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Abstract—The aim of the paper is focused on the design of an 
obstacle avoidance system for assisting visually impaired 
people. A disparity map will be generated thanks to the use of a 
stereo camera carried by the user. Working on this map will 
allow to develop an algorithm for the obstacle detection in any 
kind of scenario. The design will be completed with the 
introduction of audio signal to assist the blind person to avoid 
obstacles. To do that, we will use the frequency of the signal to 
codify the obstacle’s angle and its intensity to codify proximity. 
Some experimental results are presented as well as the 
conclusions and the future works. 
	  

I. INTRODUCTION 
	  

Autonomous navigation is of extreme importance for 
those who suffer from visual impairment problems. Without a 
good autonomy, visually impaired people depend on other 
factors or other people to perform typical daily activities. 
Within this context, a system that can provide robust and 
accurate localization of a visually impaired user in urban 
environments, like city or indoor ones, is much more than 
desirable. 
 

Nowadays, most of the commercial solutions for visually 
impaired localization and navigation assistance are based on 
the Global Positioning System (GPS). However, these 
solutions are not suitable enough for the visually impaired 
community mainly for two reasons: the low accuracy in urban 
environments (errors about the order of several meters) and 
signal loss due to multi-path effect or line-of-sight 
restrictions. Moreover, GPS does not work if an insufficient 
number of satellites are directly visible. Therefore, GPS 
cannot be used in indoor environments. 
	  

Computer vision-based approaches offer substantial 
advantages with respect to GPS-based systems and constitute 
a promising alternative to address the problem. By means of 
visual SLAM techniques [1], [2], it is possible to build an 
incremental map of the environment, providing at the same 
time the location and spatial orientation of the user within the 
environment. In addition, compared to other sensory 
modalities computer vision can also provide a very rich and 
valuable perception information of the environment such as 
for example obstacle detection [3] or 3D scene understanding 
[4].	  
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In this paper we will show a solution for visually impaired 
people. This solution will let them get the autonomy they 
need to move in any kind of scenario without any problem 
thanks to the obstacle avoidance module. This work is a 
module of a larger system for assisting visually impaired 
people based on visual maps. In fact, the objective of this 
paper is to complete the thesis work called ‘Vision Based 
Localization From Humanoid Robots to Visually Impaired 
People’ developed by Pablo F. Alcantarilla [5]. The rest of the 
paper is organized as follows: in section II there is an 
introduction to the thesis work ‘Vision Based Localization 
From Humanoid Robots to Visually Impaired People’. In 
section III, we briefly review the stereo rig calibration and 
rectification processes in order to obtain accurate localization 
and mapping results. In section IV, the algorithm for the 
obstacle detection and warning by an audio signal is 
described. Section V explains experimental results 
considering challenging environments with many independent 
moving objects. Finally, in Section VI, main conclusions and 
future works are shown. 
 
II. VISION BASED LOCALIZATION FROM HUMANOID ROBOTS TO 

VISUALLY IMPAIRED PEOPLE. 
 

In this thesis, several algorithms were proposed in order to 
obtain an accurate real-time vision-based localization from a 
prior 3D map. For that purpose, it was necessary to compute a 
3D map of the environment beforehand. For computing that 
3D map, well-known techniques were employed such as 
Simultaneous Localization and Mapping (SLAM) or Structure 
from Motion (SfM). In the thesis, a visual SLAM system was 
implemented using a stereo camera as the only sensor that 
allows to obtain accurate 3D reconstructions of the 
environment. The proposed SLAM system was also capable 
to detect moving objects especially in a close range to the 
camera up to approximately 5 meters, thanks to a moving 
objects detection module. This was possible, thanks to a dense 
scene flow representation of the environment, that allows to 
obtain the 3D motion of the world points. This moving 
objects detection module seemed to be very effective in 
highly crowded and dynamic environments, where there are a 
huge number of dynamic objects such as pedestrians. By 
means of the moving objects detection module it was possible 
to avoid adding erroneous 3D points into the SLAM process, 
yielding much better and consistent 3D reconstruction results. 
Up to the best of our knowledge, this was the first time that 
dense scene flow and derived detection of moving objects 
were applied in the context of visual SLAM for challenging 
crowded and dynamic environments. 
 

In SLAM and vision-based localization approaches, 3D 
map points are usually described by means of appearance 
descriptors. By means of these appearance descriptors, the 
data association between 3D map elements and perceived 2D 
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image features can be done. In this work, the author 
investigated a novel family of appearance descriptors known 
as Gauge-Speeded Up Robust Features (G-SURF). Those 
descriptors are based on the use of gauge coordinates. By 
means of these coordinates every pixel in the image is fixed 
separately in its own local coordinate frame defined by the 
local structure itself and consisting of the gradient vector and 
its perpendicular direction. The author carried out an 
extensive experimental evaluation on different applications 
such as image matching, visual object categorization and 3D 
SfM applications that show the usefulness and improved 
results of G-SURF descriptors against other state-of-the-art 
descriptors such as the Scale Invariant Feature Transform 
(SIFT) or SURF. 
 

In vision-based localization applications, one of the most 
expensive computational steps is the data association between 
a large map of 3D points and perceived 2D features in the 
image. Traditional approaches often rely on purely 
appearance information for solving the data association step. 
These algorithms can have a high computational demand and 
for environments with highly repetitive textures, such as 
cities, this data association can lead to erroneous results due 
to the ambiguities introduced by visually similar features. In 
this thesis, the autor developed an algorithm for predicting the 
visibility of 3D points by means of a memory based learning 
approach from a prior 3D reconstruction. Thanks to this 
learning approach, it was possible to speed-up the data 
association step by means of the prediction of visible 3D 
points given a prior camera pose. 
 

The author implemented and evaluated visual SLAM and 
vision-based localization algorithms for two different 
applications of great interest: humanoid robots and visually 
impaired people. Regarding humanoid robots, a monocular 
vision-based localization algorithm with visibility prediction 
were evaluated under different scenarios and different types 
of sequences such as square trajectories, circular, with 
moving objects, changes in lighting, etc. A comparison of the 
localization and mapping error were done with respect to a 
precise motion capture system, yielding errors about the order 
of few cm. With respect to the vision-based localization 
approach for the visually impaired, the author has evaluated 
the vision-based localization system in indoor and cluttered 
office-like environments. In addition, it was evaluated the 
visual SLAM algorithm with moving objects detection 
considering test with real visually impaired users in very 
dynamic environments such as inside the Atocha railway 
station (Madrid, Spain) and in the city center of Alcalá de 
Henares (Madrid, Spain). The obtained results highlight the 
potential benefits of the approach for the localization of the 
visually impaired in large and cluttered environments.	  
 

III. STEREO RIG CALIBRATION AND RECTIFICATION. 
	  

Stereopsis is the impression of depth that is perceived 
when a scene is viewed with both eyes by someone with 
normal binocular vision. Binocular viewing of a scene creates 
two slightly different images of the scene in the two eyes due 

to the eyes' different positions on the head. These differences, 
referred to as binocular disparity, provide information that the 
brain can use to calculate depth in the visual scene, providing 
a major means of depth perception. 
 

Computer stereo vision is a part of the field of computer 
vision. It is sometimes used in mobile robotics to detect 
obstacles. Two cameras take pictures of the same scene, but a 
distance – exactly like our eyes, separates them. A computer 
compares the images while shifting the two images together 
over top of each other to find the parts that match. The shifted 
amount is called the disparity. The disparity at which objects 
in the image best match is used by the computer to calculate 
their distance. 
	  

In order to obtain accurate localization and mapping 
results, a prior stereo rig calibration process is necessary. The 
stereo rig calibration problem involves the estimation of the 
intrinsic parameters and distortion parameters of each of the 
cameras, and the extrinsic parameters (rotation, translation) 
between cameras. In this paper, both	  cameras were calibrated 
independently using the Camera Calibration Toolbox for 
Matlab [6]. In this way, we can obtain the intrinsics 
calibration matrix for each of the cameras: 
 

K =
f! 0 u!
0 f! v!
0 0 1

 

	  
where !!  and !!  are the focal lengths and !!, !!  are the 
coordinates of the principal point of the camera. Radial 
!!, !!  and tangential !!, !!  distortion parameters are 

modeled by means of polynomial approximations [7]. After 
the calibration of each of the cameras, the extrinsics 
parameters of the stereo rig are estimated. The extrinsics 
parameters comprise of a rotation matrix RLR and a 
translation vector TLR between the left and right cameras of 
the stereo rig. 
	  

Once we have obtained the intrinsics and extrinsics of the 
stereo rig, we can correct the distortion of the images and 
perform stereo rectification [8]. Stereo rectification simplifies 
considerably the stereo correspondences problem and allows 
computing dense disparity or depth maps. 

 
After stereo rectification, we obtain a new camera matrix 

K, where the left and right cameras have the same focal 
lengths f and principal point !!, !! . The rotation matrix 
between cameras RLR is the identity matrix, and the 
translation vector TLR encodes the baseline B of the rectified 
stereo rig. Now, considering an ideal stereo system, the depth 
of one 3D point can be determined by means of the following 
equation: 

! = ! ∙   
!

!! − !!
= ! ∙

!
!!
  

	  
where !! is the horizontal disparity or the difference in pixels 
between the horizontal image projections of the same point in 
the right and left images. Given the depth of the 3D point Z, 
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and the stereo image projections of the same point in both 
images !! , !! , !   (notice that in a rectified stereo  !! = !! =
!) the rest of the coordinates of the 3D point with respect to 
the camera can be determined as: 
 

! = ! ∙
!! − !!

!
  

! = ! ∙
! − !!
!

  

  
In Fig.1 and Fig.2 we depict some examples of the 

difficult challenging scenes that we can have in real world 
crowded environments for the visually impaired. The images 
show the original image and the resulting disparity map for 
outdoor and indoor environments 
	  

	  
Fig. 1. Disparity map for an image taken in the city center of Alcalá 
de Henares. 
	  

 
Fig. 2. Disparity map for an image taken in a rail station (Atocha, 
Madrid). 
	  

IV.   OBSTACLE DETECTION ALGORITHM. 
 

One of the advantages of stereo vision against monocular 
one, is that we can exploit the information from two images at 
once, obtaining dense disparity maps (between the left and 
right stereo views at each frame). Since for every pixel that 
has a valid disparity value we know its 3D position (with 
respect to the camera coordinate frame) we can detect 
obstacles in any scenario. 
	  

The development of an algorithm that detects obstacles is 
the main task described in this section. This task is possible 
thanks to the dense disparity map. The most important 
element of the algorithm is the creation of a cumulative grid. 
The grid will represent the presence of obstacles in any 
image. It is important to say that the dimensions of the grid 
cover a distance of four and half meters. This is very 
important because in every image can appear obstacles that 
are quite far from the camera. As these obstacles do not 
belong to the grid of interest, they cannot be considered as 
obstacles. In other words, the obstacle is not going to be 

considered if it is not closer than four and a half meters to the 
visually impaired person because they are not a problem for 
this movement. 

 
To build the grid, each frame is analyzed, pixel-by-pixel, 

and, according to its coordinates, it is determined if it belongs 
to the ground plane or if it is part of a possible obstacle. Then, 
the first step is to determine the ground plane of the scene. To 
achieve this, we use the RANSAC algorithm. It basically 
works as follows: 

 
- A subset of N points is chosen from the disparity 

image. 
- Three points of the subset (randomly selected) are 

used to estimate the values for A, B, C and D (plane 
components) in:  
 

!" + !" + !" + ! = 0	  
	  

- The remaining N-3 points are tested against this 
model to determine the number of inliers: 

 

!! =
!" + !" + !" + !

!! + !! + !!
  

	  
- This process is repeated several times and the plane 

with the higher number of inliers is considered as the 
ground plane. 

- In every frame, the plane components (A, B, C and 
D) are compared to the components of the previous 
frame to control that the chosen plane is the correct 
one, taking into account that the ground plane cannot 
change abruptly. 

 
Once it is determined which pixels belong to the ground, 

the rest of them are analyzed in order to set if they belong to 
the grid of interest and if they are part of a possible obstacle. 
If a pixel is part of an obstacle, it is included in the cumulative 
grid of interest. As we said before, the grid is used to 
represent the presence of  obstacles, not their shapes. 

 
The grid we are using is shown in Fig.3. As it can be seen, 

polar coordinates have been used. They best fit the obstacles 
detection when a user is walking. Our grid is divided in three 
zones to represent the distance to obstacles (4.5, 3 and 1.5m). 
Each zone is divided in portions of 30º (as it is shown in the 
figure). 

 
	  

!"#$ = !! + !! 
 
 
 

! = tan!!
!
!

 
 
 

Fig. 3. Polar grid that has been implemented and equations used to 
determine the obstacle’s position. 
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As it has been said before, once we have determined 
which pixels belong to the ground plane, we analyze the rest 
of them. Thanks to the disparity map, we can obtain the 
coordinates of every pixel and we can check if they are 
inside the grid of interest. Before including any pixel in the 
cumulative grid, we compare the pixel height (y coordinate) 
with respect to the camera. In this way, we are not 
considering obstacles which are at a height of, for example, 
three meters, because they are not a problem for a visually 
impaired person. We only consider obstacles height from 
10cm to 2,5m. 
	  

	  
Fig. 4. The image depicts ground plane and obstacle detection in the 
streets of Alcalá de Henares. 

 
Fig.4 and Fig.5 show the excellent performance of the 

algorithm. In the grid we represent the presence of the 
obstacle and the proximity to the user as a function of the 
grid parts that are activated. To do that, when an accumulator 
is over a certain threeshold, it is drawn with a color. Green 
when the obstacle is far, yellow when its distance is médium 
and red when it is very close to the user. 

 

 
Fig. 5. The image depicts ground plane and obstacle detection 
inside the railway station of Atocha, Madrid. 

 
In the final part of the algorithm, we warn to the user by 

audio signals. To implement this, it is used a library called 
libbeep. Thanks to this library we can configure audio signals 
to indicate the presence of an obstacle. This library includes a 
function called beep() that allows the user to control the pc-
speaker, allowing different sounds to indicate different events. 
In this way we can control the frequency, length and 
repetitions of the acoustic signal. 

 
The grid is analyzed before sending the acoustic signal. 

We do this to check which obstacle is closer to the user and 
inform him only about that obstacle. Depending on the 
obstacle position, the acoustic signal is sent to one earphone 
or another. If the obstacle appears in the left side, the audio 
signal will be sent to the left earphone and if it is in the right 
one, it will be sent to the right earphone. Obviously, if the 
obstacle is just in front of the user, the acoustic signal is sent 
to both earphones. 

Fig.6 shows a flowchart that details this part of the 
algorithm. First step is to check in the grid if there is any 
obstacle and if it is the closest one to the user. If so, we 
determine the obstacle position and the corresponding 
acoustic signal is sent. If it is not the closest obstacle, the grid 
is analyzed again. 
 
 
 
 
 

	  	  	  	  	  	  	  	  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 6. The flowchart resumes the performance referred to the 
acoustic warning. 

 
As we have said before, we control the frequency, length 

and repetitions of the acoustic signal. Preliminary we have 
settled the configuration indicated in Table 1 but it is quite 
possible that it will be changed in the future, once we have 
tried the system with visually impaired people, to satisfy their 
needs and preferences.  
 

 4.5 – 3m 3 – 1.5m 1.5 – 0m 
180º - 150º f=100, l=50, 

r=3, ear=left 
f=1100, l=50, 
r=3, ear=left 

f=3100, l=50, 
r=6, ear=left 

150º - 120º f=200, l=50, 
r=3, ear=left 

f=1200, l=50, 
r=3, ear=left 

f=3200, l=50, 
r=6, ear=left 

120º - 90º f=300, l=50, 
r=3, ear=left 

f=1300, l=50, 
r=3, ear=left 

f=3300, l=50, 
r=6, ear=left 

90º - 60º f=600, l=50, 
r=3, ear=right 

f=1600, l=50, 
r=3, ear=right 

f=3600, l=50, 
r=6, ear=right 

60º - 30º f=700, l=50, 
r=3, ear=right 

f=1700, l=50, 
r=3, ear=right 

f=3700, l=50, 
r=6, ear=right 

30º - 0º f=800, l=50, 
r=3, ear=right 

f=1800, l=50, 
r=3, ear=right 

f=3800, l=50, 
r=6, ear=right 

Table 1. The table shows the configuration used for the acoustic 
warning, where f is frequency (Hz), l is length (ms) and r are the 
repetitions. 
 
 

	  	  	  Grid	  

Obstacle?	  

Yes	  

Position	  
(dist, α)	  

No	  

Beep	  
f=g(dist,α)	  
ear=g(α)	  
l=k,	  r=m	  
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V. EXPERIMENTAL RESULTS. 

	  
Our vision-based system aid for the visually impaired 

consists of a stereo camera connected through a fireware 
cable to a small laptop for recording and processing the 
images. The stereo camera system is attached to chest of the 
visually impaired user by means of a non-invasive orthopedic 
vest. Then, the camera is connected to a small laptop by 
means of a fireware cable. 
	  

Fig. 8. Depicts one image of our vision-based system aid for the 
visually impaired. 
	  

We conducted large-scale visual SLAM experiments with 
visually impaired users in highly dynamic environments, with 
many independently moving objects such as pedestrians or 
cars. We performed experiments inside the Atocha railway 
station (Madrid, Spain) and in a crowded area of the city 
center of Alcalá de Henares (Madrid, Spain). In these 
experiments, we were mainly interested in evaluating the 
performance of the obstacle detection algorithm. For this 
purpose, the visually impaired user received several 
indications before the start of the sequence about going from 
one starting point to a final destination. Fig. 9 and Fig. 10 
show some images of the trajectories. 
 

 
Fig. 9. (a) Start of the route (b) One image sample inside the railway 
station (c) End of the route: Entrance to the underground station. 
 

For the mentioned experiments, we have used the 
Bumblebee2 stereo camera. This commercial stereo rig 
provides highly accurate camera calibration parameters and 
also stereo rectification and dense depth map generation on-
chip. The camera baseline is 12 cm and the horizontal field of 
view is of 100º. The image resolution was 640 × 480 pixels 

and the acquisition frame rate was about 15 frames per 
second, considering B&W images. 

 
 

 
Fig. 10. (a) Start of the route: Façade of the University of Alcalá (b) 
Mayor street (c) End of the route: Cervantes house. 

 
In order to analyze performance of the obstacle detection 

module, we have checked how many times the grid detects 
the presence of an obstacle in each accumulator. The two 
experiments and results are shown in Tables 2 and 3. 

 
 4.5 – 3m 3 – 1.5m 1.5 – 0m 

180º - 150º 0% 0% 0% 
150º - 120º 35,6% 26,1% 3,9% 
120º - 90º 39,7% 31,2% 6.8% 
90º - 60º 32,1% 22,6% 2,1% 
60º - 30º 19,1% 11.9% 5,8% 
30º - 0º 1,2% 0,8% 0,3% 

Table 2. The table shows the percentage of obstacles considered in 
the grid. Alcalá de Henares. 
 

 4.5 – 3m 3 – 1.5m 1.5 – 0m 
180º - 150º 0% 0% 0% 
150º - 120º 42,1% 33,4% 6,2% 
120º - 90º 46,6% 38,3% 9,1% 
90º - 60º 44,1% 32,5% 5,4% 
60º - 30º 25,3% 18,6% 2,2% 
30º - 0º 1,3% 0,9% 0,4% 

Table 3. The table shows the percentage of the obstacles considered 
in the grid. Atocha railway station (Madrid). 
 

As it can be seen, there are more obstacles in the Atocha 
railway station sequence than in the Alcalá de Henares city 
center one. On the other hand, obstacles are greater in 
accumulators furthest from the user and inside accumulators 
instead of the frontal ones. This means that pedestrians trend 
to avoid mostly blind people but sometimes they fail and may 
even crash. 

 
After obtaining these results we can see that the system 

can be very useful for a visually impaired person. With the 
system they can increase their autonomy specially in crowded 
indoor environments where there are a lot of people 
wandering around the user. 

 
VI. MAIN CONCLUSIONS AND FUTURE WORK. 

 
In this paper, we have shown that it is possible to obtain 

an obstacle avoidance system for assisting visually impaired 
people. Experimental results obtained in an outdoor and an 
indoor environment with real visually impaired people show 
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that this system can be useful for this users community. This 
system is a module of a larger system for assisting visually 
impaired people based on visual maps. 
 

The visual SLAM module is an important part of a 
mobility system towards the autonomous navigation of the 
visually impaired. Once a persistent map of the environment 
is created by means of visual SLAM, this map can be used for 
localization [9] or topological navigation [10] purposes. 
Given a prior map of the environment and an estimate of the 
localization of the user within the environment, navigation 
commands can be computed and transmitted by audio devices 
to the visually impaired users. We plan to do experiments 
with audio bone conducting, which is a non-invasive 
technology that allows visually impaired users to listen to 
other important sound sources in the environment (e.g. 
vehicles) while receiving navigation commands. 
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