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Abstract— This paper presents a non-intrusive approach for
monitoring driver drowsiness, based on driver and driving data
fusion. The Percentage of Eye Closure (PERCLOS) is used
to estimate the driver’s state. The PERCLOS is computed
on real time using a stereo vision-based system. The driving
information used is the lateral position, the steering wheel
angle and the heading error provided by the CAN bus. These
three signals have been studied in the time and frequency
domain. A multilayer perceptron neural network has been
trained to fetch an optimal performance score. This system
was installed in a naturalistic driving simulator. For evaluation
purposes, several experiments were designed by psychologists
and carried out with professional drivers. As ground truth,
subjective experts’ manual annotation of the driver video
sequences and driving signals was used. A detection rate of
70% using individual indicators was raised up to 94% with the
combination of indicators. An explanation about these results
and some conclusion are presented.

Index Terms— Intelligent Transportation Systems, Driver
Drowsiness, Confusion Matrix, PERcentage of eye CLOSure
(PERCLOS), Visual Fatigue Behaviour, Artificial Neural Net-
work, Spectral Density Power.

I. INTRODUCTION

Sleepiness during driving has been shown to result in a
greatly increased risk of causing an accident. Specifically,
Klauer et al. [1] have shown that to drive while sleepy
increases the accident risk four to six times compared to
alert driving. Furthermore, the risk of causing an accident
is higher during night driving [2] or in situations with
reduced prior sleep [3]. In fact, at least 15-20% of all vehicle
accidents have been estimated to be sleepiness related [4].
Therefore, it is beneficial to develop a system to monitor
the physical and mental state of the driver and give alerts at
the critical moment when the driver is becoming fatigued,
thereby preventing traffic accidents.

In the last decade, diverse techniques have been used
to develop monitoring systems for a variety of purposes.
Those techniques used to detect driver’s sleepiness can be
generally divided into three main categories [5]. The first
category includes methods based on biomedical signals, like
cerebral, muscular and cardiovascular activity [6], [7] and
[8]. Usually, these methods require electrodes attached to the
driver’s body, which will often cause annoyance to the driver.
Most of them are yet far from being effectively introduced
in the market, according to recent reviews [9].

The second category includes methods based on driver
performance, which evaluate variations in the lateral position
of the vehicle, in the velocity, in the steering wheel angle
and in other controller-area network (CAN) signals [10],
[11] and [12]. The advantage of these approaches is that the
signal is meaningful and the signal acquisition is quite easy.
This is the reason why such systems have indeed entered the
commercial market [13], [14] and [15] but, to the authors’
knowledge, in the open literature there are very few details
available regarding the mechanisms or parameters of these
systems. On the other hand, these systems are subject to
several limitations such as vehicle type, driver experience,
geometric characteristics, condition of the road, etc. Then,
these procedures require a considerable amount of time to
analyse user behaviours and therefore, they do not work with
the so called micro-sleeps—when a drowsy driver falls asleep
for a few seconds on a very straight road section without
changing the vehicle signals.

The third category includes methods based on driver
visual analysis using image processing techniques. Computer
vision can be a natural and non-intrusive technique for
monitoring driver’s sleepiness from the images taken by
cameras placed in front of the user. These approaches are
effective because the occurrence of sleepiness is reflected
through the driver’s face appearance and head/eyes activity.
Different kinds of cameras and analysis algorithms have been
reported in the literature for this approach: methods based on
visible spectrum camera [16] and [17]; methods based on IR
camera [5] and [18]; and methods based on stereo camera
[19] and [20]. Some of them are commercial products as:
Smart Eye [21], Seeing Machines DSS [22], Smart Eye Pro
[19] and Seeing Machines Face API [20]. However, these
commercial products are still limited to some well controlled
environments and they require of hard calibration processes.
Then, there is still a long way to go in order to obtain a
robust commercial product in this category.

This paper present a non-intrusive approach for monitoring
driver drowsiness, based on driver and driving data fusion. In
Section II the simulator, the method used to study the fatigue
and drowsiness in drivers and the generation of the ground
truth signal are described. A general algorithm description,
the techniques applied to obtain new indicators and the neural
network designed is explained in Section III. After that,



experimental results are shown in Section IV. Finally the
conclusion and future work are presented in Section V.

II. EXPERIMENTS AND DATA COLLECTION

The purpose of this section is to show the characteristics
of a naturalistic simulator and to explain the methodology
carried out by psychologists in the analysis task to evaluate
drowsiness in professional drivers.

A. Realistic driving simulator

Simulation methodologies applied to training and research
in the field of road transport have been proven to be both
cost-effective and efficient. Simulation aims to give the driver
an opportunity to immerse himself in his habitual workplace.
The study employed a naturalistic simulator placed at the
CEIT [23], as we can see in Fig. 1.

Fig. 1. Naturalistic simulator

The truck simulator consists of a real truck cab, an instruc-
tor station and a system of screens that cover 180 degrees
of vision. A set of 3 screens with re-configurable positions
cover a large area showing all angles of vision of drivers. The
simulator has 3 scenarios (urban, interurban and mountain)
with more than 250km of roads, it allows driving in adverse
conditions such as rain or snow, and at different times of day
or night. The truck cab is an Iveco Stralis cab mounted on
a Stewart platform 6GDL MOOG Company. The simulator
records driving and driver variables. Concerning the driving
variables the steering wheel angle, truck lateral position over
the lane, heading error, speed, brake, acceleration and more
variables are recorded to 120 samples per second. Within
the driver variables the PERCLOS signal, blink frequency
and others variables are recorded to 30 samples per second.
Thus, this simulator gives the researcher great flexibility to
implement recording systems specifically designed to test the
reactions and behaviour of professional drivers while they are
driving [24].

B. Experimental protocol

The main target of this experimental protocol is to recreate
a suitable environment which would enable researchers to
detect drowsiness during driving. A large amount of informa-
tion about drowsiness clues have been gathered and analysed.

The data were collected for a total of 10 professional
drivers. The protocol was designed such that each user would
carry out driving sessions during two different conditions:
Either after having slept on a regular schedule (from 23:00
to 07:00, with allowance for one hour deviations from the
schedule) for two nights prior to the day of the experiment, or
after having slept only four hours during the night preceding
the experiment, thus being partially sleep deprived. Each user
carried out driving sessions under each of the two conditions
spread over a 24-hour period. Each driving session lasted 60
minutes. The tests subjects that participated in the study were
recruited from the Spanish national register of professional
drivers, by random selection (only private vehicle owners
were included). They had to be frequent drivers, driving at
least 5000 km a year, and not suffering from habitual sleep
disturbances.

C. Drowsiness ground truth

The ground truth was labelled using the Karolinska Sleepi-
ness Scale (KSS) and the video sequences. The test users
were instructed to estimate their level of sleepiness according
to the KSS, which has been proved to have a high correlation
with a deterioration in driving performance which is closely
related to the electroencephalography signal (EEG) [25]. The
KSS level were subjectively generated by the driver every 5
minutes grouping the nine KSS levels into two: awake and
drowsy. Finally this information was mixed with the three
experts’ offline analysis of the videos and the driving signals
to generate the subjective ground truth signal in two levels:
awake and drowsiness.

III. DATA FUSION ALGORITHM TO DETECT DROWSINESS

The general architecture of the implemented algorithm is
shown in Fig. 2. The initial point is the collection of driver
and driving related signals. The driver signal is the PERC-
LOS, that will be explained in Section III-A. The analysed
driving signals are the lateral position, the steering wheel
angle and the heading error. The driving signals are studied
in the time III-A.1 and frequency III-A.2 domains to obtain
new drowsiness indicators. In the time domain, the mean and
standard deviation are used obtaining six indicators. In the
frequency domain, the spectral density power is evaluated to
find awake and drowsiness patterns. Finally, these indicators
are combined in a multilayer perceptron neural network to
estimate the drowsiness driver level.

A. Input signals

The driver signal employed is the Percentage of Eye
Closure (PERCLOS), the most confident drowsiness indi-
cator using computer vision algorithms [26] [5]. In order to
obtain PERCLOS a NIR stereo rig is placed in front of the
driver. The system works in real-time and does not need a
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Fig. 2. General architecture

calibration process. The system consists in three main stages.
The first one is the pre-processing stage, which includes face
and eye detection based on appearance strategy using the
Viola and Jones algorithm [27], and the equalization of the
eyes using a Hat transformation. An eye tracking strategy
in a sequence of frames is then carried out. The second one
executes the pupil position extraction and its characterization
using integral projection techniques and a Gaussian model.
The final stage executes the PERCLOS estimation [26]. The
PERCLOS is defined as the percentage for a given period
of time (here set to 20 seconds) for which eyes are at least
80% covered by eyelids. This measure has been found to
correlate well with reduced psycho-motor vigilance task and
deteriorating driving performances due to sleepiness.

The driving signals are the lateral position, the steering
wheel and the heading error angle of the truck simulator.
These were obtained from the CAN bus. The lateral position
represents the distance from the centre of the vehicle to
the driving right lane boundary. The steering wheel angle
represents the wheel movements and the heading angle is the
angle between the direction of the vehicle with the tangent
to the path.

The PERCLOS and lateral position parameters without
preprocessing are represented as a function of distance in
Fig. 3 for two different experiments: one in which the driver
was awake and one in which showed drowsiness. A time
representation is the regular form to show the results in this
studies. However, in this paper we choose as a common line
reference for these two variables the distance in km, which
means to take the same stretch trajectory for the same driver
and under different drowsiness condition. On top plot in
Fig. 3, the PERCLOS signal clearly shows higher values for
the drowsiness experiment. Besides, the lower plot represents
the lateral position signal, where it can be observed that the
amplitude and dispersion of its values are greater for the
drowsiness case. Hence, it is very convenient to analyze these
measurements to detect driver sleepiness.

1) Time domain pre-process: Many indicators of driver
sleepiness have been proposed in the literature [28]; regres-
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Fig. 3. Input variables

sion descriptors, class distribution measures, peak amplitudes
and distances, but perhaps the most common indicator is
the standard deviation of the lateral position which simply
measures the average lateral deviation.

In this paper, we compute the standard deviation and mean
over the values of the following signals: lateral position,
steering wheel angle and heading error. These new statis-
tical indicators have been evaluated with different temporal
windowing sizes in order to obtain the best value for this
application.

The mean indicators do not show evidence about drowsi-
ness with different windowing size, but it will be used
to evaluate the neural network performance. However the
standard deviation applied to the lateral position and steering
wheel angle show differences between awake and drowsiness
when the windowing size is 1000 meters, as we depict in
Fig. 4. On top, the standard deviation of lateral position
shows that its values in the drowsiness exercise are higher
than in the awake one. However on the bottom subfigure the
standard deviation of steering wheel angle does not show
large differences between the drowsiness and the awake
exercise. In the drowsiness exercise the values of standard
deviation are a bit larger than in the awake one. These
differences are explained because the driving signals have
more amplitude and the car corrections are less accurate
when the driver is drowsy.

2) Frequency domain pre-process: This study is per-
formed to find more indicators to determine if the driver is
in an awake or drowsiness state because in the time domain
the mean and standard deviation indicators of steering wheel
angle and heading error do not show evidence of drowsiness,
as explained before.

The idea is that an awake driver performs continuous
corrections on the steering wheel when the vehicle is under
control. On the contrary, a drowsy driver does not perform
continuous corrections, and chaotic movements are detected
on the steering wheel movements. The expected fatigue
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Fig. 4. Indicators obtained with the standard deviation of the lateral position
and steering wheel angle

induced changes in steering wheel behaviour are a pattern
of slow drifting and fast corrective counter steering, too.

The spectral energy distribution has been evaluated with
a Fast Fourier Transform (FFT) and a window size of
500 meters to evaluate the energy from 0.01Hz to 0.03Hz.
Therefore, a concentrated spectral energy is found in the
awake state, while the drowsiness state is characterized by
an extended spectral energy distribution. This is explained
by the chaotic movements and the different frequencies in
the steering wheel movements as shown in Fig. 5.
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Fig. 5. Steering wheel power spectral density

To make the path of the road independent with steering
movements of the route due to curves, the heading error has
been introduced. This variable shows the same effects than
the steering wheel movements: oscillations occur when the
vehicle is being controlled, while oscillations disappear or
are chaotic when the driver loses the control.

B. Neural Network Designed

A combination of several indicators may provide a better
estimate of sleepiness than any individual indicator alone.
The indicators can be combined in several ways, ranging
from simple linear combination of indicator values to much
more complex functional forms. In order to capture as
many functional forms as possible, artificial neural networks
(ANN) have been used here. We have used a two layered
feed-forward ANN as depicted in Fig. 6.

The strategy for training has been to divide the set of
inputs into three separate data sets: training set (used to
guide the parameter search carried out by the optimization
algorithm), validation set (used for determining when to
terminate the optimization) and test set (used to obtain the
performance on previously unseen data). The total number
of samples per user are 30000, equivalent to the total number
of exercise meters. The training, validation and test samples
are grouped in windows of size 100. Hence, considering all
the users there are 3000 total input samples to adjust the
weights in the network. Therefore, the number of inputs to
the neural network is 100 when used only one indicator and
200 inputs for two indicators. Thus, the system will alert the
driver every 100 meters.

The network configuration is based on Tan-Sigmod Trans-
fer Function for hidden neuron layer and a Linear Transfer
Function for output layer neurons. The number of neurons in
the input layer is a function of the input variables used. On
the other hand, the number of neurons in the hidden layer is
set to 20 due to it is recommended for no more than 10%
of the inputs. The target training has been set that the mean
square error will be below of 0.01 or the number of epochs
will be less than 200. The backpropagation algorithm is used
to train the network and the gradient descent is applied to
adjust the weights in the network.

Fig. 6. Neural network designed

IV. EXPERIMENTAL RESULTS

The designed network was discussed in Section III-B
and the inputs and outputs signals used to train the arti-
ficial neural network were specified in Section III-A. The



detection rate has been evaluated with 12 different input
indicators. The detector rate is evaluated with the expression
1−mean square error(mse). These 12 indicators are used
alone and in combinations of them. The alone indicator
study is done with PERCLOS, lateral position (Lp), mean
lateral position (Avg Lp), standard deviation lateral position
(Std Lp), steering wheel (Wheel), mean steering wheel
(Avg Wheel), standard deviation steering wheel (Std Wheel),
heading error (He), mean heading error (Avg He), standard
deviation heading error (Std He), wheel energy (Wheel Pow)
and heading error energy (He Pow) indicators. The alone
indicators detection rate is shown in Table I.

TABLE I
SINGLE DETECTION RATE

Single Mean Std
Lateral Position 66.71 64.10 84.10
Steering Wheel 40.57 58.21 64.10
Heading Error 60.04 61.51 62.92
Energy Wheel 33.51 No data No data

Energy He 62.14 No data No data
PERCLOS 97.61 No data No data

Among the driving signals, in the time domain, the lateral
position indicator provides the higher detection rate values
while the steering wheel angle and heading error provide
similar results. The standard deviation of all these indicators
provide better results than the others and a 84.10% is the
best detection rate obtained with the standard deviation of
the lateral position. On the other hand, in the frequency
domain, the wheel and the energy do not yield high detection
rates, with a 33.52% and 62.14% respectively. The results
obtained are not better than in the time domain. Looking
at the driver signal, the PERCLOS is the best with a
97.61% of detection rate. The improvement is mainly due
to independence of the PERCLOS signal with the trajectory.
These rate results could be higher with a combination of
indicators. The indicators with a detection rate higher than
62% in Table I are selected to be combined two by two. The
new detection rate obtained is represented on table II. The
table represents the combination between the rows and the
columns indicators. More than one input produce generally
higher hit rates than those that use only single inputs. In our
case the combination of energy indicators with other driving
or driver signal produced a decrease of the hit rate due to the
continuous changes in energy distribution frequency during
the exercises. The combination of the PERCLOS with other
indicators obtained the best results and improved its single
detection rate. The combination between the PERCLOS and
standard deviation of the lateral position produced the best
results with a 98.65% of detection rate, that is above the
results obtained in [29] where data collection is similar to
that used in this paper, a total of 14 drivers is used and they
were given the task to drive under two different conditions:
sleep-deprived and after normal sleep. So these two variables
will be very important to design a driver drowsiness detection
system with neural networks or learning algorithms.

TABLE II
COMBINATION DETECTION RATE

Lp Avg Lp Std Lp Std Wheel Std He Ener. He

PERCLOS 98.60 97.34 98.65 97.95 98.60 64.09

Lp 82.91 67.62 59.39 74.68 64.74

Avg Lp 93.51 64.10 74.68 39.39

Std Lp 87.63 75.86 31.15

Std Wheel 67.63 38.21

Std He 46.18

The detailed confusion matrix of the neural networks
classification results for the PERCLOS-standard deviation
lateral position and PERCLOS-lateral position combination
are given in Table III and IV.

TABLE III
CONFUSION MATRIX PERCLOS-STANDARD DEVIATION LATERAL

POSITION

Correct
Awake Drowsiness

Estimated Awake 100% 6.25%
Drowsiness 0% 93.75%

TABLE IV
CONFUSION MATRIX PERCLOS-LATERAL POSITION

Correct
Awake Drowsiness

Estimated Awake 100% 9.37%
Drowsiness 0% 90.62%

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a non intrusive approach for moni-
toring driver drowsiness, based on driver and driving infor-
mation and data fusion, and has been tested in a naturalistic
driving simulator. The proposed drowsiness detection method
has shown high accuracy, obtaining 98.65% of drowsiness
detection rate.

In general, PERCLOS can be used in combination with
lateral position and steering wheel angle, as they provide
complementary information, to improve the drowsiness mon-
itoring in drivers. The standard deviation of the lateral
position or steering wheel angle have been proved to be the
best signals to fuse with the PERCLOS obtaining the highest
detection results. The heading error and the energy signals
do not improve the hit rate because they do not present
correlation with the drowsiness pattern.

The results shown in this paper are influenced by the
simulator used. A good way to measure how robust is the
algorithm presented is to apply it under real world conditions.
In addition, generating a ground truth drowsiness signal by
expert psychologists is important to evaluate the hit rate of
any method related with drowsiness detection.

As future work we envision the use of Hidden Markov-
model and Bayesian networks to model temporal aspects and
experts knowledge. Also a multi-level classification to adapt



varying driving styles and road conditions could improve
the current detection rates. Finally, exhaustive tests in real
conditions with more drivers should be performed to evaluate
the effect of the driving styles and the driving conditions in
the detector performance.
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