
Camera Pose Estimation using Particle Filters

Fernando Herranz
Department of Electronics

University of Alcalá

Alcalá, Spain

Email: fernando.herranz@depeca.uah.es

Kavitha Muthukrishnan, Koen Langendoen
Embedded Software Group

Delft University of Technology

Delft, The Netherlands

Email: k.g.langendoen@tudelft.nl

Abstract—In this paper we propose a pose estimation algorithm
based on Particle filtering which uses LED sightings gathered
from wireless sensor nodes (WSN) to estimate the pose of
the camera. The LEDs act as (visual) markers for our pose
estimation algorithm. We also compare the performance of our
pose estimation algorithm against two reference algorithms –
(i) Extended Kalman filtering (EKF) and (ii) Discrete Linear
Transform (DLT) based approaches. The performance of all the
three algorithms are evaluated for different camera frame rates,
varying level of measurement noise and for different marker
distribution. Our results (small-scale experimental and room-level
simulation studies) show that the particle filtering algorithm gives
an accuracy of a few millimetres in position and a few degrees
in orientation.

I. INTRODUCTION

Determining the position and orientation (pose) of an ob-

ject found its application, traditionally, in virtual/augmented

reality, gaming and robotics. There are many approaches and

technologies to detect and track the pose of an object. For

example, mechanical, magnetic, inertial, vision, and hybrid

solutions exist, each having its pros and cons [12]. Vision-

based tracking systems process image streams from cameras

to locate or track people and objects [5]. One of the limitations

of vision-based tracking is the inability to easily detect the

tracked object’s identity. It also has a higher processing

cost as detection and tracking algorithms tend to be more

complex, due to difficulty in achieving a robust detection.

Alternatively, fiducial marker-based systems are available [3]

[1]. Markers associated with objects make the task of finding

and distinguishing objects easier, especially when the markers

are encoded with identification information in some way. Most

of the marker-based systems differ in the way the cameras and

the markers (also known as landmarks or fiducials) are used

as either (i) Outside-in systems – where a set of cameras are

placed at static points in the environment to monitor objects

within that environment, or (ii) Inside-out systems – where

one or multiple cameras carried by an object can determine

its position and orientation in relation to a set of static markers

placed in the environment.

The system we present in this paper is an inside-out system

that, makes use of LED sightings gathered from wireless

sensor nodes to estimate the pose of the camera (shown in

Figure 1). Our system consists of an outward looking camera

0

100

200

300

−200 −100
0 100

200
300

0

50

100

150

200

x

z

z= [u,v]

 [x,y,z]

y

u

v

Image plane (as seen
by camera)

Camera’s
Pose

Fig. 1: Camera pose (position and orientation) estimation from
observing eight LED markers.

unit (CCD camera) whose pose is to be estimated and a set

of static LED markers. The camera unit observes a set of

LEDs that are sequentially flashed (one-at-a-time). We flash

the LEDs one-at-a-time as this enforces point correspondence.

The communication and synchronisation between the markers

is coordinated by the WSN. The observation (or measurement)

are the 2D image coordinates [u, v] of 3D scene points [x, y, z].
Given the intrinsic camera parameters, the location of the LED

markers and their corresponding pixel coordinates [u, v] the
camera’s pose (position and orientation) can be computed.

The main contribution of this paper is the formulation

of a pose estimation algorithm based on particle filtering,

which uses LED sightings gathered from wireless sensor nodes

(WSN) to estimate the pose of the camera. We also compare

the performance of particle filtering approach with two other

reference algorithms – an Extended Kalman filtering (EKF)

approach and Discrete Linear Transform approach (DLT). We

also consider the effectiveness of the presented algorithm for

different camera frame rates, measurement noise and under

different LED visibility conditions using a mix of experimental

and simulated data.

II. RELATED WORK

Vision-based tracking systems process images from cameras

to locate or track people and objects. Several tracking systems

have already been developed for augmented reality and virtual

978-1-4577-1804-5/11$26.00 c© 2011 IEEE

gaming kind of applications. In this section, we summarize

some of the vision-based systems with and without markers.

A real-time 3D tracker for use with head-mounted displays is

described by Ward et al. [10]. Three cameras, mounted on a

helmet worn by the user, view an array of infrared-emitting

LEDs fixed to the ceiling. A tracking controller individually

illuminates the LEDs in turn. By determining which LEDs

are actually seen by which camera, the helmet can be tracked

with a resolution of around 2 mm in position and 0.1 degree

in orientation. However, the camera arrangement is bulky and

is tethered to a control unit, and a very large number of LEDs

must be accurately placed on the ceiling rendering the system

of little practical use.

Gottschalk et al. proposed and implemented an auto-

calibration method [4] using rough LED location estimates,

and thousands of observations from unknown locations. The

system estimates the position at each test location, and cal-

culates back the estimates of the LED positions. These two

steps are repeated until the position estimates converge. Welch

and Bishop [11] describe the complete HiBall tracking system,

including novel optical, mechanical, electrical, and algorithmic

aspects that enable the system to generate over 2000 head-

pose estimates per second with less than one millisecond

of latency, and less than 0.5 millimetres and 0.02 degrees

of position and orientation error. The HiBall system uses

Kalman filters to accomplish on-line auto-calibration, allowing

the system to continually update the LED location estimates

during normal operation. The HiBall tracking system is much

of an inspiration to our work in terms of the inside-out design

using fixed LEDs in the infrastructure and capturing the LED

sightings to infer the camera’s pose.

Recent work of Hay et al. [5] provides a low-cost alternative

to optical tracking using commodity hardware such as Wii-

motes to determine the pose of an object to an accuracy that is

comparable to conventional high-cost systems. However, their

system is an outside-in system and uses stereo vision-based

methods for pose estimation. Using a commercial platform

such as Wiimote is attractive as it is cheap, offers high update

rate and runs the image processing in an embedded DSP. On

the down side, the Wiimote can track only up to four infrared

light sources and does not offer access to the raw image.

One example of a camera tracking system developed in the

context of ubiquitous computing is the Pfinder system [13]. It

uses 2D-models applied to images taken by fixed cameras to

keep track of the movements of a user. Another system using

stereo vision cameras is Easy Living [6]. One limitation of

both these systems, and of vision-based tracking in general, is

the inability to easily detect the identity of the tracked objects.

Vision-based tracking requires more processing power, as de-

tection and tracking algorithms tend to grow in complexity due

to the requirement of achieving a robust detection. Marker-less

approaches (using natural appearance such as colour, texture

or features) are also being used in vision-based tracking. They

however, require an off-line training phase and processing cost

is generally high. For a detailed survey of 3D-model based

detection and tracking refer to [7].

As previously mentioned, fiducial marker-based systems

are a valid alternative to the already presented systems.

Markers associated with objects make the task of finding

and distinguishing objects easier, especially when the markers

are encoded with identification information in some way.

Typically, fiducial markers are printed planar patterns (similar

to barcodes) that a vision-only system can easily detect, track

and decode. An example in this category is TRIP (Target

Recognition using Image Processing) [3]. Users wear passive

tags displaying 2D circular bar codes. Cameras in each room

capture images that are analysed to identify tag wearers in

the field of view. ReacTIVision [1] is another fiducial marker-

based system used in many tangible interface applications.

Another recently developed system is CLIPS (Camera and

Laser based Indoor Positioning System) [9]. CLIPS determine

the pose of a mobile camera in respect to a laser rig. Since

the rig emits laser-beams from a virtual central point, it can

be regarded as an inverse camera. From the bright laser spots

that are projected to any surface without any specific structure

of the scene, the relative orientation between the camera and

the laser rig can be computed.

There are systems that combine odometry with vision. In

[14] the authors propose a particle filter based algorithm for

monocular vision aided odometry for mobile robot localiza-

tion. The algorithm fuses information from odometry with

observations of naturally occurring static point features in the

environment.

On the whole, there are two crucial differences between

our approach and that of prior work on pose estimation:

first, we utilize LEDs on the wireless sensor nodes for pose-

estimation purposes (LEDs have been used in sensor nodes

mostly for visual inspection and debugging purposes, and we

are extending their usage to pose estimation); secondly, we use

the radio transceiver on the nodes to transmit their identifiers,

thus even further reducing the processing cost compared to

fiducial-based vision systems.

III. PRELIMINARIES: LED DETECTION AND CAMERA

MODEL

The LED detection mechanism operates on the raw distorted

image. The image coordinates [u, v] of the brightest pixel in

the image are considered as a first estimate for the pixel coordi-

nates of the LED. This first estimate is improved by a sub-pixel

analysis phase. This is done by taking a weighted average of

the pixel locations around [u, v]. The weights themselves are

just intensities of the pixels minus some dynamic threshold.

In this work we use a standard pin-hole camera model [2].

The 3D coordinates of a LED (sensor node) is defined as

[x, y, z]T and the corresponding projection on the camera

image plane zzz is [u, v]T . These are related by sz̃̃z̃z = Px̃̃x̃x, where

the tilde on the vectors indicate they are in homogeneous

coordinates, s is a scale factor and P is a 3x4 projection

matrix defined up to scale. The projection matrix P is the

composition of the camera intrinsic matrix K and the extrinsic

parameter matrix [R ttt]. The latter transforms points from the

world coordinate system to the camera coordinate system; R

is a rotation matrix and ttt is a translation vector.

P =KKK[R ttt] (1)

IV. POSE ESTIMATION ALGORITHMS: OVERVIEW

Pose estimation involves calculating the rotation matrix R

and translation vector ~t (i.e the extrinsic parameters of the

camera), given the camera intrinsic matrix K, the locations

of the LED markers, and the measured pixel coordinates of

the sighted LEDs together with their identities. In this section

we first present our algorithm based on Particle filtering.

Subsequently, we present our two reference algorithms that

are based on Extended Kalman filtering and Discrete Linear

Transform.

A. Particle Filters for Camera Pose Estimation

The particle filter (PF) is a form of Bayesian estimation

which is used to track the pose of the camera. The PF is a

recursive state estimator which has the ability to deal with

non-gaussians and multimodal probability density function

(pdf). We maintain the camera’s position, orientation and

their derivatives as the state vector. The complete state is

then represented by state = [x, y, z, ẋ, ẏ, ż, θ, φ, ψ, θ̇, φ̇, ψ̇] =
[~x,~v,ααα,ωωω]. Instead of storing the Euler angles ααα (i.e., the

orientation of the camera) we store the rotation matrix Rααα

that represents this angle. In the prediction phase of the filter

we incorporate the knowledge of the system model and in the

measurement phase, we incorporate the pixel coordinates of

the detected LEDs in the image plane.
The key idea of PF is to represent the pdf by a set of random

samples with associated weights and to compute the estimates

based on these samples and weights. In the initialisation phase,

the particles are uniformly distributed around the environment

in order to cover all the space because it is assumed that

the system does not have any previous knowledge about the

initial pose of the camera. If the system has some knowledge

about the initial pose of the camera the particles can be

smartly distributed decreasing the number of particles needed

and hence decreasing the computational complexity of the

algorithm.
A set of particles are usually denoted χ :=

{x
(1)
t , w

(1)
t }, . . . , {x

(j)
t , w

(j)
t }, . . . , {x

(M)
t , w

(M)
t } where

x
(j)
t represents the state and w

(j)
t the importance factor or

weight of the particles. Here M denotes the total number of

particles. So, having a set of particles the PF is capable of

following several hypothesis at the same time.
The particles are moved during the prediction step in order

to generate a hypothetical state {x
(M)
t } for time t based on

the previous state {x
(M)
t−1 }. This step involves sampling from

the state transition distribution p(xt|xt−1). Subsequently, the
importance factors are computed to incorporate the measure-

ment zt into the particle set. The measurement model is used

to predict the ideal noise-free response for each of the LED’s

3D position projection in the image plane given the state of

each particle. In order to predict the measurement, it is needed

to describe how the measurements are related to the state. The

measurement model is:

ẑzz
(j)
i = hhhi(x̂xx

(j)
, α̂αα

(j)) (2)

where hhh() is the composition of two functions. The first

one is the projection of the 3D location of the LED marker

i by the projection matrix P in Eq. 1. P is parameterised

in location and angle elements of the state vector, that is,

P = P (xxx,ααα). The second function in the composition of

hhh() is the conversion of the resulting vector in homogeneous

representation to normal representation.

The importance factor is given by w
(j)
t = p(xt|z

(j)
t).

In order to compute the weight of the particles a gaussian

function is used. This step is one of the most important point

in this work and is illustrated in Figure 2. Imagine that the

position of the LEDs are known and the image of the camera is

measured based on the known position of these LEDs and the

unknown pose of the camera. A set of particles are randomly

distributed around the environment and each particle computes

a fake or virtual image based on its state and the known

position of the LEDs. When the particles are weighted, the

PF compares the fake image of each particle with the real

image by ∆zzz(j) = zzzt − ẑzz
(j)
t and the PF uses this value and

a gaussian function to compute the importance factor. Finally,

the resampling step is executed. It refocuses the particle set to

regions in state space with high posterior probability. By doing

so, it focuses the computational resources to the regions that

are more valuable. So, resampling draws with replacement M

particles that are going to approximate the pdf. The probability

of drawing each particle is given by its importance weight.

Thus, it transforms a set of M particles into a new set with

the same size in which particles with low weight are not copied

into the new set and the particles with high weight (close to

the camera pose) are drawn and copied into the new set.

B. Algorithms we compare:

In this section we present an overview of the two reference

algorithms – an extended Kalman filtering method (EKF) and

Discrete Linear Transform (DLT) method. EKF is a state esti-

mation, which uses a form of Bayesian estimation to estimate

the pose of the camera and many works within the computer-

vision community have used Direct Linear Transform (DLT)

method [7]. For more details on these algorithms refer to [8].

a) EKF algorithm: We maintain the camera’s po-

sition, orientation and their derivatives as the state vec-

tor. The complete state is then represented by state =
[x, y, z, ẋ, ẏ, ż, θ, φ, ψ, θ̇, φ̇, ψ̇] = [~x,~v,ααα,ωωω]. Actually, instead
of storing the Euler angles ααα (i.e., the orientation of the

camera) we store the rotation matrix Rααα that represents this

angle. In the prediction phase of the filter we incorporate the

knowledge of the system model and in the measurement phase,

we incorporate the pixel coordinates of the detected LEDs in

the image plane.

The filter is initialized with a state estimate ˆstate and

uncertainty or error covariance P̂ . We set the initial state to

the ground truth value from the experimental set-up and added

Fig. 2: Particle filters – (i) Initialisation: Each particle observes a virtual marker in the image plane, (ii) Importance weight: the particles
are weighted based on the difference between the virtual and the real marker.

some noise to this value. This is to mimic an initial state esti-

mate that would be obtained from a practical implementation,

based on DLT (see below) for example.

We use a constant-velocity and constant-angular-velocity

model. (i.e., the camera moves at constant speed and rotates

at a constant speed between time steps). Note that the true

mobility of the camera violates the constant velocity model,

as the direction of the velocity vector continuously changes.

This reflects reality, for which we would not have a perfect

matching model available and accounts for the process noise

in the Kalman filter.

The measurement model is used to predict the ideal noise-

free response for each of the LED’s 3D position projection in

the image plane given the filter’s current estimate of the state

(camera pose). Based on the measurement noise the filter can

either weight measurements more or its predictions. The final

step is the filter update to correct the state estimate per most

recent measurement and to update the error covariance.

b) DLT-based algorithm (RefAl): DLT is used to esti-

mate the projection matrix P by solving a linear system of

equations. However, DLT provides a homography that min-

imises the algebraic transfer error, which in our case, is equiv-

alent to the geometric error. Instead of finding P=KKK[R ttt] it

finds a homography P ′ such thatK−1P ′ yields a matrix whose

first part is not a rotation matrix. After reorthogonalization and

converting the rotation matrix to Euler angles new errors are

introduced. Hence, the camera parameters estimated by this

method should be refined by iterative optimization of the non-

linear reprojection error. Several methods for performing this

iterative optimization are discussed in [7].

We use the Levenberg-Marquardt (LM) method to further

refine the initial guess based on the DLT algorithm. We use this

combination of DLT- and LM-based methods as our reference

algorithm (RefAl).

V. HARDWARE PLATFORM AND EXPERIMENTAL SET-UP

In this section, we give a brief overview of the camera

and sensing platform that we have used for our work, we

then explain our experimental set-up used for performing data

collection and subsequently, evaluate the performance of our

pose estimation algorithm.

A. Hardware platform

The camera is a Fire-iTM Digital Board Camera. It is a 1/4”

CCD camera with a resolution up to 640 × 480 pixels and

a frame rate up to 30 Hz. It has a focal length of 2.1 mm

and a horizontal viewing angle of 80.85 degrees. The wireless

sensor nodes are of type MyriaNode V31, they are based on an

Atmel XMega micro controller, a Nordic nRF24L01 radio, and

contain by default a number of LEDs in the visible spectrum.

B. Experimental set-up

In our set-up we use a single camera, eight fixed sensor

nodes serving as radio-controlled markers, and one sensor

node to interface the network to the PC. We performed an

experiment to estimate a circular trajectory of the camera’s

position together with the orientation of the camera. Instead

of physically moving the camera around the markers we

emulate this movement by letting the markers rotate while the

camera is fixed. There are two reasons for doing this: (1) the

experiment is easy to conduct, leading to greater ground truth

accuracy and (2) the effect of changing lighting conditions is

reduced. In a real scenario LED sightings might be missed,

but for the purpose of our experiment we like to collect a

complete data set. The sensor nodes run software that let the

LEDs blink in sequence; at any point in time at most one

LED is flashed. We construct a dense data set by freezing the

camera until all eight LED sightings have been captured.

In this work, the WSN triggers the camera to capture the

image when the LED is flashed, because the WSN runs a

TDMA-based MAC layer that does not allow for external syn-

chronization. Alternatively, one can use cameras with trigger

modes, or create a system in which the camera triggers the

wireless sensor nodes to blink for instance, using a master

node connected to the camera unit. However, having the

network trigger the image capture has the additional advantage

of being able to use multiple cameras.

The experimental setup for the circular test is shown in

Figure 3. It shows the rotating plate of a turn table (the

turntable itself is not depicted). On top of this plate is a

square fixture that holds eight radio-controlled markers; the

rectangles are the sensor nodes and the small squares on the

sensor nodes are the LEDs. The turn table is rotated manually,

1http://wsn.chess.nl/

replacements

[x′, y′]
ω

x

yO

z = 0

[x,ααα]

Fig. 3: Experimental set-up used for data collection.Fig. 3: Experimental setup used for data collection. A rotating plate
supports eight radio-controlled markers (LEDs). The turn table is
rotated manually, one degree at a time, indicated by the arrow next
to the turn table. For each rotation we captured eight images; one
for each LED sighting. Finally, we collected eight LED sightings for
360 camera poses.

indicated by the arrow next to the turn table. This emulates

the rotation of the camera around the markers. To support

the manual rotation we have put a 1 degree angular scale on

the rotating plane. We carefully rotated the ground plate; one

degree at a time. For each rotation we captured eight images;

one for each LED sighting. The one degree measurements are

done for one revolution of the turn table, that is, we collected

eight LED sightings for 360 camera poses. The trajectory of

the camera has a longitude of 2253 mm and the maximum

distance between the camera and the LEDs is 539 mm.

VI. PERFORMANCE EVALUATION

We benchmark our particle filtering algorithm against EKF

and DLT-based method using a mix of experimental and

simulated data. The metrics used are position error, the length

of the vector from the estimated location to the true location;

and angular error, the magnitude of the angle of the single

rotation from the estimated orientation to the true orientation.

The experiments are done by sweeping over one parameter

and fixing all the others. The fixed parameters always have the

same values in all the experiments and are shown in Table I.

We particularly consider the effectiveness of our algorithms’

for varying number of marker distribution, frame rates and

measurement noises.

TABLE I: Values for the fixed parameters in the experiments.

parameter value

Standard deviation of pixel noise 1 pixel
Frame rate 90 fps (frames per second)
Rotation speed of camera π/2 rad/s
Number of particles 5000

1. Effect of number of LEDs: Figure 4 shows the perfor-

mance of PF, EKF and DLT for different number of markers

(4 and 8) used. In general, the performance of the algorithm

degrades slightly with less number of markers (seventieth

percentile: position error 3.78 mm vs. 3 mm (4 and 8 markers)

and angle error 0.55 deg vs. 0.5 deg (4 and 8 markers)).

While EKF performs quite similar to the particle filters, DLT

algorithm fairs slightly better when 8 markers are used. How-

ever, we also observed that when less than four markers were

used (Figure 5), both EKF and particle filters did converge

and produced meaningful results. Contrary to the minimum

amount of markers that is required to compute a pose using

the DLT (RefAl), EKF and PF is able to estimate the pose

even when the measurements are under-constrained, even for

a one-marker case (seventieth percentile: position error 8 mm

and angle error 1.5 deg approximately). This is because both

these algorithms use the predicted estimate to compute the

pose of the camera.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Position error (mm)

%
 o

f
re

a
d
in

g
s
 w

it
h
 e

rr
o
r

le
s
s
 t
h
a
n
 a

b
s
c
is

s
a

4 LEDs (EKF)
8 LEDs (EKF)
4 LEDs (PF)
8 LEDs (PF)
4 LEDs (RefAl)
8 LEDs (RefAl)

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Angular error (degree)

%
 o

f
re

a
d
in

g
s
 w

it
h
 e

rr
o
r

le
s
s
 t
h
a
n
 a

b
s
c
is

s
a

4 LEDs (EKF)
8 LEDs (EKF)
4 LEDs (PF)
8 LEDs (PF)
4 LEDs (RefAl)
8 LEDs (RefAl)

Fig. 4: Error distribution for different number of LEDs (experimental
data).

2. Effect of camera framerates: Figure 6 shows the perfor-

mance of the algorithm for frame rates in the set {30, 90, 300}
fps. As one would anticipate, the higher the frame rate, the

better is the accuracy: seventieth percentile position error being

3.5 mm vs. 23 mm (30 fps and 300 fps respectively, for

0 5 10 15
0

20

40

60

80

100

Position error (mm)

%
 o

f
re

a
d

in
g

s
 w

it
h

 e
rr

o
r

le
s
s
 t

h
a

n
 a

b
s
c
is

s
a

1 LED (EKF)
2 LEDs (EKF)
1 LED (PF)
2 LEDs (PF)

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Angular error (degree)

%
 o

f
re

a
d

in
g

s
 w

it
h

 e
rr

o
r

le
s
s
 t

h
a

n
 a

b
s
c
is

s
a

1 LED (EKF)
2 LEDs (EKF)
1 LED (PF)
2 LEDs (PF)

Fig. 5: Error distribution for 1 and 2 LEDs (experimental data).

particle filters) and angle error being 3.5 deg vs. 0.3 deg

(30 fps and 300 fps respectively). We do observe that the

EKF performs better in comparison to PF, and this is because

of two reasons (i) with increased frame rates the accuracy

of the EKF prediction improves and (ii) EKF requires an

initialization, where as in the case of PF the particles are

uniformly distributed and thus the error is slightly larger for

the first few measurements.

3. Effect of measurement noise: Position and angle errors for

different noise levels are shown in Figure 7. By measurement

noise we refer to the difference between detected location of

LED in image plane and its true location in image plane. Our

results show that the particle filtering algorithm is slightly

more robust to noise level when compared to the EKF. Figure 7

also shows that for the same noise level (1 pixel) PF performs

better than EKF and RefAl.

0 5 10 15
0

20

40

60

80

100

Position error (mm)

%
 o

f
re

a
d

in
g

s
 w

it
h

 e
rr

o
r

le
s
s
 t

h
a

n
 a

b
s
c
is

s
a

300 fps
90 fps
30 fps
300 fps (PF)
90 fps (PF)
30 fps (PF)
8 LEDs (RefAl)

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Angular error (degree)

%
 o

f
re

a
d

in
g

s
 w

it
h

 e
rr

o
r

le
s
s
 t

h
a

n
 a

b
s
c
is

s
a

300 fps
90 fps
30 fps
300 fps (PF)
90 fps (PF)
30 fps (PF)
8 LEDs (RefAl)

Fig. 6: Error distribution for different frame rates (simulated data).

4. Effect of particle size: Table II shows how the perfor-

mance of PF can be impacted by varying the number of

particles. As we can expect, increasing the number of particles

results in improved results, however this also significantly

increases the computational time. We measured the execution

times per pose estimate (in matlab). PF requires 211.1 ms

(1000 particles), 958 ms (5000 particles) and 3672 ms (20000

particles). We observe that a good compromise can be achieved

between accuracy and computational cost using 5000 particles.

Metric/Particle density 1000 5000 10000 20000
Position error (mm) 13 6.65 6.4 5
Angle error (deg) 3.25 2.25 1.6 1.55

TABLE II: Particle filters performance (ninetieth-percentile values)
for various particle densities using experimental data.

5. Room-scale simulation:

0 5 10 15
0

20

40

60

80

100

Position error (mm)

%
 o

f
re

a
d

in
g

s
 w

it
h

 e
rr

o
r

le
s
s
 t

h
a

n
 a

b
s
c
is

s
a

0.50 pixels (EKF)
1 pixel (EKF)
2 pixels (EKF)
0.50 pixels (PF)
1 pixel (PF)
2 pixels (PF)
1 pixel (RefAl)

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Angular error (degree)

%
 o

f
re

a
d

in
g

s
 w

it
h

 e
rr

o
r

le
s
s
 t

h
a

n
 a

b
s
c
is

s
a

0.50 pixels (EKF)
1 pixel (EKF)
2 pixels (EKF)
0.50 pixels (PF)
1 pixel (PF)
2 pixels (PF)
1 pixel (RefAl)

Fig. 7: Error distribution for different measurement noise (experi-
mental).

To quantify the effect of our algorithms’ (PF) performance

over large area (room-level) we perform simulations over an

area of 5 x 5m. The marker distribution is assumed to be

random. We used two different types of camera movement

in our simulations (i) camera moving randomly from the

center of the arena to one side of the room and (ii) camera

moving in random fashion over the whole deployment area. In

Table III we plot the results of our simulation studies which

are averaged over 100 simulation runs for varying marker

density. One can observe that with increased markers, the error

(position and angular) improves significantly.

Position Error (in mm) Angular Error (in deg)
Marker density 50% conf. 90% conf. 50% conf. 90% conf.

30 21.5 61.8 1.85 5.78
20 37.8 83.5 2.14 7.53
10 67.4 172.95 3.09 11.05

TABLE III: Performance summary of particle filter (using simulated
data). Results averaged over hundred simulations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described a pose estimation algorithm based

on Particle filters. Our algorithm uses LED sightings gathered

from wireless sensor nodes (WSN) to estimate the pose of the

camera. We evaluated the performance of the algorithm using a

mix of experimental (small-scale) and simulated (large-scale)

data. We showcased the effectiveness of PF with simulated

data for different camera frame rates, varying noise levels and

under different LED visibility conditions. The PF has also been

compared with RefAL, an algorithm that is based on Discrete

Linear Transform (DLT) and an Extended Kalman filtering ap-

proach. In most cases, the performance of PF is similar to EKF.

We also tested the algorithms when measurements are under-

constrained (less than four markers). Contrary to the EKF and

PF, the DLT based algorithm needs more measurements and

more iterations to estimate a pose.

In future we plan to analyze the practical performance of

our algorithm by running a large-scale experiment using more

sensor nodes and use additional types of sensor data such

as from accelerometer and gyroscope. While we have used

constant-velocity and constant-angular velocity model in both

our EKF and PF implementation, we would like to analyze

the impact of other motion models.

ACKNOWLEDGMENT

We are grateful to Dr Edwin Rijpkema for providing insight-

ful suggestions on this work and for extending his support for

performing the experiments and data collection.

REFERENCES

[1] R. Bencina and M.Kaltenbrunner. The Design and Evolution of Fiducials
for the reacTIVision System. In Proceedings of the Third International

Conference on Generative Systems in the Electronic Arts, Melbourne

(Australia), 2005.
[2] G. Bradski and A. Kaehler. Learning OpenCV. OReilly Media Inc,

2008.
[3] D. L. de Ipĩna, P. R.S.Mendonca, and A. Hopper. TRIP: A Low-Cost

Vision-Based Location System for Ubiquitous Computing . Personal

and Ubiquitous Computing, 6:206–219, 2002.
[4] S. Gottschalk and J. F. Hughes. Autocalibration for virtual environments

tracking hardware. In Proceedings of the Twentieth Annual Conference

on SIGGRAPH 1993, pages 65–72. ACM, 1993.
[5] S. Hay, J. Newman, and R. Harle. Optical tracking using commodity

hardware. In Proceedings of the Seventh IEEE and ACM International

Symposium on ISMAR 2008, 2008.
[6] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer.

Multi-Camera Multi-Person Tracking for EasyLiving. In Proceedings

of the Third IEEE International Workshop on VS, pages 3–10. IEEE
Computer Society, 2000.

[7] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey. In Foundations and Trends in Computer Graphics

and Vision, pages 1–89, 2005.

[8] E. Rijpkema, K. Muthukrishnan, S. Dulman, and K. Langendoen. Pose
estimation with radio-controlled visual markers. In In Third Interna-

tional Workshop on Mobile Entity Localization and Tracking (MELT

2010), 2010.
[9] T. S and M. R. Development of a new optiocal indoor positioning

sysem. In ISPRS Commission V Midterm Symposium, volume 98, pages
575–580, 2010.

[10] M. Ward, R. Azuma, R. Bennett, S. Gottscahlk, and H. Fuchs. A Demon-
strated Optical Tracker with Scalable Work Area for Head-Mounted
Display Systems. In Proceedings of ACM SIGGRAPH Symposium on

Interactive 3D Graphics, pages 43–52, Cambridge, MA, March 1992.
[11] G. Welch, G. Bishop, L. Vicci, S. Brumback, K. Keller, and D. Colucci.

The HiBall Tracker: high-performance wide-area tracking for virtual
and augmented environments. In Proceedings of the ACM symposium

on VRST ’99. ACM, 1999.
[12] G. Welch and E. Foxlin. Motion Tracking: No Silver Bullet, but a

Respectable Arsenal. IEEE Comput. Graph. Appl., 22(6):24–38, 2002.
[13] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-

Time Tracking of the Human Body. In Proceedings of SPIE, volume
2615, pages 89–98, 1996.

[14] T. N. Yap, Jr., M. Li, A. I. Mourikis, and C. R. Shelton. A particle
filter for monocular vision-aided odometry. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2011.

