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Abstract In this article, we present an effective system for
detecting vehicles in front of a camera-assisted vehicle (pre-
ceding vehicles traveling in the same direction and oncoming
vehicles traveling in the opposite direction) during night-time
driving conditions in order to automatically change vehicle
head lights between low beams and high beams avoiding
glares for the drivers. Accordingly, high beams output will
be selected when no other traffic is present and will turn low
beams on when other vehicles are detected. In addition, low
beams output will be selected when the vehicle is in a well
lit or urban area. LightBeam Controller is used to assist driv-
ers in controlling vehicle’s beams increasing its correct use,
since normally drivers do not switch between high beams
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and low beams or vice versa when needed. Our system uses
a B&W forward looking micro-camera mounted in the wind-
shield area of a C4-Picasso prototype car. Image processing
techniques are applied to analyse light sources and to detect
vehicles in the images. Furthermore, the system is able to
classify between vehicle lights and road signs reflections or
nuisance artifacts by means of support vector machines. The
algorithm is efficient and able to run in real time. The system
has been tested with different video sequences (more than
7 h of video sequences) under real night driving conditions
in different roads of Spain. Experimental results, a compar-
ison with other representative state of the art methods and
conclusions about the system performance are presented.

Keywords Computer vision · Driver-assistance systems ·
Head-lights detection · Tail-lights detection · Support vector
machines

1 Introduction

Modern automotive vehicles include a variety of different
lamps to provide illumination under different operating con-
ditions. Headlamps are typically controlled to alternately
generate low beams and high beams. Low beams provide
less illumination and are used at night to illuminate the for-
ward path when other vehicles are present. High beams pro-
vide significantly more light and are used to illuminate the
vehicle’s forward path when other vehicles are not present.
Daylight running lights have also begun to experience wide-
spread acceptance.

There are various countries with regulations to control
the amount of glare experienced by drivers due to preced-
ing vehicles (other vehicles traveling in the same direction)
and oncoming vehicles (vehicles traveling in the opposite
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Fig. 1 Scheme of the dimming
vehicle high beam headlamps
problem

direction). These laws obligate vehicle manufacturers to
build vehicles that comply with these regulations. For exam-
ple, the Department of Transportation (DOT) in USA [1] reg-
ulates the light emissions of vehicle high beam headlamps.
In accordance with the DOT regulation limits, vehicle high
beam headlamp emissions provide an intensity of 40,000 cd
at 0◦, 10,000 cd at 3◦, 3,250 cd at 6◦, 1,500 cd at 9◦ and 750 cd
at 12◦. A scheme for understanding this problem is illustrated
in Fig. 1. In order to avoid an illuminance of 0.1 foot-candles
(fc) incident on another vehicle at these angles, the vehicle
high beams headlamps should be dimmed within 700 feet
(213 m) of another vehicle at 0◦, within 350 feet (107 m) of
another vehicle at a horizontal position of 3◦ and 200 feet
(61 m) of another vehicle at a horizontal position of 6◦. In
order to prevent other vehicles drivers from being subjected
to excessive glare levels an automatic control of the vehicle
headlamps can be done. For a preceding vehicle, the dis-
tance by which the controlled vehicle’s headlamps must be
dimmed, can be less than for an oncoming vehicle since glare
form behind is usually less disruptive than oncoming glare.
In the last few years many researchers have studied the effects
of oncoming headlight glare [2]. An automatic headlamp
dimmer system must sense both the head lights of the oncom-
ing vehicles as well as the tail lights of preceding vehicles.
Then, it has to distinguish between nuisance light sources,
such as reflections of road signs or road reflectors, street-
lights, etc., from light sources that require headlight control
to avoid an undesirable performance.

Several automatic headlamp dimmer control systems have
been proposed in the literature by automobile manufacturers

but, from our knowledge, at the moment none of them are
commercialized. However, there are only few references in
specialized scientific journals and symposiums. Currently the
two more relevant systems developed by automobile manu-
facturers are:

• SmartBeam, a vehicle lamp control developed by Gentex
Corporation. It is a system and method for automatically
controlling vehicle headlamps including an image sen-
sor and a controller to generate headlamp control signals.
The result is an intelligent, high-beam headlamp control
system that greatly improves night-time driving safety.
SmartBeam optimizes the use of a vehicle’s headlamp
system in order to provide the maximum amount of light
possible for any driving scenario [3].

• Adaptive headlight control (AHC) developed by Mobil-
eye. The system is intended to support the driver in using
the high beam to the fullest extent possible, without incon-
veniencing oncoming or preceding traffic. To perform
AHC Mobileye uses an image grabber and detailed anal-
ysis of light sources appearing in the image. The AHC
Mobileye’s system turns the high beams off in the follow-
ing cases:

1. Preceding traffic (tail lights): where tail lights are rec-
ognized in front of the host vehicle up to a distance
of 400 m.

2. Oncoming traffic (head lights): whenever there is an
oncoming vehicle up to a distance of 800 m.

3. Lit/Urban areas: whenever the host vehicle enters a
well lit (or an urban) area.

According to its Web page Mobileye’s AHC will be in
serial development in the next future with for a major
European platform [4].

Normally drivers do not switch properly between low and
high beams or vice versa. Instead, drivers keep low beams
on in order to avoid frequent switching and often forget to
turn high beams off or switch beams too late. In fact, this can
contribute to accidents due to excessive glares. Moreover,
driving under or with low beams reduces the drivers visibil-
ity range which reduces the ability of response to possible
traffic events ahead such as pedestrians.

Under night-time driving conditions the more confident
visual information for detecting vehicles are their head lights
and tail lights. Some researchers have been working on the
development of systems for night-time vehicle detection and
they are based mainly in the detection of head lights and
tail lights. In [5] head lights and tail lights are extracted by
means of an automatic multilevel thresholding using a colour
camera. Then bright objects are processed by a rule-based
procedure, to identify the vehicles by locating and analyz-
ing their vehicle light patterns, and estimate their distances
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to the camera-assisted car. However, the results about dis-
tance detection (they only show results up to 23 m ) are very
poor for a real application. Generally it is recommended to
dim high beams for a preceding vehicle at least a distance of
100 m and for an oncoming vehicle at a distance of 200 m.
In addition, their proposed method for dealing with nuisance
artifacts such as road signs is not robust enough. They simply
discard the first one-third of the vertical y-axis, which in fact
is a dangerous assumption which can reduce drastically the
distance detection range. For far detection distances, a robust
headlamp controller must deal and classify correctly between
nuisance artifacts, road sign’s reflections, head lights and tail
lights. In [6] a similar approach for night-time vehicle detec-
tion is proposed. In this case only tail lights are detected
and only results up to 30 m are shown. Then, classification
method used to deal with nuisance artifacts are only based in
aspect ratio constraints. In conclusion, this approach presents
the same limitation, even more, than the previous one. In [7]
another approach for an intelligent headlight control is pro-
posed. They use a novel image sensor where 75% of the pixels
are monochrome and 25% are red for improving the detection
of vehicular lamps at far distances. For dealing with nuisance
artifacts and reflections, they propose using Real-AdaBoost
machine learning [8] with a large number of vehicular fea-
tures both in B&W and colour. Although, their method and
the use of their novel sensor seems to be promising, they
just only have a qualitative (non-quantitative) impression of
system performance.

In [9] the bases of our LightBeam Controller are explained
and some preliminar results presented. In this article, more
details about the system and results are analysed. Our work
proposes an effective automatic control of the vehicle head-
lamps based on the detection of head lights and tail lights
under night-time road conditions. LightBeam Controller uses
a B&W camera, since for an industry mass production it
is cheaper using B&W micro-cameras than colour cameras.
Besides, the sensitivity of B&W cameras is higher than for
colour ones. This is a very important topic for a visual system
that must work under night-time conditions. Higher B&W
sensitivity makes possible the detection of bright lamps at
far distances. The main stages of the algorithm are explained
in Sect. 2. Experimental results can be found in Sect. 3. Con-
clusions and future works are presented in Sect. 4.

2 Algorithm

Our method comprises the following steps: the input images
are obtained from the vision system using a B&W camera
(CMOS image sensor) which is mounted behind the wind-
screen inside the camera-assisted vehicle.

In order to choose the optimal lens for this application, we
did a geometrical study using a pin-hole model. The camera

Fig. 2 Geometrical study for optical lenses

must see an oncoming vehicle as far as possible and it must
hold this in its field of view until about 10 m away from the
assisted car and with the minimum distortion. Then, it must
be considered that a vehicle that is overtaking the assisted
car must be detected before that its own head lights glare the
driver of the other vehicle. From this study we concluded
that the optimal lenses were between 4.3 and 6 mm of focal
length. Figure 2 depicts the scenario for theses lenses.

We performed some experimental tests using these two
lenses for obtaining the best option in an experimental way.
The results of these experiments concluded that for the lens
of 6 mm bright objects appear in the image very close to
the horizon line and the variation in vertical pixels from the
frame where the vehicle appears in the image to the frame
where it leaves this, is smaller than using the 4.3 mm lens.
Then, the number of frames where the vehicle is in the field
of view of the camera is lower for the 6 mm than for the
4.3 mm focal distance. On the other hand, for uneven roads
vehicles can be seen with a 4.3 mm lens before than using
a 6 mm one due to its higher field of view. Finally, when a
vehicle is overtaking the assisted car, with a 4.3 mm lens the
vehicle is detected before than with a 6 mm one, minimizing
the glare of the driver. As conclusion, the optical lens was set
to 4.3 mm, because its field of view is closer to the human one
and with this lens, vehicle detection performance is higher.
In addition, with our camera settings we can use the same
camera configuration for other driver assistance applications
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Fig. 3 Typical night-time road environment

addressable by a monocular B&W camera system, such as
lane departure warning [10] or pedestrian detection [11].

As can be seen in Fig. 3, typical night-time road conditions
are characterized by a dark background and bright objects
corresponding to vehicular lamps and nuisance light sources
(reflections of road signs or road reflectors, streetlights, etc.).
In order to distinguish between vehicular lamps and nuisance
artifacts, we propose to maximize the halo effect. In order to
do that, we have to pay special attention to the camera settings
as we will explain hereafter.

An overall overview of our algorithm is depicted in Fig. 4.
Firstly, an adaptive thresholding must be applied to detect
bright blobs in the image, which correspond to with vehicles’
lights. Vehicular lamp usually correspond to bright objects
in the image under night-time driving conditions. According
to this, a good image processing starting point seems to be
some form of thresholding. In [5] they perform an automatic
multilevel thresholding for bright objects extraction under
night-time driving conditions. They transform RGB images
into grey-intensity images to reduce the computation time
of the segmentation, and apply their multilevel segmentation

algorithm based in the work by Otsu [12]. In [6] they detect
tail lights by applying two colour threshold to search for white
and red regions transforming RGB space to Hue, Saturation,
Value (HSV) colour space since this colour space is more rep-
resentative of the way humans observe colour. Using colour
information is an effective way to reduce the effect of nui-
sance artifacts and remove non-vehicle light sources, and also
it benefits the detection of tail lights. However, for RGB cam-
eras the sensor sensitivity for bright objects is smaller than
for B&W cameras, which indeed has a tremendous impact
in the detection distance of bright lamps at far distances.

Once bright objects are extracted, the segmented blobs are
clustered, based on geometric characteristics of the blobs,
in order to distinguish vehicles from other nuisance light
sources. Each cluster is tracked in a sequence, using a Kalman
Filter [13], obtaining a multi-frame tracking. Kalman filter-
ing has been widely used in the literature for target tracking
under the hypothesis of Gaussian distributions. Some exam-
ples of practical vision-based applications using Kalman
filtering can be found in the literature such as for pedestrian
detection [14,15] for multi-vehicle tracking.

We also perform a road vertical curvature estimation,
due to the fact that at far distances the road may be not
plane. Once, this road curvature is estimated, a vertical offset
correction is only done for those objects located close to
the horizon line, at the infinity. After that, some representa-
tive features are calculated for each tracked object, and then
objects are classified in signs (main nuisance light source due
to the reflections of the own vehicle’s light over the road-traf-
fic signs) or vehicles, using a support vector machine (SVM).
Finally, a decision between the low/high beams turned on is
taken.

Fig. 4 Algorithm’s overall overview for night-time images
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Fig. 5 Typical night-time urban area environment

If the vehicle enters in an urban or well lit area, it is unnec-
essary to process all the algorithm steps. The bright objects
segmentation is the only step which is processed, since in an
urban or well lit area the amount of bright objects is higher
than during night-time road conditions (Fig. 3) and traffic
lamps usually appear in the first one-third of the vertical
y-axis. According to this, when the number of bright objects
is higher than a fixed threshold, the low beams output will
be selected. This is because high beams are not necessary in
urban areas where roads are well lit, since they are designed
to help drivers see farther and drive safely within the area lit
up by the high beams, in areas without much ambient light.
Figure 5 depicts a typical night-time urban environment.

2.1 Bright objects segmentation

In our algorithm, B&W images are thresholded using an
adaptive threshold in order to detect image bright objects
and to measure some geometric parameters over them. Some
important aspects must be considered for choosing a correct
threshold value such as: road illumination conditions, vehi-
cle’s lights appearance, nuisance light sources and camera
parameters.

Figure 6 depicts 3D intensity shape of a standard vehi-
cle’s head light. It has a Gaussian shape where the cen-
tre pixels belongs to the light source with values above
250. The edge pixels belong to the background with val-
ues below 50. As it can be seen, there is a high range in
order to fix a threshold for light detection. Normally, nui-
sance light sources use to appear in the image with values
below 200 (see Fig. 7b). The problem is that there are some
reflections of road signs that present similar intensity val-
ues as the vehicle’s light, as we depict in Fig. 7a. In these
cases it is imposible to differentiate them using a threshold-
ing method. Both images shown in Fig. 7 are from some
of the analysed real sequences under our camera settings.
Another related problem is that head and tail lights have dif-
ferent intensity values in the B&W image. Actually, intensity
for tail lights is lower than for head lights and sometimes

Fig. 6 Shape of vehicle’s head light

(a) (b)

Fig. 7 Grey scale difference between road sign, nuisance light, tail
lights and head lights

below most of the nuisance artifacts in the image. This is
the reason why tail lights detection is more difficult than
head ones. Our adaptive thresholding technique is similar to
the one described in [16]. The adaptive thresholding is com-
puted as follows: firstly bright objects are extracted using a
low threshold, and the mean and standard deviation (μi , σi )
of the grey level of these objects are computed. These are
weighted according to a Gaussian function of their distance
from that centre point. We use a first very low threshold
equals to 50 (in a grey level range from 0 to 255), to make
sure that all the potential bright lights are extracted. Due to
nuisance artifacts, a ratio aspect restriction is applied in the
last step, in order to compute only the mean and standard
deviation of potential vehicles lights. Later, bright objects
are extracted from the original image according to this new
adaptive threshold:

Threshold = μ − k · σ (1)

μ = 1

N
·

N∑

i=1

μi (2)

σ = 1

N
·

N∑

i=1

σi (3)

In Eq. (1), the parameter k is set to a fixed value exper-
imentally calculated in a setup process. With this thresh-
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old, all bright objects are extracted correctly under differ-
ent light conditions. Since the selected threshold depends
on camera’s gain and time exposure, the threshold can be
tuned using this parameter k. As it will be explained in
Sect. 2.5, we realized that in vehicle’s lights a halo effect
around lights appears, but this halo cannot be observed in
the same magnitude in road signs, which means that could
be a good parameter for classifying blobs between signs and
vehicles. In order to measure this halo effect, we applied a
black hat transformation [17]. This halo effect is more sig-
nificant with saturated images, so as more saturation that
we have in the image, it will be easier to classify and dif-
ferentiate between bright lamps and nuisance artifacts or
road signs reflections. According to this, our camera set-
tings have a high exposure time and gain, which produce
an acceptable blur and noise in the images for this appli-
cation. Due to these high values, bright lamps appear in
the images as saturated Gaussian shapes with some level
of halo. With our thresholding algorithm, we are able to
extract all the potential lights. Our algorithm is conserva-
tive in the way that we do not miss any real vehicular lamp in
the segmentation, but we may introduce road sign reflections
or nuisance artifacts in the next processing steps. However,
introducing nuisance artifacts in this step of the algorithm
is unavoidable and then we will classify correctly the seg-
mented bright object by means of SVM as explained in
Sect. 2.6.

Another approach for bright objects segmentation, is using
the scale-normalized Laplacian operator. This operator is
commonly used as a blob detector. Given an image f (x, y),
the image is convolved with a bi-dimensional gaussian kernel
of standard deviation σ obtaining L(x, y, σ ). Equation (4)
shows the scale-normalized Laplacian operator:

∇2 L(x, y, σ ) = σ 2 · (Lxx + L yy) (4)

This operator has good responses for blobs of similar size
to the scale parameter σ . The operator response is strongly
dependent on the relationship between the size of the blob
and the scale at which the Laplacian operator is computed.
In order to automatically capture blobs of different size
(unknown) in the image, a multi-scale approach is necessary
[18]. In addition, the size in pixels of head lights and tail lights
blobs in the image is approximately known under certain
camera settings. Therefore, we apply the scale-normalized
Laplacian operator at two different scales, one bigger scale
(σ1) for head lights and a smaller one (σ2) for tail lights.
Blobs with higher response in both scales are selected as
bright objects. Figure 8 depicts the results of applying the
scale-normalized Laplacian operator using a scale for head
lights over the image of Fig. 3.

According to our camera’s configuration, head lights and
tail lights do not appear normally above the one-third of the
vertical y-axis. That is the reason why a region of interest

Fig. 8 Scale-normalized Laplacian operator for head lights

is used. Two lines (denoted as horizon lines) delimitate the
interest area in the image. The Horizon Real is the value of the
y image coordinate obtained by considering in the calibration
equations that vehicles are located at the infinity (Z → ∞).
The Horizon Low is the value of the y image coordinate at
where vehicles are considered to be at a distance Z of 5 m
which is so close to the camera-assisted vehicle that no blob
can appear below this line. Since in practice the road is not
always planar, there can appear blobs over the real horizon
and a new line called Horizon Up is defined. This is the real
horizon with a negative offset just for defining the real anal-
ysis area.

Both approaches work well and are robust to lighting
changes. Since we have real-time restrictions, the adaptive
thresholding method was chosen, since the computational
burden is lower than with the scale-normalized Laplacian
operator. Figure 9b shows how bright objects are extracted
from the original image. The green lines that appear in Fig. 9b
define the region of interest of the image.

2.2 Clustering and matching process

The goal of this process is to cluster the detected blobs in
the previous step. As long as a cluster in a frame is matched
with the same cluster in the next frame, this is considered as
an object, and must be evaluated to determine if the object is
considered as a vehicle or not.

The clustering and matching process starts by finding the
closest object of the previous frame to each blob in the cur-
rent frame according to the Kalman filter prediction of the
position of each of the objects. If the closest object exists, the
blob is associated to that object. In the case that the closest
object had already an associated blob, proximity between
the two blobs is evaluated, and if it is suitable that both blobs
belong to the same vehicle, the blob is added to the object’s
blobs list. This may happen with the two lights of a car as
it approaches. A basic method for detecting if an object is
formed by only one or more blobs is studying its horizontal
and vertical projections. If any of these has more than one
relative maximum that means that through this projection the
object presents more than one blob. With this method, we can
distinguish between lights and its reflections, or if the blob
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Fig. 9 Bright objects
segmentation

(a) (b)

is potentially a motorbike and/or a single lamp as is shown
in Fig. 10.

Each object has a live time. This time counts the num-
ber of frames in which it has been matched. Objects must
be matched during a minimum number of frames in order to
be considered as valid. An important issue of the clustering
process is to classify objects between preceding or oncoming
vehicles. If ever an object is detected to be at a distance twice
farther than any other distance at what it has been before, the
object is classified as preceding, which means that the object
is moving in the same direction of the camera-assisted car.
For the rest of cases the object is classified as oncom-
ing, which means that the object is moving in the opposite
direction.

Then, objects are tracked using Kalman filters [13].
The state vector is simply the respective horizontal and
vertical image coordinates for the centroid of every object.
The purpose of this Kalman filtering is to obtain a more
stable position of the object’s centroid since from this
position, we obtain the distance between objects and the
camera-assisted car. In addition, car oscillations due to
the unevenness of the road makes the screen coordinate
of the detected lights change several pixels up or down.
This effect makes the distance detection worse, so Kal-
man filtering is a good method for diminishing these kinds
of oscillations. Another advantage of using Kalman filters
is that we can predict during some frames the position
of every object in situations where detection fails due to

Fig. 10 Vertical and horizontal projections
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occlussions, overtakings or distortion changes of the light
sources.

2.3 Distance estimation

In order to estimate the distance between the camera-assisted
car and the detected vehicles using monocular vision, a per-
spective camera model is applied, as it can be seen in Fig. 11.
We take the seminal work of Dickmanns and Mysliwetz [19]
as our main reference for camera look-ahead distance and
road curvature estimations. By using the road vertical curva-
ture estimation, we perform a correction of the vertical image
coordinate of all the objects located at the infinity where the
flat road assumption is not valid. The origin of the vehicle
coordinate system is located at the central point of the camera
lens. The XV and YV coordinates of the vehicle coordinate
system are parallel to the image plane and the ZV axis is
perpendicular to the plane formed by the XV and YV axes.
A vehicle at a look-ahead distance Z from the camera will
be projected into the image plane at a vertical and horizontal
coordinates (u, v), respectively. Vertical and horizontal map-
ping models can be carried out but in this application the most
important is the vertical one. The vertical model considers
that the road is flat and it uses the following parameters:

• I: Image
• Z: look-ahead distance for planar ground (m)
• hCAM: elevation of the camera above the ground (m)
• L HY : elevation of the vehicle’s light above the ground

(m)
• θCAM: camera pitch angle relative to vehicle pitch axis

( rad)
• θZ : incident angle of the precedent vehicle’s light in the

camera relative to vehicle pitch axis ( rad)
• v: vertical image coordinate (pixels)
• Height: vertical size of the CCD (pixels)
• Fv: vertical focal length (pixels)

According to Fig. 11, the vertical mapping geometry is
mainly determined by the camera elevation hCAM and vehi-
cle’s lights elevation L HY above the local ground plane as
well as the pitch angle (θCAM). The longitudinal axis of the

Fig. 11 Vertical road and mapping geometry

vehicle is assumed to be always tangential to the road at the
vehicle centre of gravity (cg).

To each image scan line at v, there corresponds a pitch
angle relative to the local tangential plane of:

θZ = θCAM + arctan

(
v

Fv

)
(5)

From this, the planar look-ahead distance corresponding to
v, is obtained as:

Z = hCAM − L HY

tan (θZ )
(6)

And finally, after applying a coordinate change in the image
plane, the equation for computing the look-ahead distance Z
becomes:

Z = hCAM − L HY

tan
(
θCAM + arctan

(
v−Height

Fv

)) (7)

Even though this look-ahead distance estimation is reason-
ably good in almost all the scenarios, there are situations
as uneven roads or when the detected vehicle is on a curve,
where the horizontal mapping geometry must be considered,
as we depict in Fig. 12. For this purpose a correction of the
distance Z is proposed in which the projection in the hori-
zontal coordinate of the image (u) is introduced:

ZAUX = Z · (u − Width)

Fu
(8)

where u is the horizontal image coordinate (pixels), Width
the horizontal size of the CCD (pixels), Fu is the horizontal
focal length (pixels).

And finally the real distance (ZR) can be obtained from the
contributions of horizontal and look-ahead distances apply-
ing the following equation:

ZR =
√

Z2
AUX + Z2 (9)

The parameter L HY is defined as the elevation of the vehi-
cle’s light (head lights or tail lights) above the road. Since we
are working with only one camera at night and estimating 3D
distances very far, it is not possible to calculate this from the
image analysis. Then, this parameter is computed off-line in
a previous setup. As there are high differences between the
elevation of the head and tail lights in vehicles, two different
values were assigned to this parameter as a function of the
kind of light. These values represent the average elevation of
analysed vehicles in the setup process.

In addition, a classification between preceding or oncom-
ing vehicles is carried out in the clustering stage of the algo-
rithm based in aspect ratio constraints. Depending on this
classification, one of the next two different values will be
used:

• Head lights: L HY = 0.6 m
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Fig. 12 Horizontal road and mapping geometry correction

• Tail lights: L HY = 0.8 m

However, this distance is only an approximation, since
some sources of error can affect this estimated distance, such
as: elevation of the vehicle’s light, road unevenness, object’s
centroid, etc. In order to minimize this errors, a vertical coor-
dinate correction is proposed.

2.4 Road vertical curvature estimation and vertical
coordinate correction

In our camera perspective model shown in Fig. 11, we are
assuming that the road is plane. However, this is a dangerous
assumption, since at far distances (for distances higher than
500 m) the road vertical curvature may influence the vertical
position at which the objects appear in the image. As a sym-
plifying assumption, the horizontal road curvature is assumed
to be so small that is not considered in the perspective model.
Figure 13 depicts the vertical road curvature problem. One of
the most important parameters to classify between road signs
reflections and vehicle’s lights is the vertical image coordi-
nate v. If the road vertical curvature is significant, some mis-
takes can arise in the classification process due to the flat road
assumption, so a road vertical curvature estimation must be
included into our camera perspective model. From the verti-
cal geometry mapping we can obtain an expression for this
vertical curvature:

C0v = 2

Z inf

[
tan θZ − (hCAM − L HY )

Z inf

]
(10)

Fig. 13 Road vertical curvature problem

In the last equation, Z inf is the distance Z at which we can
consider that the object is located at the infinity. This param-
eter is set to a default value of 900 m. The parameter C0v is
computed for every object located close to the horizon line in
the image and with a small size. Then, the parameter C0vm is
estimated as the mean of all the individuals C0v and is intro-
duced into a Kalman filter process to obtain a more stable
estimation of the curvature. Then, the look-ahead distance
with vertical curvature distance considering the non-planar
road case is computed using the estimated road vertical cur-
vature according to the method described in [19]. Finally,
the look-ahead distance with vertical curvature Zcv has the
following expression:

Zcv = tan θZ

−C0vm

⎡

⎣1 −
√

1 + 2 · C0vm
(hCAM − L HY )

tan2 θZ

⎤

⎦ (11)

From this new distance Zcv , we can correct the vertical image
coordinate v according to Eq. (12):

v = Fv · tan

(
arctan

(
hCAM − L HY

Zcv

)
− θCAM

)
+ Height

(12)

2.5 Black hat transformation

It can be experimentally observed, that one indicative feature
of headlights and taillights is the halo effect of the lights.
This halo effect is no present in passive lamps, such as road
signs or nuisance artifacts. For standing out the halo of the
lights, the black hat transformation is proposed. The top-hat
transformation is a powerful operator which permits the
detection of contrasted objects on non-uniform background
[17]. This transformation has been successfully used in intel-
ligent transportation systems such as road-traffic monitoring
for vehicle shadow detection [20]. There are two different
types of top-hat transformations: white hat and black hat. The
white hat transformation is defined as the residue between the
original image and its opening. The black hat transformation
is defined as the residue between the closing and the original
image. The operations white and black hat transformations
are defined as follows, respectively:
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W HT (x, y) = ( f − f ◦ B) (13)

B HT (x, y) = ( f • B − f ) (14)

In (13) and (14) f (x, y) is a grey scale image and B is the
structuring element. Both operators, white and black hat can
be used in order to modify the contrast of the image or enhanc-
ing contrast in some regions of the image. Normally, in grey
scale images, the local contrast is ruled by two kinds of fea-
tures: bright and dark features. The white hat image contains
local peaks of the intensity and the black hat image contains
local valleys of the intensity. As we can stand out the effect
of the halo (local valleys of intensity) of head lights or tail
lights, the black hat transformation was chosen for this pur-
pose. In fact, the halo is one of the most important parameters
to distinguish between road signs and vehicles. This effect
is more important for head lights since the intensity of these
lights is higher than for tail lights. However, this effect is not
signicant at distances farther than 200 m, since at these dis-
tances, head lights and tail lights usually appear in the image
like a single lamp without halo. Figure 14 depicts the halo
effect for a vehicle, and as can be seen in Fig. 15, this effect
is not enough significant for road signs.

Once the transformation is done, an indicative parame-
ter of the lights’ halo called hat is computed as the average
intensity of a defined rectangle including the object.

2.6 Classification using support vector machines

As it has been exposed in previous sections, one of the most
important problems of the system is to distinguish between
vehicle’s lights and reflections of traffic signs (main nuisance
light source). In this step, the detected bright objects are clas-
sified as signs or vehicles depending on some discriminant
parameters using SVMs [11]. Two aspects are essential in
the deployment of SVMs classifiers: the training strategy
and the classifier structure. As SVMs are supervised learn-
ing methods used for classification, it is necessary to obtain

(a) (b)

Fig. 14 Halo effect for vehicles

(a) (b)

Fig. 15 Halo effect for road signs

Fig. 16 Classification problem with SVMs

a model under supervised training (training mode), and once
the model is obtained, it can be used in real applications (test
mode). Figure 16 depicts an example of the SVMs classifica-
tion problem, in which we have two different categories and
we need to find the separating hyperplane between them.

Support vector machines map input vectors to a higher
dimensional space where a maximal separating hyperplane
is constructed. Two parallel hyperplanes are constructed on
each side of the hyperplane that separates the data. The sep-
arating hyperplane is the hyperplane that maximizes the dis-
tance between the two parallel hyperplanes. An assumption
is made that the larger the margin or distance between these
parallel hyperplanes the better the generalization error of the
classifier will be.

An input vector was defined for the classifier. This vec-
tor is composed of different parameters which are computed
per object and define the state vector for the SVM. We use a
set of features of different types mainly based in (1) binary
(area, aspect ratio, etc.) and (2) intensity features (moments,
mean intensity, standard deviation, etc.). In [7] they use sim-
ilar binary and intensity features for their Adaboost learning
to classify candidate objects as vehicles or non-vehicles. In
addition, they also add colour information and features that
measure the ratios between monochrome and red pixels. We
can choose between a huge amount of binary and intensity
features for classification. Experimentally, we have obtained
the best results with the following set of features:

• Area in pixels
• Coordinate v of the object’s centroid
• Hat Value
• Rectangularity
• Aspect ratio
• Length of the object’s contour
• Circularity

The SVM model was also trained considering the Hu
Moments invariants [21]. These moments are used in pattern
recognition to provide a scale, orientation and position invari-
ant characterization of a given object’s shape. Hu’s moments
are based on normalized central moment, which are invari-
ant to both translation and scaling. We used Hupkens and
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Fig. 17 Classification of objects at far distances

de Clippeleir normalization [22] to increase the signal noise
ratio.

The output of the SVM d, is simply the signed distance of
the test instance from the separating hyperplane. This output
indicates wether the analysed object corresponds to a vehicle
or not, and can be used as a threshold for separating nuisance
light sources and vehicles.

The classification algorithm uses this result and classi-
fies the objects as signs or vehicles depending on its output
distance from the separating hyperplane. The classification
between vehicles and nuisance lights is more difficult at far
distances. This problem can be seen in Fig. 17 where one
vehicle located close to the horizon line in the image (at a
distance of approximately 200 m) is surrounded by several
signs and the system classified each of the objects correctly
(headlights in green and road signs in blue).

3 Experimental results

The system was implemented on a Pentium IV 3 GHz
platform and the size of the recorded image sequences is
752 pixels × 480 pixels per frame so as to detect vehicles
at far distances. The computation time spent on process-
ing one input frame depends on the complexity of the road
scene (mainly on the number of blobs and objects to be pro-
cessed). The frame rate of the system is in average close to
20 frames/s which is enough for real-time demands. Experi-
mental tests (more than 7 h of video sequences) under differ-
ent night-time road scenes and different weather conditions
(dry, rainy, foggy, freezing) were done for analyzing the per-
formance of the system. The B&W micro-camera and the
rest of hardware requirements were mounted in a C4-Picasso
Ficosa’s prototype car. The experimental tests were carried
in different roads of Mollet del Vallés (Barcelona, Spain) and
Vigo (Pontevedra, Spain), including some sequences under
rainy conditions.

3.1 Distance estimation

3.1.1 Head lights

One sequence was tested in which a vehicle was placed at a
distance of 200 m in front of the camera-assisted car. Then,

Fig. 18 Detection of an oncoming vehicle

Fig. 19 Distance estimation 200–0 m. Head lights

the vehicle approached from a distance of 200 m to a distance
of 0 m with a constant speed of 30 km/h. The purpose of the
sequence was to detect and track the vehicle’s head lights
so as to evaluate the accuracy of the distance estimation.
Figure 18 depicts a sample of the scenario for the distance
estimation analysis. The results of this analysis can be seen
in Fig. 19.

3.1.2 Tail lights

For the tail lights case, other sequence was tested in which
a vehicle was placed at the same distance than the camera-
assisted car and then the vehicle advances from a distance of
0 m to a distance of 200 m with a constant speed of approx-
imately 25 km/h. Figure 20 depicts a sample of the scenario
for this distance estimation analysis. The results of this anal-
ysis can be seen in Fig. 21.

According to the results, it can be observed that the esti-
mated distance is a little worse for the tail lights case, due
to the fact that the luminance of tail lights is lower than the
luminance of head lights, and also the size of tail lights is
smaller than the size of head lights. In addition, the distance
estimation error is higher for vehicles located at far distances.
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Fig. 20 Detection of a preceding vehicle

Fig. 21 Distance estimation 0–200 m. Tail lights

3.2 Analysis of the classifier

The SVM was trained using a representative database for
learning and testing. For creating the training and test sets,
the ratio between positive (vehicles) and negative (mainly
reflections of traffic signs) must be set to an appropriate value
in order not to produce misslearning or a high percentage of
false positive detections (signs classified as vehicles) during
on-line tests [11]. The number of training and test sets is
shown in Tables 1 and 2, respectively.

The quality of the classifier is measured by the probabil-
ity of detection PD (objects that are classified correctly) and
the probability of false alarm PFA (vehicles that are classi-
fied as signs and vice versa). These two indicators are shown
together in Fig. 22. This figure depicts also a comparison of
the classifier’s performance using Hu’s invariant moments
and without these moments.

As it can be observed, the performance is better incorpo-
rating Hu’s invariant moments to the classifier. For the test
sequences, the obtained false alarm and detection probabili-
ties are shown in Table 3.

Table 1 Total number of instances training mode

Objects type Total number
of instances

Vehicles 46,835

Signs 22,345

Table 2 Total number of instances test mode

Objects type Total number
of instances

Vehicles 1,182

Signs 1,110

Fig. 22 Receiver operating characteristic

Table 3 Test sequences: obtained probabilities

Probability Without Hu With Hu
moments moments

PD 0.8646 0.9458

PFA 0.0914 0.0659

3.3 Head lights detection

In this section performance of head lights detection is pro-
vided. For this purpose, some video sequences were pro-
cessed and some important parameters were computed in
order to evaluate the performance of the system.

In Table 4, results about head lights detection are shown.
It is not reliable to show results about distance detection,
since the system is thought to detect head lights at far dis-
tances (more than 200 m), and at these distances, the estima-
tion error is high as it has been shown in Sect. 3.1. Instead, a
most interesting and reliable parameter as is Time Delay will
be calculated. This parameter gives the delay in time between
the first moment when a vehicle is seen by the camera and the
moment when the vehicle is detected correctly by the algo-
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Table 4 Head lights detection results

No. of Total Head lights Detection Time Time delay
sequence time ( min:s) count rate % delay (s) RVC (s)

1 1:02 6 100 1.73 0.5

2 1:02 4 100 3.8 0.82

3 1:01 6 100 0.51 0.17

4 0:52 4 100 3.72 1.12

5 0:55 2 100 0.23 0.17

6 1:03 8 100 0.25 0.17

7 1:07 2 100 1.18 0.17

8 0:58 10 100 0.3 0.17

9 1:09 26 100 0.46 0.17

10 1:03 4 100 0.93 0.17

rithm. It also includes the mimimum number of frames for
the object to be considered as valid. The minimum number
of frames for an object to be considered as valid, was heuris-
tically set to five frames, which in time is equivalent to 0.17 s
considering 30 frames/s. A comparison without considering
the road vertical curvature and considering it was done. This
comparison shows how the road vertical curvature estima-
tion reduces this delay for objects located at far distances.
In Table 4 the Time Delay field is the mean time delay of
all the head lights in the analysed sequence. The field Time

Delay RVC denotes the mean time delay considering the road
vertical curvature estimation.

The main conclusion is that all the head lights are detected,
but the problem is when these head lights are detected. The
detection rate is always 100%, since no matter how far a
light is, the system is going to detect and classify correctly
the lights sooner or later, the main problem is when this light
is detected and correctly classified. Some head lights may
be detected too late and this is due to the road unevenness
at far distances. This type of problem is shown in Fig. 23.
In this figure one oncoming vehicle is located at a distance
of approximately 600 m. Due to road unevenness at these far
distances, the vertical image coordinate v is above the hori-
zon line. In fact, the value for this coordinate in the sample
is a typical value for road signs. Since the coordinate v is
one of the most important parameters in the classification
process, due to its value, the SVM classifies the object as a
road sign, which is wrong. Then, after 88 frames (3.52 s)
the object is classified correctly as a vehicle. A delay of
about 3 s in switching between high beams to low beams
may be very dangerous depending on road-traffic conditions.
With the estimation of the road vertical curvature, the coor-
dinate v is corrected and the vehicle is detected and classified
correctly immediately.

The system can detect head lights for first time at distances
between 300 and 500 m, depending on road conditions. In
some experimental tests that were done in planar roads some

Fig. 23 Problematic of using
flat road assumption
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vehicles where detected even at 700 m, which is a very good
performance, since it is really difficult to detect and classify
objects correctly at these distances.

3.4 Tail lights detection

In Table 5 the results of the tail lights detection are shown.
In this case, the road vertical curvature estimation is not as
important as in the head lights case, where distances farther
than 200 m are considered. The reason for this, is that for
distances close to 200 m or farther, the size of tail lights in
pixels is so small that it is impossible to classify and detect
them correctly.

Tail lights are more difficult to be detected than head lights
using a B&W camera. This is because the luminance of the
tail lights is lower than luminance of the head lights, and also
the size of the tail lights is smaller than the size of the head
lights. Tail lights are basically characterized by its red colour
and they can be detected in an easier way with a red filter.
Besides, the variety and diversity of tail lights is very large
which makes the detection more difficult. This means that
detection of tail lights depends so much on the vehicle type.

The large time delay in sequence 14 is due to this prob-
lem. In this sequence, a truck appears in the same lane of the
camera-assisted vehicle at a distance about 70 m. Trucks tail
lights usually consist of two pairs of lights, one pair at the
bottom and the other pair at the top of the truck’s rear part.
The truck’s tail lights are very weak so the system cannot
detect correctly its tail lights until the truck is at a distance of
about 30 m, and even at 30 m the size of the tail lights in the
image is about 3–5 pixels which is a very small amount of
pixels for processing the object correctly. Figure 24 depicts
an image of truck’s tail lights at a distance of 30 m.

3.5 Comparison with state of the art methods

Even there are few references in specialized scientific jour-
nals and symposiums, we want to show a comparison of our
method against the others, and show the benefits and prob-
lems of our proposal. Table 6 shows this comparison taken
into account the following parameters:

Table 5 Tail lights detection results

No. of Length Tail lights Detection Time
sequence ( min:s) count rate % delay (s)

11 1:04 2 100 0.17

12 0:58 4 100 0.3

13 1:02 2 100 4.4

14 0:59 2 100 15.7

Fig. 24 Sequence 14 truck’s tail lights at 30 m

• Sensor type: if the sensor used for the camera is B&W,
RGB or contains both monochrome and colour sensors.
The decision about the camera sensor has an important
factor in the distance of detection for head and tail lights.

• Detected lamps: if the algorithm is able to detect head and
tail lights or only one of them.

• Classification method: for methods that detect head and
tail lights, the classification of objects between vehicular
lamps and reflections or nuisance artifacts is extremely
important. In this field, we show information about the
Machine Learning and Pattern Recognition scheme that
has been used for each of the algorithms.

• Head and tail lights distance of detection (m): we show
information about the distance of detection at which head
lights and/or tail lights are detected and classified cor-
rectly as vehicular lamps. We show approximated dis-
tances of detection, since all of the analysed works just
give a qualitative analysis, impressions or just some dis-
tance estimates on some single frames.

The most similar work in the literature to ours is López et al.
[7]. They divide the classification problem between small
and non-small blobs, and have obtained very good classifier
performances for head lights and tail lights, over 90% for
non-small blobs and a worse for small tail lights 60%. Our
classification mistakes between vehicles and road signs, are
very low (PD = 0.9458, PFA = 0.0659) better than the ones
obtained by López et al. However, as we are using a B&W,
we only have one classifier between vehicles and road signs
reflections, not distinguishing in the classification procedure
between small, non-small blobs, head lights and tail lights.
In addition, in the work by López et al. they do not per-
form any road curvature analysis estimation. The centroid
of each bright object is one of the most important features
in their AdaBoost learning scheme and since most of traf-
fic lamps usually appear in the first one-third of the vertical
y-axis, the road vertical curvature may influence the vertical
position at which the objects appear in the image. We think
that performing an analysis of the road vertical curvature
and correcting the position of the centroid can increase clas-
sifier ratios, since according to our experiments the vertical
position of each blob is very important in the classification
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Table 6 Comparison of state of
the art methods: sensor type,
detected lamps, classification
method and distance of
detection for head lights and
tail lights

References Sensor Detected Classification Head lights Tail lights
type lamps method distance (m) distance (m)

Chen [5] RGB Head lights
Tail lights

Rule-based
vehicle
indentification

30 10

O’Malley
et al. [6]

RGB Tail lights Aspect ratio
constraints

– 30

López et al. [7] 75% Monochrome
25% Red

Head lights
Tail lights

AdaBoost 300 300

LightBeam
Controller

B&W Head lights
Tail lights

SVM 500 200

procedure. Furthermore, according to the results shown in
the work by Enzweiler and Gavrila [23], we hypothesize that
classification results using SVMs are better than with Ada-
Boost, at the cost of increasing the computation time, since
one of the advantages of AdaBoost over SVMs is that they
provide high performance and the computation time is small
than with SVMs. However, if the dimension of the feature
vector is small, we can still use SVM in real-time applications
as it is our case. The works of Chen [5] and O’Malley et al.
[6] do not address the problem of classification, just consider
aspect ratio constraints to pair all the potential lights into
a same vehicle. The main drawback of these works is that
their distance detections ratios are very low for intelligent
headlight controllers.

4 Conclusions and future work

In this paper, we have presented a night-time detection com-
puter system for driving assistance. On the one hand, the
system performance is satisfactory for head lights (detection
range up to 300–500 m) but on the other hand, the perfor-
mance for tail lights (detection range up to 50–80 m) must be
improved. One advantage of the system is that works in real-
time conditions. The computation time spent on processing
one input frame depends on its road scene complexity and
the number of blobs. In average the processing frame rate is
close to 20 fps, which satisfies real-time demands. The clas-
sification mistakes between vehicles and road signs, are very
low (PD = 0.9458, PFA = 0.0659), and can be improved
considering more distinctive invariant features and increas-
ing the size of the training and test data.

The results are encouraging, and we plan to include sev-
eral improvements to the current implementation. More work
must be done in the classification process in order to increase
the accuracy of the classifier. Special attention is devoted
in the classifier trying to incorporate new invariant parame-
ters such as the Gaussian curvature or one and second order
derivatives. In addition, multi-scale top-hat transformations
can help in the halo detection at far distances. In order to
achieve a more reliable distance estimation, some parame-

ters such as the blob size, distance between blobs and the
relative growth/shrinking in the the image can be fused to
obtain a better estimation. As a future idea, a red filter is
going to be introduced into the system in order to increase
tail lights detection range up to 400 m.
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