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Abstract. This paper presents different techniques to achieve the tasks
proposed in the DARPA (Defense Advanced Research Projects Agency)
VRC (Virtual Robotics Challenge), which entails the recognition of ob-
jects, the robot localization and the mapping of the simulated environ-
ments in the Challenge. Data acquisition relies on several sensors such
as a stereo camera, a 2D laser, an IMU (Inertial Motion Unit) and stress
sensors. Using the map and the position of the robot inside it, we pro-
pose a safe path planning to navigate through the environment using an
Atlas humanoid robot.
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1 Introduction to Virtual Robotics Challenge

The DARPA Robotics Challenge [1] is an open competition focused on the de-
velopment of humanoid robots with the aim of operating in rough terrain and
austere conditions using human tools commonly available in real environments.
The Virtual Robotics Challenge is a preliminary phase of the competition car-
ried out in simulated scenarios and using open source tools like ROS (Robot
Operating System) [2] and Gazebo [3]. Three different scenarios are proposed:
get into a vehicle and drive it, walk through rough environments and manipulate
unknown objects.

We have participated in this challenge as SARBOT Team [4], which is com-
posed of three universities (Universidad Politécnica de Madrid, Universidad Car-
los III and Universidad de Alcalá) and a research centre (Centro de Automática
y Robótica). Universidad de Alcalá group is focused on the perception of the
environment, mapping abilities and navigation planning.

2 VRC Proposal

The Virtual Robotics Challenge is divided into three scenarios with multiple
tasks that have to be solved. We have divided the scenarios into simpler tasks
so our multidisciplinary team could work on it in an efficient way.
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Fig. 1. Scenario 1. Atlas robot facing the car.

The Atlas Robot [5] is used to fulfil the tasks in all the three scenarios. This
humanoid robot is equipped with several sensors, such as: stereo camera on the
head of the robot, a Hokuyo UTM-30LX laser mounted into a rotating platform
that can turn 360 degrees with an integrated IMU, an IMU in the pelvis of the
robot, force sensors in the robot’s foot plants, stress sensors in all the joints of
the robot and a pair of Sandia hands (each of one equipped with a camera and
force sensors).

Scenario 1 is mainly focused on the task of driving a car. In order to complete
this task, we have to localize the robot into the starting pen, find the way out,
detect the car and get close to its driver door, get into the car, start the car,
drive it through the gates of the road, stop the car, get out the car and walk
through the last gate. Figure 1 shows the Atlas Robot in the environment facing
the vehicle.

Fig. 2. Scenario 2. Atlas robot walking across the mud pit.

Scenario 2 is mainly focused on the task of walking in difficult terrain. As
in the first scenario, the robot is initially into a starting pen and has to walk
through the exit. Then, it has to detect the first gate and walk through it, go
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down a ramp into the mud pit, walk across the mud pit in the direction of the
second gate, go up the ramp to get out the mud pit, walk in a rough terrain,
cross the third gate and finally walk across a terrain full of obstacles. Figure 2
shows the Atlas Robot walking across the mud pit.

Scenario 3 is mainly focused on the manipulation task. The robot must get
out the starting pen, detect a table with a hose on it, approach to the table,
grab the hose, connect it to a standpipe located on the wall and open a circular
valve. Figure 3 shows the Atlas Robot facing the table to grasp the hose.

Fig. 3. Scenario 3. Atlas robot looking at the hose.

3 SARBOT Team Proposal: Perception and Navigation

Some tasks are common for all the proposed scenarios by the Virtual Robotics
Challenge such as navigation and localization, although the goals of the naviga-
tion are different for each of them. The challenge sets some objects that can be
recognised by analysing some of its characteristics: the gates, the starting pen,
the vehicle, the table, and so on. We propose a combination of different methods
based on camera and laser to identify the objects in the environment and plan
the goals to go.

Hereafter, we explain different methods that we use to achieve the different
tasks:

3.1 Mapping

We use the laser mounted on the head of the robot for the mapping task. We
use a 3-D laser point cloud representation of the environment instead of the
commonly used 2-D representation. This 3-D representation of the environment
is obtained by rotating the laser 360 degrees and knowing its position from
the data of the IMU mounted on the laser. Usually, the point cloud could be
obtained employing the disparity map available if a stereo camera is considered,
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but in VRC the accuracy of this point cloud is acceptable enough only when the
object has rich textures. However, this is not the case for the VRC simulated
environments. Then, we discard the disparity map in favor of the 3D data from
the laser.

To ensure the consistency of the 3-D maps, we transform the point cloud
obtained from each measurement into a discrete representation based on Oc-
tomap [6], which is a probabilistic volumetric representation of space based on
Octrees that allows to represent a full 3-D environment minimizing memory
requirements. This representation along with an effective movement model of
the robot (obtained by the IMU data and stress sensors) give us the robustness
needed to work without a SLAM (Simultaneous Localization And Mapping)
system [7]. Consequently, the computational cost is also reduced with this ap-
proach. Figure 4 depicts a 3-D map of the task 2 environment and an image of
the environment.

Fig. 4. 3-D Map of Task 2 Environment.
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3.2 Navigation

Since navigation into a 3-D environment is a computationally expensive task and
the Atlas Robot has a limited range of movement in the z axis, we can transform
the built 3-D map into a 2-D representation, which allows to plan the optimal
way to be followed by the robot saving computational cost. We use the heights
difference from one 3-D block to another to mark a 2-D cell as occupied or free.
The minimum height difference to be marked as occupied is calculated knowing
the prior abilities of the robot to walk through different heights.

Once we have built the 2-D map from the 3-D map, we are able to calculate
the optimal route to reach the goal. To do so, we use a navigation algorithm
for humanoid robots [8] which uses an ARA* (Anytime A*) Planner [9] to plan
the path to be followed by the robot. This algorithm searches the path from
the robot to the goal avoiding rough turns at the starting of the movement and
employs a cost function based on the Euclidean distance between initial pose
and goal and the number of steps that the robot has to follow. We configure
this algorithm with a discretisation of steps that the robot can follow allowing
it to walk straight, turn and even walk backwards. Figure 5 shows the 2-D map
representation where the steps to follow are marked in different colours: steps
for left foot in red and steps for right foot in green. The goal is represented as a
red arrow.

Fig. 5. Navigation. Step-by-step route

3.3 Goal Recognition

Once the navigation framework is set, recognition of different goals is needed
to complete the tasks. There are different objects that can be recognised in the
environment of VRC scenarios, following we show the techniques that we use to
recognise them and plan the robot’s navigation:
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Gate recognition: an algorithm based on a mono-camera colour detection is
employed to recognise the different gates in the environment, taking into account
that the gate’s upper post is green, the left post is blue and the right post is red.
We train a Bayesian classifier [10] from a set of sampled images in a resolution
of 800 x 800 pixels. The colour differentiation is made by employing an opti-
mization based on Mahalanobis distance using HSV (Hue, Saturation, Value)
channels, because this colour space allows a better discrimination between each
type of post, attending to the hue and saturation characteristics. Then, we ap-
ply a skeleton function to ensure that all the posts are connected and the gate
is fully recognised. Moreover, we use a SVM (Support Vector Machine) classi-
fier implemented in LibLinear [11] and based on HOG (Histogram of Oriented
Gradients) [12] features to identify the number of the gate and ensure we are
detecting the proper gate. In this case, HOG is applied as a powerful shape de-
scriptor which allows to differentiate the varied number silhouettes and classify
them correctly. Figure 6 shows the gate recognition, its orientation with respect
the robot and the number 2 detected on the gate.

Fig. 6. Gate and number recognition.

Getting out of the starting pen: we have considered two different scenarios:
depending on whether the first gate and the exit is on the line of sight of the
camera or not. If the robot can see both sides of the gate (red and blue posts)
in the image it means that the robot is looking at the exit, so the goal is the
furthest point in the map in the robot’s field of view. In case that only one or
none of the posts of the gate are detected in the same image the robot turns
until both posts are recognised. If both posts cannot be detected in the same
image the robot is at the side of the exit and it moves toward the centre of the
starting pen and turns until is facing the exit.

Once the robot is in the exiting corridor, we need to plan a path to exit it.
Knowing that the corridor has only one exit and the entrance to the starting
pen, we use an occupancy map where the upper posts of the gates and the
walls are represented as occupied. This way, the entrance to the starting pen
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is virtually blocked and the goal is calculated as the half distance from the
furthest reachable point. Figure 7 shows the map built while exiting the starting
pen where black cells represent obstacles detected above the robot, dark grey
cells represent detections at other heights and light grey cells represent unknown
cells. The outgoing path is depicted in green and red steps, the initial pose of
the robot is represented as a pink rectangle and the pink arrow represents the
final goal.

Fig. 7. Atlas robot getting out of the starting pen.

Approaching to a gate: the gate is detected using the previously explained
gate recognition algorithm and the robot turns until it faces it. To be able to
calculate the goal and plan the robot movement, the correspondence between
the gate detected with the camera and the 2-D map representation is needed.
To do so, occupancy map is built where occupied cells represent heights above
the robot (to detect the gate upper posts). These cells are labeled looking for
connected blobs in the robot’s field of view corresponding to the gate. The goal
is calculated as the blob’s centroid and its direction as the normal vector of the
gate.

Getting close to the table: assuming that the table is about one meter above
the floor, we build a map where occupied cells represent objects between 0.8 and
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1.2 meters high. The connected objects are classified rejecting the smallest ones.
Then, the nearest object to the robot similar in size to the table is selected.
The centroid of the table is used as a goal to get close to it. Once the robot is
near the table the hose can be recognised by the cameras and its position can
be obtained to grasp it.

Approaching to the car: an SVM classifier based on LibLinear [11] is em-
ployed with the aim of detecting the car and its orientation in the camera image.
This classifier uses a combination of appearance descriptors based on HOG and
GCH (Global Color Histogram) [13], with the aim of taking into account the
shape and color of the car for the classification. At first, a grid is created for
classifying the different parts of the image and a sliding window algorithm is ap-
plied to obtain the hypothetical places where the car could be located, as shown
in Figure 8(a). After this, an average of the hypothetical positions of the car is
carried out, obtaining the final position and its orientation in the image, as can
be observed in the example presented in Figure 8(b). Once the car position is
identified, the robot turns until it faces it. A map is created where the occupied
cells represent objects above the floor and under 2 meters height (the height of
the car) and the goal is set as the obstacle centroid to face the door and be able
to get into the car.

(a) Hypothetical places detected af-
ter the sliding window classification.

(b) Final car position detected (in
red) and orientation estimation (in
blue).

Fig. 8. Car detection and orientation estimation.

4 Conclusions

We have competed in the DARPA VRC by means of dividing complex tasks into
simpler ones. In this work different techniques to navigate and map an unknown
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environment using heterogeneous sensors to recognise objects are presented. We
have also demonstrated that a full 3-D environment can be efficiently reduced
to a 2-D map to plan an optimal path that a humanoid robot can follow.
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