri (9)

Deriving the equation (9) respect to(x̂r, ŷr, ẑr) it is possible
to obtain the equation (10).
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Equation (10) can be showed using the matrix way,A ·
∆X = B (equation (11)).
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(ŷr−y2)
r̂2
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The system can be solved by least squares and it is possible
to obtain the algorithm increases according to equation (12).

∆X = (AT A)−1AT B (12)

Finally, the estimated robot position is updated using the
previousemp and the new increase (equation (13)).

empk+1 = empk − ∆Xk (13)

The process continues running until the increases∆X

become acceptable by the system.

C. Particle filter

The particle filter is a sequential Monte Carlo algorithm, i.e.
a sampling method to approximate a distribution that uses its
temporal structure. A ”particle representation” of distributions
is used. In particular, we will be concerned with the distribu-
tion P (Xrt|z0:t) whereXrt = (xrt, yrt, θrt) is the observed
robot state at timet, andz0:t = (r1, r2, ..., rn) is the sequence
of observations from time0 to timet. The transition and sensor
models,P (Xrt|z0:t) are represented using a collection ofN

weighted samples or particles,{X(i)
rt , π

(i)
t }N

i=1 whereπ
(i)
t is

the weight of particleX(i)
rt (equation (14)).

P (Xrt|z0:t) ≈
∑

i

πt−1δ(Xrt − X
(i)
rt−1) (14)

The particles are propagated using the movement model
p(Xrt|Xrt−1, at) and the verisimilitudeP (zt|Xrt).

Firstly, the particles are uniformly distributed at the state
space. Next, the particles are updated by the previous actions
at−1, the actual observationzt and the movement model.
Finally, the updated particles are weighted, so the density
probability function of the particles represents the estimated
robot position.

IV. M APPING WITH RANGE-ONLY SENSORS

Mapping is the process that makes possible to estimate the
APs positions using the distance between them and the robot.
First of all, to map the positions of the reference is needed to
know the trajectory of the mobile, and then estimate the APs
positions using this knowledge. This problem is similar to the
localization one but with a different point of view, we suppose
that the robot position is known and static at different steps,
and then it seems like the APs are moving around it.

A. Spherical trilateration and Gauss-Newton Spherical trilat-
eration

These algorithms are used on mapping in a similar way
than trilateration algorithms are used on the localization. The
main difference between both is the previous knowledge.
Localization algorithms know the APs location and estimate
the robot position, however, mapping algorithms know the
robot trajectory and they estimate the APs position. Figure
2 shows the elements used to estimate the position of one AP.



Fig. 2. Mapping elements

Finally, the algorithm is based on the equations (2), (3), (4)
and (5), swapping reference(xi, yi, zi) by beacon(xb, yb, zb)
positions.

Work [20] puts forward some situations that can make the
system fails:

• When the reference positions are align.
• If the beacon position and the reference are on the same

plane.
• If the reference position is over one reference.

According to these constraints, close positions of the robot
trajectory are useless to map the APs position because they can
be aligned. Moreover, it is recommended to design a ”zigzag”
path for the robot to avoid the alignment of the reference
positions.

B. Particle filter

A particle filter like III-C is also used to map the APs. The
main difference between both particle filters is the orientation.
In this case, only a measurement of distance is obtained and
then the AP can be everywhere within a circumference. To
adapt the previous filter for mapping some modifications have
been performed. These modifications are:

• Measurement vectorsZ are the distances between the AP
and the robot. The measures depend on the robot location.

• The verisimilitudeP (zt|Xrt) uses a vectorial space to
represent the observations. Thus, we use a circumference
equation based on a vectorial space. It is written in para-
metric form using trigonometric functions as is shown in
equation (15). Then, 360 observations (one per angleφ)
are generated. These observations form a circumference
with radius equal to the distance between the AP and the
robot.

P = Xr0 + r(cos φ, sin φ) (15)

Where:

– Xr0 is the actual robot position.
– r is the radius or the distance between the AP and

the robot.
– φ is the angle.
– P are the observed AP coordinates(xb, yb).
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Fig. 3. Mapping with particle filter

Figure 3 shows the particle filter process, at the beginning
there are 360 possible positions (one per angle) where the
AP can be. Then, the possible positions are less and usually
there are only 2 possible positions: the real AP position and
the ”mirror” one. Finally, only one hypothesis is followed and
this position usually corresponds with the real AP position.

It is important to highlight that this algorithm does not
need to collect a high number of samples to estimate the AP
position. It is a online process and the accuracy is improving
when the time is increasing.

V. I MPLEMENTATION AND RESULTS

This section describes some implementation features and
the experimental results obtained with the designed tests.

A. Test-Bed Environment

The environment to test the localization and mapping sys-
tems is established outdoor and close to the Polytechnic School
at the University of Alcaĺa (UAH).

The environment dimensions are approximately 20x20 me-
tres. Moreover, three APs are used, these APs are located
at coordinates (x, y, z)(5.35,−2.36, 1.70), (14,−2.36, 1.67),
(15.10, 7.4, 1.61). The WiFi antenna is placed at the mobile
robot at 0.71 metres height. The robot trajectory is a pseudo-
rectangle, this path is showed in Figure 4. The localization
process in this work is calculated in 3D, and it has been
necessary to convert the measurements from 3D to 2D to
simplify the problem.

The tests have been performed with a laptop using an
Orinoco Gold PCMCIA card, Linux Kubuntu 8.04, Wireless
Tools v29 and Matlab 2008a. Signal level measure is obtained
by the WiFi interface installed in the laptop. This interface
scans the APs close to the device. Samples are got at 4 Hz,
which is the highest frequency that the interface supports.
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Fig. 4. Real test environment

TABLE I

WIFI RANGE ONLY SENSOR SAMPLES

d (m) 2 4 8 12 16 20

µSL (dBm) -44.40 -53.25 -61.44 -66.00 -74.24 -78.04

σSL(dBm) -3 -5 -5 -5 -7 -7

B. WiFi range only sensor

To study the WiFi range only sensor a real test has been
performed, which consists of measuring the signal level at
different distances. The collected samples are processed cal-
culating the mean and the variance of them. Table I shows
the mean and the variance values of the samples for each
distance. The mean values shows how the SL decreases with
the distance, however, the variance increases with the distance.
A high variance in the samples, produced by the noise, makes
difficult to estimate a distance from a SL value.

Based on Table I values, and paying attention to large-scale
variations it is possible to estimate a propagation model. Figure
5 shows an estimated propagation model and a comparison
with Hata-Okumura model (HOM) using a set of training data.
The propagation model has been estimated obtaining the mean
SL of each distance and fitting a polynomial function using
a approximation by least squares. The estimated model (EM)
obtains better results than HOM because it fits perfectly the
training data, however, HOM is a generic model and it can be
adapted to new environments.

Table II shows the error for each distance. In both models
the error tends to increase with the distance. This error is
specially important in the HOM at 12 metres, it is due to a
high noise in the training samples. HOM does not fit well to
the training samples when they contain a huge noise, however,
the EM obtains better results in this case. It is important to
remark that in other cases the samples can contain more or less
noise and the EM will not obtain good results. Then, the EM
is a better choice in an under control environment, however,
the HOM is more general and adaptable to new environments.

C. Localization results

Localization results are showed in Table III. Trilateration
algorithm gets a mean error of 9.04 metres, which is the
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Fig. 5. Large-scale variations on propagation model

TABLE II

PROPAGATION MODELS ERROR

Distance (m) 2 3 4 8 12 16 20

EM error (m) 0.28 0.01 0.00 0.29 3.01 0.83 0.44

HOM error (m) 0.35 1.08 1.41 7.01 19.08 2.09 0.16

highest error of the three algorithms. On the other hand,
Gauss-Newton obtains better results, the mean error is 6.26
metres and the error is more constant than the trilaterationone.
Both algorithms estimate the robot position without previous
information, which decreases the accuracy, but these can be
used with a low computational cost. However, the particle filter
uses the previous information to estimate the position to avoid
high changes in the error. Then, it makes the particle filter the
most accurate algorithm, it gets a mean error of 3.16 metres
and a maximum error of 9.24 metres.

D. Mapping results

The mapping techniques obtain the following results: tri-
lateration algorithm gets the smallest mean error, 9.7 metres,
using 125 reference positions to estimate the AP position. With
a lower number of 100 positions it is impossible to estimate
the position.

Gauss-Newton algorithm uses 125 robot positions to obtain
a mean error of 10.58 metres, this error is higher than the
trilateration one. This method obtains better results in several
situations but in some occasions it finds a local minimum and
then it does not obtain the optimal solution. Moreover, Table
IV shows that this method obtains good results using only

TABLE III

LOCALIZATION ERROR

Method Trilateration Gauss-Newton Particle filter

Mean (m) 9.04 6.26 3.16

Max (m) 23.48 22.13 9.24

Min (m) 0.56 0.1 0.31



TABLE IV

GAUSS-NEWTON ERROR

Num pos 5 10 30 50 100 150

Mean (m) 15.92 15.80 15.49 13.48 14.68 9.16

Max (m) 27.10 36.01 41.47 25.40 16.82 9.40

Min (m) 1.99 6.40 5.09 6.13 11.23 8.92

TABLE V

PARTICLE FILTER ERROR

Particles 100 1000 1500 2500 3500 4000

Mean (m) 5.50 4.41 4.10 3.95 3.62 3.51

50 robot positions to estimate the AP location. Then, it is
necessary to spend only 12 seconds to localize the AP position.

Both methods are affected by the robot trajectory, this
problem was previously commented and we have obtained
better results using other robot paths in simulation mode.

Finally, the particle filter has been tested varying the number
of particles in 100 experiments. Table V shows the mean
error obtained in 100 experiments, it has been obtained from
the moment that filter converges to the real beacon position.
Sometimes, the filter converges to the mirror position due to
the high noise, this noise is approximately 10 dBm and it can
introduce an error of 10 metres in the observation. Then, in
several executions the observation can be near to the mirror
position. Results show an error that tents to decrease. The
smallest error, 3.51 metres, was obtained using 4000 particles.

VI. CONCLUSIONS AND FUTURE WORKS

In this work has been presented a WiFi range-only sensor
and its application to localization and mapping system. In
the first time, we have analyzed the main variations of this
sensor and we have proposed to use a propagation model to
obtain the distance between the robot and a certain reference
positions (APs). Three different techniques have been com-
pared to localization and mapping process. Each technique
has been configured and performed to obtain the best possible
accuracy. We have obtained an accuracy of 3.16 metres to
localize the mobile and 3.51 metres to map the environment
references. In the future, we have the intention of improving
the localization and mapping systems using a WiFi range-
only SLAM algorithm and using an Inertial Measurement Unit
(IMU) to improve the movement model and then the accuracy
of the system.
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