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Abstract

In this paper, we present a novel family of multiscale loeatfire descriptors, a theoretically and intuitively weétjfied variant
of SURF which is straightforward to implement but which neheless is capable of demonstrably better performande agin-
parable computational cost. Our family of descriptordechGauge-SURF (G-SURF), are based on second-order naldtigauge
derivatives. While the standard derivatives used to buildU&IS descriptor are all relative to a single chosen orieoatgauge
derivatives are evaluated relative to the gradient dioactit every pixel. Like standard SURF descriptors, G-SURIedlgtors are
fast to compute due to the use of integral images, but have mdtching robustness due to the extra invariaritared by gauge
derivatives. We present extensive experimental image himgfaesults on the Mikolajczyk and Schmid dataset whichastiee
clear advantages of our family of descriptors against firder local derivatives based descriptors such as: SURBjfMd-SURF
(M-SURF) and SIFT, in both standard and upright forms. Inithoitl we also show experimental results on large-scale t3lcgire
from Motion (SfM) and visual categorization applications.

Keywords: Gauge coordinates, scale space, feature descriptorgrahimage

1. Introduction sion [6, 7] processes in image processing and computer vision.
In the typical Gaussian scale-spa& framework, details are
Given two images of the same scene, image matching is thiglurred during evolution (i.e. the convolution of the origl
problem of establishing correspondence and is a core compimage with Gaussian kernels of increasing standard dewigti
nent of all sorts of computer vision systems, particulanlglas- ~ The advantage of blurring is the removal of noise, but releva
sic problems such as Structure from Motion (SfM), [visual ~ image structures like edges are blurred and drift away flair t
categorization ] or object recognition3]. There has been a original locations during evolution. In general, a goodusioin
wealth of work in particular on matching image keypointsjan should be to make the blurring locally adaptive to the image
the key advances have been in multiscale feature detectdrs ayielding the blurring of noise, while retaining details atges.
invariant descriptors which permit robust matching evedaun Instead of local first-order spatial derivatives, G-SURBalip-
significant changes in viewing conditions. tors measure per pixel information about image blurring and
We have studied the use of gauge coordinadg$of image  edge or detail enhancing, resulting in a more discrimieadie-
matching and SfM applications and incorporated them into acriptors.
Speeded-Up Robust Features (SURStdescriptor framework We have obtained notable results in an extensive image
to produce a family of descriptors offtBrent dimensions which  matching evaluation using the standard evaluation framewo
we call Gauge-SURF (G-SURF) descriptors. With gauge cooref Mikolajczyk and Schmid 9]. In addition, we have tested
dinates, every pixel in the image is described in such a waty th our family of descriptors in large-scale 3D SfM datasdif] [
if we have the same 2D local structure, the description of thend visual categorization experimeng yith satisfactory re-
structure is always the same, even if the image is rotatess. Thsults. Our results show that G-SURF descriptors outperfmrm
is possible since multiscale gauge derivatives are rotatitd ~ approximate state of the art methods in accuracy while éxhib
translation invariant. In addition, gauge derivativesymskey-  ing low computational demands making it suitable for réalet
role in the formulation of non-linear ffusion processes, as will applications.
be explained in SectioB.1 By using gauge derivatives, we can  We are interested in robust multiscale feature descriptors
make blurring locally adaptive to the image itself, with@ft  reliably match two images in real-time for visual odomett§][
fecting image details. and large-scale 3D SfM1p] applications. Image matching
The G-SURF descriptors are very related to non-linefindi  here, is in fact a diicult task to solve due to the large motion
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between frames and the high variability of camera movementscales. An original image is blurred by convolution with Gau
For this purpose, we need desciptors that are fast to compustan kernels of successively large standard deviationetotify
and at the same time exhibit high performance. features at increasingly large scales. The main drawbattieof
In addition, we have done an open-source library calledsaussian kernel and its set of partial derivatives is th#t bo
OpenGSURRhat contains all the family of G-SURF descrip- teresting details and noise are blurred away to the sameelegr
tors and is publicly availabte These family of descriptors com- It seems to be more appropriate in feature description teemak
prises of several descriptors offigirent dimensions based on blurring locally adaptive to the image data so that noisé wil
second-order multiscale gauge derivatives. Dependindien t be blurred, while at the same time details or edges will remai
application some descriptors may be preferred insteadhsf ot undfected. In this way, we can increase distinctiveness when
ers. For example, for real-time applications a low-dimenal  describing an image region atfiirent scale levels. In spirit,
descriptor should be preferred instead of a high-dimeion non-linear dffusion shares some similarities with respect to the
one, whereas for image-matching applications consides@ng geometric blurproposed by Berg and MalikLf], in where the
vere image transformations one can expect a higher recafiby the amount of Gaussian blurring is proportional to the dista
ing high-dimensional descriptors. Up to the best of our Khow from the point of interest.
edge, this is the first open source library that allows the use From their definition, gauge derivatives are local invaisan
to choose between fiierent dimensional descriptors. Current Matching by local invariants has previously been studietth@
open source descriptor libraries 13] just have implementa- literature. In L8], Schmid and Mohr used the family of lo-
tions for the standard SURF and Scale Invariant FeaturesTrancal invariants known akcal jet [19] for image matching ap-
form (SIFT) [14] descriptors’ default dimensions (64 and 128 plications. Their descriptor vector contained 8 invarsanp
respectively). This can be a limitation and a computatitwo&l  to third order for every point of interest in the image. This
tleneck for some real-time applications that do not necédgsa work supposed a step-forward over previous invariant reicog
need those default descriptor dimensions. tion schemesZ0]. In [9], Mikolajczyk and Schmid compared
The rest of the paper is organized as follows: Related workhe performance of thiecal jet (with invariants up to third or-
is described in Sectio®. Gauge coordinates are introduced der) against other descriptors such as steerable fiR4fsiin-
in Section3 and the importance of gauge derivatives in non-age momentsZ2] or SIFT. In their experiments the local jet
linear difusion schemes is reviewed in Secti®d. Then we  exhibits poor performance compared to SIFT. We hypothesize
briefly discuss SURF based descriptors in Secfiofihe over-  that this poor performance is due to the fixed settings ustbin
all framework of our family of descriptors is explained incSe experiments, such as a fixed image patch size and a fixed Gaus-
tion 5. Finally, we show extensive experimental results inimagesian derivative scale. In addition, invariants of high ordee
matching, large-scale 3D SfM and visual categorizatiorliapp more sensitive to geometric and photometric distortioras th

cations in Sectio. first-order methods. In23], the local jet was again used for
matching applications, and they showed that even a descript
2 Related Work vector of dimension 6 can outperform SIFT for small perspec-

tive changes. By a suitable scaling and normalization, the a
The highly influential SIFT 14] features have been widely thors obtained invariance to spatial zooming and intersaig}-
used in applications from mobile robotics to object rectigni  ing. Although these results were encouraging, a more éefall
but are relatively expensive to compute and are not suifable comparison with other descriptors would have been desirabl
some applications with real-time demands. Inspired by SIFTHowever, this work motivated us to incorporate gauge invari
Bay et al. p] proposed the SURF features both detector andants into the SURF descriptor framework.
descriptor. SURF features exhibit better results thaniposv Brown et al. [LO], proposed a framework for learning dis-
schemes with respect to repeatability, distinctiviness Bt criminative local dense image descriptors from trainingada
bustness, but at the same time can be computed much fastBne training data was obtained from large-scale real 3D SfM
thanks to the use of integral imagd$]. Recently, Agrawal et scenarios, and accurate ground truth correspondencegerere
al. [16] proposed some modifications of SURF in both the de-erated by means of multi-view stereo matching techniq@és |
tection and description steps. They introduced CenteioBad  25] that allow to obtain very accurate correspondences betwee
Extremas (CenSurE) features and showed that they outperfor3D points. They describe a set of building blocks for build-
previous detectors and have better computational chaistate  ing discriminative local descriptors that can be combined t
for real-time applications. Their variant of the SURF dgstor,  gether and jointly optimized to minimize the error of a neare
Modified-SURF (M-SURF), fiiciently handles the descriptor neighbor classifier. In this paper, we use the evaluatiaméra
boundary problem and uses a more intelligent two-stage-Gausvork of Brown et al. to evaluate the performance of multiscal
sian weighting scheme in contrast to the original implement gauge derivatives under real large-scale 3D SfM scenarios.
tion which uses a single Gaussian weighting step.
.AII the mentioned approaches rely on the use of the Gauss_ Gauge Coordinates and M ultiscale Gauge Derivatives
sian scale-spacea] framework to extract features atffirent
Gauge coordinates are a very useful tool in computer vision

1The source code can be downloaded fromtipy/www.robesafe.copn and_image_process_ing. _Using gauge coord@nates, everyipixel
persongpablo.alcantarillzodgopengsurfl_0.rar the image is described in such a way that if we have the same



http://www.robesafe.com/personal/pablo.alcantarilla/code/opengsurf_1_0.rar
http://www.robesafe.com/personal/pablo.alcantarilla/code/opengsurf_1_0.rar

2D local structure, the description of the structure is gsvwhe  these points the curvature of the isophotes is highy gives
same, even if the image is rotated. This is possible sincg eveinformation about gradient changes in the gradient dioecti

pixel in the image is fixed separately in its own local cooatién Figure 1(a) illustrates first-order gauge coordinates. Unit
frame defined by the local structure itself and consistinthef ~ vectorv is always tangential to lines of constant image inten-
gradient vectow and its perpendicular direction sity (isophotes), while unit vectat is perpendicular and points
in the gradient direction. Figurb) depicts an example of the
W= (% %) = \/ﬁ : (Lx» Ly) resulting second-order gauge derivatiyg, on one of the im-
V= (2 )= 1 (L -L) (1) ages from the Mikolajczyk and Schmid’s standard dateget [
v T o)) = g T

In Equationl, L denotes the convolution of the imagevith a
2D Gaussian kerngJ(x,y, o), whereo is the kernel’'s standard
deviation or scale parameter:

)

L% Y,0) = 1(XY) = 9%y, 0) )

Derivatives can be taken up to any order and at multiple scale

for detecting features of fierent sizes. Raw image deriva- ‘—/:
tives can only be computed in terms of the Cartesian coatelina

framexandy, so in order to obtain gauge derivatives we need to @ (®)

use directional derivatives with respect to a fixed graditn@C-  rigyre 1: (a) Local first-order gauge coordinates (b) Remytiauge derivative
tion (L, Ly). Thev direction is tangent to the isophotes or lines L, applied on the first image of the Leuven dataset, at a fixed scate2
of constant intensity, wherea points in the direction of the pixels.

gradient, thud, = 0 andL,, = /L% + LZ. If we take deriva-

tives with respect to first-order gauge coordinates, siheed
are fixed to the object, irrespective of rotation or transtatwe
obtain the following interesting results:

According to p6], where Schmid and Mohr explicitly de-
scribe the set of second-order invariants used in the letal j
we can find two main dierences between the second-order
gauge derivatives., Ly and the local jet. The first fier-

1. Every derivative expressed in gauge coordinates is an oence is that by definition gauge derivatives are normalizigal w
thogonal invariant. The first-order derivatii is the  respect to the modulus of the gradient at each pixel. Althoug
derivative in the gradient direction, and in fact the gratlie this normalization can be also included in the local jet folan
is an invariant itself. tion as shown in23]. The second dference and the most im-

2. Since% = 0, this implies that there is no change in the portant one, is that the invariah{, is not included in the set of
luminance if we move tangentially to the constant intensitysecond-order derivatives of the local jet. The invarlaptplays
lines. a fundamental role in non-linear ftlision processes/| 27].

ypically, Equation4 is used to evolve the image in a way

at locally adapts the amount of blurring tatdrential invari-
ant structure in the image in order to perform edge-presgrvi

smoothing 4.

By using gauge coordinates, we can obtain a set of invariaq
derivatives up to any order and scale that can be uSmibatly
for image description and matching. Of special interest tae
second-order gauge derivativieg, andL,:

] L2k + 2 Lubyly + L2Lyy @) 3.1. Importance of Gauge Derivatives in Non-Lineafflision
= Schemes
w L2+L2
In this section we aim to throw some more light on our de-
Lf,LXX — 2 Lybyyly + L2Lyy cision to use gauge derivatives in a feature descriptor igfljpr
Lw = L2+ L§ (4) reviewing non-linear image fiusion, and highlighting the im-

o . portant role of gauge derivatives in these schemes. Koenden
These two gauge derivatives can be obtained as the produg [2g] and Lindeberg§] showed that the Gaussian kernel and
of gradients inw andV directions and the & 2 second-order s set of partial derivatives provide the unique set of aps
derivatives or Hessian matrix. for the construction of linear scale-space under certantico
1 L. L L tions. Some examples of algorithms that rely on the Gaussian
( x Ly )( oY )( * ) (5)  scale-space framework are SIFT4] and SURF §] invariant

Lyx L L
X e Y features.
1 L L L However, to repeat, details are blurred in Gaussian scale-
_ _ XX Xy y . . . . _
Lw = —L§ n L§( y —Lx )( Lx Ly )( Ly ) (6) space during evolution. The advantage of blurring is the re

moval of noise, but relevant image structures like edges are
L.y is often used as a ridge detector. Ridges are elongatdalurred and drift away from their original locations duriego-
regions of approximately constant width and intensity, ahd lution. In general, a good solution should be to make the-blur
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ring locally adaptive to the image yielding the blurring @ise,  subregions. In addition, Haar wavelet responses in each sub
while retaining details or edges. region are weighted by a Gaussian € 3.3s) centered at the

In the early nineties, several Partialfi@rential Equations interest keypoint. This is a very small standard deviation-c
(PDEs) were proposed for dealing with the mentioned Ganssiasidering that the square grid size iss2020s. Figure3(b) de-
scale-space problem. Some famous examples are the Peromécts a normalized 2D Gaussian kernel considering a stdndar
Malik equation p] and the Mean Curvature Motion (MCMTT. deviationo = 3.3. Notice how this weighting scheme smoothes
Note that in general, non-linearftlision approaches perform completely the contribution of far points from the point ofer-
better than linear diusion schemeds] 29]. Recently, Kuijper  est. Therefore, only points within a distancexdf pixels have
showed in R9] that the evolution of an image can be expressed significant influence in the whole descriptor.
as a linear combination of the twoffirent second-order gauge  The upright version of SURF-based descriptors (U-SURF)
derivativesLyw and L. According to this, we can conclude is faster to compute and usually exhibits higher perforreanc
that non-linear approaches steer between blultiggand edge  (compared to its corresponding rotation invariant version
regularizingL,y. Some examples of practical applications of SURF) in applications where invariance to rotation is nat-ne
Lww flow are image impaitingd0]. For L,y flow an example essary. Some examples of these applications are 3D regonstr
is the cited MCM [7]. Fig.2 depicts a comparison between the tion [5] or face recognition31]. Although the MU-SURF de-
Gaussian scale space and non-lineffudion approaches. scriptor is not invariant to rotation, it can be easily agaipfor

Based on this, we can think about a local invariant descripthis purpose by interpolating Haar wavelet responses diapr
tor that takes into account the information encoded in the tw to a dominant orientation, in the same way as is done in the
gauge derivativek,, andLyy, while the image evolves accord- orginal SURF descriptor. Then, for rotation invariant dgsc
ing to a scaler. Notice that in our family of descriptors we just tors the coordinates of the descriptor and the gradienhtarie
replace the first-order local derivativeg andLy for the gauge tions are rotated relative to the dominant keypoint origoma
derivatived.,y, andL and do not perform any image evolution
through a non-linear scale space. That is, our descriptdks w

measure information about blurringg,) and edge enhancing § 24 % 24 . s
(Lw) for different scale levels. — , pe
Another diference between first-order local derivatives and ' I9x9 - : M
gauge ones, is that gauge derivatives are intrinsicallgted %o ps
with the strength of the gradient,. That is, the weighting is P T N
intrinsically related to the image structure itself, andamtfi- i SX; s &
cial weighting such as Gaussian weighting is needed. This is ) . "
an important advantage over other descriptors, such asfor e 20 %20 T e K
ample SURF, where fierent Gaussian weighting schem&§|[ (&) (b)
have been proposed to improve the performance of the ofigina
descriptor. Figure 3: (a) MU-SURF descriptor building process. All sizee relative to the

scale of the feature s (b) The single Gaussian weightingseleoposed in the
original SURF descriptor. Normalized 2D gaussian kernelesiconsidering a
4. SURF Based Descriptors Gaussjan kernel of standard deviatior- 3.3 centered at the interest keypoint.
Best viewed in color.

Agrawal et al. proposed irlp] the Modified Upright-SURF
descriptor (MU-SURF) which is a variant of the original U-
SURF descriptor. MU-SURF handles descriptor boundary ef-
fects and uses a more robust and intelligent two-stage Gau§- Gauge-SURF Descriptors
sian weighting scheme. For a detected feature at scadlaar
wavelet responsek, and L, of size Z are computed over a Our family of G-SURF descriptors are based on the origi-
24s x 24s region. This region is divided into$9x 9s subre- nal SURF descriptor. However, instead of using the locat-firs
gions with an overlap of 2 The Haar wavelet responses in eachorder derivatives , andLy, we replace these two derivatives by
subregion are weighted with a Gaussian  2.5s) centered the second-order gauge derivativgg, andL,y. For comput-
on the subregion center and summed into a descriptor vecténg multiscale gauge derivatives, we always need to compute
d = (X Lw X Ly, XLy, X ILyl). Then, each subregion vector the derivatives firstin the Cartesian coordinate framg)( and
is weighted using a Gaussiamy = 1.5s) defined over a mask then fix the gradient directionL(, L) for every pixel. After
of 4 x 4 and centered on the interest keypoint. Finally, the dethese computations, we can obtain invariant gauge derdsti
scriptor vector of length 64 is normalized into a unit vedmr up to any order and scale with respect to the new gauge coordi-
achieve invariance to contrast. Figu@) depicts the involved nate frame, V). Our descriptors formulation can be applied to
regions and subregions in the MU-SURF descriptor buildingany multiscale feature detection method, since we alwagts ev

process. uate the multiscale gauge derivatives at the detected kelypo
The main diference between the MU-SURF and U-SURFscale, yielding a scale invariant description of the kegpoi
descriptor is that the size of the region is reduced t®2Q0s From the definition of gauge coordinates in Equatigrit

divided into 5 x 5s subregions without any overlap between can be observed that these coordinates are not defined &t pixe
4



(a) (b)

(d) (e)

Figure 2: Gaussian scale-space versus Non-Lingarsitn schemes. The first row depicts the evolution of the simtige from the Mikolajczyk and Schmid’s
Bikes dataset considering a Gaussian scale space of imgeasdn pixels. (a)oc = 2 (b)o = 4 (¢) o = 8. The second row depicts the evolution of the same
reference image but considering the MCM non-linedudion flow. (d)o = 2 (e)o = 4 (f) o = 8. Notice how with non-linear éliusion schemes, details are
enhanced and noise is removed, whereas for the Gaussiarspeake, details and noise are blurred in the same degree.

locations where, /L2 + Lz = 0, i.e. at saddle points and ex-

trema of the image. In practice this is not a problem as ter Haa
Romeny states ind], since we have a small number of such
points, and according to Morse theoil32] we can get rid of
such singularities by infinitesimally small local changedtie
intensity landscape. What we do in practice is to not sum the
contributions of these points into the final descriptor vect

Now, we will describe the building process of a GU-SURF
descriptor of dimension 64. For a detected feature at scale
s, we compute first and second-order Haar wavelet responses
Lx, Ly, Lyx, Lyy, Lyy Over a 2@ x 20s region. We callL, the
Haar wavelet response in the horizontal direction apdhe
response in the vertical direction. The descriptor windewi
vided into 4x 4 regular subregions without any overlap. Within
each of these subregions Haar wavelets of sizer2 com-
puted for 25 regularly distributed sample points. Once we
have fixed the gauge coordinate frame for each of the pix-
els, we compute the gauge invariafitg,/ and|L,/|. Each
subregion yields a four-dimensional descriptor vedpr =
(X Lo > Lows 2 ILwds 25 ILW). Finally, the total length of the

unitary descriptor vector is 64. Figure 4: GU-SURF descriptor building process. Note thatte rotationally-
invariant version of the descriptor we just have to rotagestjuare grid.

Figure 4 depicts an example of the GU-SURF descriptor
building process. For simplicity reasons, we only show one
gauge coordinate frame for each of the 4 subregions. Note
that if we want to compute a descriptor which is invariantdo r
tation, we do not need to interpolate the value of the invasia
Lww andL,, according to a dominant orientation as in SURF or
M-SURF. Due to the rotation invariance of gauge derivatives
we only have to rotate the square grid.
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In the same way as proposed in SURF, we use box-filterthe prefix U to the name of the descriptor. For example, GU-
to approximate first and second-order Gaussian derivativeSURF is the upright version of the G-SURF descriptor. By
These box-filters are constructed through the use of integra  modifying the number of divisions of the square grid and the
ages [L5], which allows the approximation of Gaussian deriva- size of each of the subregions, we can obtain descriptorig-of d
tives with low computational demands. ferent dimensions. Now, we will describe the number of divi-

In Section5.1, we describe the rest of descriptors of the G-sions of the square grid and the size of each subregion for eac
SURF family included in th®©penGSURHibrary and the no- of the descriptor sizes we evaluate in this paper. The finst-nu
tation of the descriptors we will use throughout the resthef t ber in parenthesis indicates the dimension of the descryith
paper. the new square grid and subregion size.

e (36): Square grid of size 18 18syielding 3x3 subregions

5.1. Descriptors Notation each of size 6x 6s.

Similar to [5], we can modify the number of divisions of the
square grid and the size of each subregion in Figureobtain
descriptors of dierent dimensions. The descriptor size has a
major impact on the matching speed and recall rates. We also ) )
tested the extended version of the descriptBJsue to space 6. Resultsand Discussion
limitations, we will not evaluate this version of the deptors In this section, we present extensive experimental image
in this paper. However, this option is included in the OpenG+p4tching results obtained on the standard evaluation set of
SURF I|brary: As.sho.vv.n ing], the overall éect of the ex- Mikolajczyk and Schmid ], large-scale 3D SfM applica-
tended descriptor is minimal. . tions [10] and visual categorization experimen®.[ In ad-

Now, we will describe the notation for the set of descnptorsditiom we introduce a new dataset namgdazuthat consist
we use throughout the rest of the paper, with the number of¢ 5 series of six images with the addition of increasing ran-
dimensions of the descriptors in parenthesis. For the SURFyom Gaussian noise levels with respect to the first imageeof th
based descriptors the default dimension is 64, whereaskdr S jataset. In some research areas such medical imaging, RADAR
the default dimension is 128. or astronomy, images are usually corrupted lifedent types of

« SURF (64): Original SURF implementation as described random noise. Therefore, we think that the evaluation ddlloc

in [33] that uses a single Gaussian weighting scheme of geécnators_,lm tfhgsgs'g?: c(:jf datgstets IS ofllnteretst.t. is based
standard deviationr = 3.3s centered at the interest key- urtamiy of %>- escriptors implementation Is base

: : on the OpenSURF librafy The source code of our library is at-
pointand a square grid of 3 20s. tached as supplementary paper material. OpenSURF is an open

e M-SURF (64): Modified-SURF descriptor as described source G+ based library with detailed documentation and a
in [16]. This descriptor uses a square grid ofs2424s reference paperlp]. To our knowledge, this library is widely

considering an overlap of Haar wavelets responses and twis€d in the computer vision and robotics community and ex-
Gaussian weighting steps. hibits good performance, while having speed similar to tfig-0

inal SURF library which is only available as a binary. Cuthgn

e G-SURF (64): Gauge-SURF descriptor, that uses secondOpenSURF uses by default the M-SURF descriptor, since per-
order multiscale gauge derivatives and a square grid oformance is much higher than when using the single weighting
20sx 20s without any additional Gaussian weighting step. Gaussian scheme. We think, that OpenSURF is a good open

N ) source library for performing an evaluation and comparigbn

¢ MG-SURF (64): Modified Gauge-SURF descriptor, that g set of descriptors that are all based on the same source code
uses the same scheme as the M-SURF but replacing firsframework.
order local derivativesl(,Ly) for second-order gauge e also show comparison results with respect to SIFT de-
ones Luw, Lw). scriptor, using Vedaldi's implementatioa3]. In all SIFT ex-

« NG-SURF (64): No Gaussian Weighting-SURF descrip- perlments We'useld the defa}ult magnification factoe 30
: . . . J.e. each spatial bin of the histogram has support of size
tor. This descriptor is exactly the same as the orlglnalI

SURF descriptor, with the fierence that no Gaussian whereo is the scale of the point of interest. This parameter

o . . . has an importantfeect in descriptor performance. S&] for
weighting step is applied. In this way, we can perform anore details

fair comparison between gauge derivgtives and first.-.order We have compared G-SURF descriptors to SURF, M-SURF,
wgzh(:ﬁ‘révggxifnzased descriptors without any addlilonaNG-SURF (all based on OpenSURF implementation) and SIFT
' (based on Vedaldi's implementation), in both standard gnd u
e SIFT (128): The SIFT descriptor as described ib4]. ~ Mght forms. Agrawal et al.16] claim that M-SURF’s perfor-
This descriptor has a dimension of 128. mance is similar to the original SURF library, although thei-
plementation is much faster than the original one. Like Agia

e (144): Square grid of size ZiIx 24syielding 6x 6 subre-
gions each of sizegix 4s.

For all the mentioned above descriptors, we denoteufire
right version of the descriptors (not invariant to rotation) addi 2Available from http//code.google.cofp/opensurfl

6




et al., we also noticed that the standard single Gaussiaghtvei In [9] some examples of the error were shown in relative point
ing scheme as proposed in the original SURF algorithin [ location and recall consideringftérent overlap errors. They

gives poor results. However, we also include in our comparifound that for overlap errors smaller than 20% one can ob-
son the standard SURF method based on the OpenSURF irtain the maximum number of correct matches. In addition,
plementations, since this single Gaussian scheme is sélil u they showed that recall decreases with increasing overlap e

in practically all of the open source libraries that inclutie
SURF algorithm, such as OpenCV or dlib-€ 2. In addition,

rors. Larger overlap errors result in a large number of eorre
spondences and general low recall. Based on this, we decided

in Section6.2we also show some comparison results with re-to use an overlap error threshold &f < 20%, since we think
spect to the OpenCV SURF implementation, since this libranthis overlap error is reasonable for SfM applications, veharu
has become a de facto standard for fast-to-compute demsipt are only interested on very accurate matches. Furtherrasre,
The rest of the experimental results and discussion seistion in [35] we also impose that the error in relative point location
organized as follows: In Sectidh1we show extensive image for two corresponding regions has to be less thanp2xels:

matching experiments based on the standard evaluatiorefram||x; —
images. Due to space limitations, we only show results on sim

work of Mikolajczyk and Schmid9], with the addition of a

H - x|l < 2.5, where H is the homography between the

new dataset for evaluating descriptor performance under diilarity threshold based matching, since this techniqueeitel

ferent image noise settings. Then, in Sectf8we evaluate

suited for representing the distribution of the descripoits

the performance of G-SURF descriptors in large-scale 3D SfMeature spaced].

scenarios. In SectioB.4 we show some results on visual cat-
egorization applications, and finally in Secti6érbwe describe
some implementation details and timing evaluation results

6.1. Image Matching Experiments

We tested our descriptors using the image sequences and
testing software provided by Mikolajczyk We used Open-
SURF’s Fast Hessian to extract the keypoints in every image
and then compute the descriptors, setting the number ofexta
and number of intervals to 4 and 2 respectively.

The standard dataset includes several image sets (each se-
quence generally contains 6 images) witlfetient geometric
and photometric transformations such as image blur, hghti
viewpoint, scale changes, zoom, rotation and JPEG compres-
sion. In addition, the ground truth homographies are alsdl-av
able for every image transformation with respect to the ifinst
age of every sequence. We show results on eight sequences
of the dataset. Tablégives information about the datasets and
the image pairs we evaluated for each of the selected seggienc
We also provide the number of keypoints detected for each im-
age and the Hessian threshold value to permit reproducfion o
our results.

Descriptors are evaluated by meangaxfall versus 1 - pre-
cisiongraphs as proposed if][ This criterion is based on the
number of correct matches and the number of false matches ob-
tained for an image pair:

__ #correct matches
recall = #correspondences

(7)
#false matches
#all matches

The number of correct matches and correspondences is deter-
mined by the overlap error. Two regions, B) are deemed to
correspond if the overlap erreg, defined as the error in the im-
age area covered by the regions, iffisiently small, as shown

in Equation8:

1 - precision=

ANHT-B-H

AR
O AUHT-B-H

(8)

SAvailable from http//dclib.sourceforge.ngt
4Available from http//www.robots.ox.ac.yRggresearctaffing

Figure5 depictsrecall versus 1-precisiographs for the se-
lected pairs of images. This figure suggests the following co
clusions:

e In general, among the upright evaluation of the descrip-

tors, GU-SURF descriptors perform much better than its
competitors, especially for high precision values, with
sometimes more than 20% improvement in recall for the
same level of precision with respect to MU-SURF (64) and
U-SIFT (128) (e.g. Leuven, Bikes and Trees datasets), and
even much more improvement with respect to U-SURF
(64). GU-SURF (144) was the descriptor that normally
achieved the highest recall for all the experiments, fol-
lowed close by GU-SURF (64). GU-SURF (36) also ex-
hibits good performance, on occasions even better than
higher dimensional descriptors such as U-SIFT (128) or
MU-SURF (64).

¢ In the upright evaluation of the descriptors, one can obtain

higher recall rates by means of descriptors that do not have
any kind of Gaussian weighting or subregions overlap. For
example, we can observe this behavior between NGU-
SURF (64) and U-SURF (64), where the onlyfdience
between both descriptors is the Gaussian weighting step.
Furthermore, we can see that between GU-SURF (64) and
MGU-SURF (64), GU-SURF (64) obtained higher recall
values than when using the modified version of the de-
scriptors.

With respect to the rotation invariant version of the de-
scriptors, in these cases, the modified descriptor version
plays a more important role. The use of two Gaussian
weighting steps and subregions overlap, yield a more ro-
bust descriptor against large geometric deformations and
non-planar rotations. In addition, the Gaussian weight-
ing helps in reducing possible computation errors when
interpolating Haar wavelets responses according to a dom-
inant orientation. This interpolation of the responses, is
not necessary in the case of gauge derivatives, since by
definition they are rotation invariant. We can observe
that MG-SURF (64) obtained slightly better results com-



Dataset Image ImageN | #Keypoints | #Keypoints Hessian
Change Image 1 Image N Threshold
Bikes Blur 4 2275 1538 0.0001
Bikes Blur 5 2275 1210 0.0001
Boat Zoom+Rotation 4 2676 1659 0.0001
Gr affiti Viewpoint 2 1229 1349 0.001
Leuven lllumination 4 2705 2143 0.00001
Trees Blur 3 3975 4072 0.0001
UBC JPEG Compression 5 2106 2171 0.0001
Van Gogh Rotation 10 864 782 0.00005
Van Gogh Rotation 18 864 855 0.00005
Wall Viewpoint 3 3974 3344 0.0001
Iguazu Gaussian Noise 3 1603 2820 0.0001
lguazu Gaussian Noise 4 1603 3281 0.0001
Iguazu Gaussian Noise 5 1603 3581 0.0001

Table 1: Sequences and image pairs used for image matchingregp&s: Image change, image number, keypoints number and Hésstahold value.

Bikes Dataset: Image 1 vs 4. Distance Threshold

Boat Dataset: Image 1 vs 4. Distance Threshold

Leuven Dataset: Image 1 vs 5. Distance Threshold
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Figure 5: Image matching experiments: Recall versus 1-poecigiaphs, Similarity threshold based matching. (a) Bikes4 (i Boat 1 vs 4 (c) Leuven 1 vs 5
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(d) Trees 1 vs 3 (e) UBC 1 vs 5 (f) Wall 1 vs 3. Best viewed in color
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pared to M-SURF (64) and SIFT (128) for the Boat datasetG-SURF descriptors exhibit good performance against image
(Zoom+Rotation). For the Wall dataset (changes in view-noise settings and higher recall rates compared to firsrdoed
point), SIFT (128) was the descriptor that obtained bettercal derivatives methods, is because G-SURF descriptors mea
results, and MG-SURF (64) obtained better results comsure information about the amount of blurring,{,) and details
pared to M-SURF (64), especially for high precision val- or edge enhancind.(,) in the image at dferent scale levels.
ues.
. _ . 6.1.2. Evaluation under pure rotation sequences

 When comparing gauge-based descriptors and first-order one of the nicest properties of gauge derivatives, is tieir i
local derivatives descriptors, we can observe that gaug&zariance against rotation. In this section, we compare GSU
based descriptors always obtained higher recall valuegjescriptors against first-order local derivatives deser# to
both in the standard and upright form of the descriptorsgiang out the rotation invariance properties of gauge ativiss.
We can observe this behaviour between G-SURF (64) Verqy this purpose, we decided to use the Van Gogh sequence that
sus NG-SURF (64), and MG-SURF (64) versus M-SURF¢qnsists on pure rotation image transformations. Thisesecg:
(64) and also considering the upright version of the de4n the ground truth homographies relating the images can be
scriptors. One of the reasons why gauge derivatives obgopwnioaded from Mykolajczyk’s older webpageln order to
talned better performance is becausg they are intringicallghow the performance of G-SURF descriptor under pure rota-
weighted by the strength of the gradiénf per pixel, and  {jon transformation, we evaluated two image pairs from tae V
thus the resulting descriptor exhibits a higher discrimina Gogh sequence. Figuiedepicts the reference image and the
tive power. rest two images that are related by a pure rotation 6fatil

%80’ with respect to the reference image.

‘.(/

¢ In all the sequences the worst results were obtained by th
OpenSURF's SURF implementation, which uses the sin-
gle Gaussian weighting scheme that gives poor results.

6.1.1. Evaluation under image noise transformations
In this section, we evaluate the performance of the descrip- " aEREEE - “
tors under image noise transformations. For this purpose, w (&) Image 2 (b) Image 8 (c) Image 18
crgated anew datgset namedazu T_hIS .data.set COﬂ?IStS of Figure 7: Van Gogh rotation dataset. Images 2 and 8 are relstedpure
6 images, and the image transformation in this case is the pPrQotation of 45, whereas Images 2 and 18 are related by a pure rotation 6f 180
gressive addition of random Gaussian noise. For each pixel o
the transformed images, we add random Gaussian noise with Figure8 depicts theecall versus 1-precisiofor the selected
increasing variance considering gray scale value imagés. T jmage pairs from the Van Gogh dataset. In this experiment, we
noise variances for each of the images are the followinggena compared only G-SURF (64) versus NG-SURF (64) and SURF
2255, Image 3t12.75, Image 4:15.00, Image 5510 and  (64). According to the results, we can observe that for some
Image 6+10200, considering that the gray value of each pixelpoints in the graphs, by using G-SURF (64), there is an im-
in the image ranges from 0 to 255. This new dataset is aVB”ab|pro\/ement in recall about the 20% with respect to NG-SURF
as supplementary paper material. Noisy images are very come4) and approximately the double, 40%, with respect to SURF
mon in fields such as biomedical imagiryj &nd other research  (64) for the same precision values. This improvement in re-
areas such as Synthetic Aperture RADAR imaging (SAR).[  call also happens when considering rotations fwbere it is
We think that for these applications, a descriptor whichois I known that there are some quantizatidieets due to the Haar-
bust to diferent noise settings is very desirable. Figfrde-  \ayelet response8]]. These results make thefect of the
picts three images of the Iguazu dataset for image randose noi nice rotation invariance property of gauge-derivativesidtout
transformations, and threcall versus 1-precisiofor three im-  when matching the capabilities of the descriptors. Notize t
age pairs of the sequence. even though gauge derivatives are rotation invariant, vezine
According to the graphs, we can observe than for this datasethe main orientation of the keypoint to determine to which de
the diference between gauge-derivatives and first-order locadcriptor bins each sample contributes. However, the G-SURF
derivatives based descriptors is much more important then f descriptor is more robust to noisy orientation estimates th
the previous image transformations evaluation. The best reSURF due to the gauge derivatives rotation invariant pityper
sults were obtained again with the GU-SURF (144) descrip-
tor. In this experiment, U-SIFT (128) obtained also good re-6.2, Comparison to OpenCV
sults, with higher recall values than MU-SURF (64), U-SURF
(64) and NGU-SURF (64). Notice that in these experiments
GU-SURF (36) obtained better results for the three images pai
than MU-SURF (64), U-SURF (64) and NGU-SURF (64).
This is remarkable, due to the low dimension of the descrip-
tor, and this clearly stands out the discriminative prapsrof Shitpy/lear.inrialpes. fipeoplgmikolajczykDatabastotation. html
gauge derivatives against first-order ones. The main regkpn 6Available from http//sourceforge.ngrojectgopencvlibrary
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In this section, we also compare our G-SURF descriptors
with the latest OpenC¥implementation of the SURF descrip-
tor. According to B8], OpenCV’s SURF implementation has
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Figure 6: In the first row (a,b,c), we show some images from tha2g dataset, with incrementally increasing random Gaussiise values per image. Notice that
when severe random noise is added to the image, the numberestettblobs increases, mainly at small scales. The detecgpdikés are shown in red or blue

depending on the sign of the Laplacian. (a) Iguazu 1 (b) lgiate) Iguazu 5. In the second row (d,e,f), Image matching éxyerts: Recall versus 1-precision
graphs, Similarity threshold based matching. (d) Iguazu 1 (& &juazu 1 vs 4 (f) Iguazu 1 vs 5. Best viewed in color.

ymGogh Dataset: Image 2 vs 8. Distance Threshold s Van Gogh Dataset: Image 2 vs 18. Distance Threshold Ing Scheme as descnbed |n Sectmmccordlng to the resu|tsl
Toe o Y we can see that the OpenCV implementation gives poor results
: P .a /»/""*/:7 comparable to SURF (64) OpenSURF's implementation, since
g e % /’ // both algorithms use the mentioned single Gaussian weightin
3 g 7 scheme. We can appreciate a hugédence in recall with re-
S / N e spect to G-SURF (64) and M-SURF (64).
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Figure 8: Image matching experiments: Recall versus 1-poecgriaphs, Sim-

recall (539 correspondences)
recall (321 correspondences)

o
ilarity threshold based matching. (a) Van Gogh 2 vs 8 (b) VaglGd vs 18. o // / f/ o4 ,,/ J"y
Best viewed in color. /// / v //] ’//FL
i fof b B o ]
,A_,J) e, Z,ﬁcy—a U,
become a de facto standard for fast-to-compute descriptors = 7 e e ' R oo '

However as we will show in our results, the descriptor per- (a) (b)

formance is poor and much lower compared to the default

OpenSURF’s M-SURF descriptor. This low performance isFigure 9: Image matching experiments: Recall versus 1-peecggaphs, Simi-
because the SURF implementation in OpenCV uses also tH%nlylthreshold based matching. (a) Bikes 1 vs 5 (b)ffetid vs 2. Best viewed
single Gaussian weighting scheme as proposed in the driging] eowor

SURF paperj].

Figure9 depictsrecall versus 1-precisiographs for two im-
age pairs from the Bikes and Giiéi datasets. In this experi-
ment, we compare G-SURF (64) with respect to M-SURF (64), In this section, we evaluate the performance of G-SURF
SURF (64) and CV-SURF (64) both in the upright and standardased descriptors in large-scale 3D SfM applications. I pa
forms of the descriptors. We denote by CV-SURF, the OpenC\icular, we use the learning local image descriptors datase
implementation of the SURF descriptor using the single weig from [10]. In the mentioned work, Brown et al. proposed
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6.3. Application to 3D Structure from Motion



a framework for learning dense local image descriptors from
training data using 3D correspondences from large-scdle Sf
datasets. For generating ground truth image correspordenc
between real interest points, the authors used multi-vieves
matching technique®f, 25| that allow to obtain very accurate
correspondences between 3D points.

The available dataset consists on several scale and orienta
tion normalized 6464 image patches centered around detected
Harris corners or Oference of Gaussian (DoG)}4] features.
Those patches were extracted from real 3D points of largesc
SfM scenarios. In our evaluation, we used 40,000 patch pairs
centered on detected Harris corners from which the 50% are
match pairs and the rest 50% are considered non-match pairs.
We attach the set of matchieen-matches image patches used
for the evaluation as a supplementary material of the pdper.
the evaluation framework of Brown et al., two patches are con
sidered to be a match if the detected interest points ara@nwith Iy
5 pixels in position, 0.25 octaves in scale an@ radians in e ‘ : —— ST (128)
angle. FigurelO depicts some of the pre-defined match, non- o e 5 XL 02 02 03
match pairs from the Liberty dataset. feerect Match Fracion

Correct Match Fraction

CETES B SR b : :
-‘ : i : —— GLLSURF (64
—+— MGLL-SURF (64)
NGL-SURF (64]

O e —— MU-SURF (64)

Figure 11: ROC curves for local image descriptors. Libertyaget. Best

' h ‘ F . ' viewed in color.
@

(b)

Figure 10: Some of the predefined match, non-match pairs fronhitresty
dataset. Each row shows 3 pairs of image patches and the twe ipaéches in
each pair are shown in the same column. (a) Match pairs (b) Nachmpairs.

We performed an evaluation of the upright version of the
descriptors U-SURF (64), MU-SURF (64), GU-SURF (64),
MGU-SURF (64), NGU-SURF (64) and U-SIFT (128) for both

the Liberty and Notre Dame datasets. We chose a scale of 2.5 T o o E
pixels to make sure that no Haar wavelet responses were com- i i : ;
puted outside the bounds of the image patch. For all the image 095 i e o i

pairs in the evaluation set, we computed the distance betwee

descriptors and by means of sweeping a threshold on the de-

scriptor distance, we were able to generate ROC curves. Fig-

ure 11 depicts the ROC curves for the Liberty dataset, whereas

Figure12 depicts the ROC curves for the Notre Dame dataset.
In addition, in Table2 we also show results in terms of the

95% error rate which is the percent of incorrect matches ob- o MeusuRs }223

tained when the 95% of the true matches are found. 075 |- e e MULSURE (54) [
' ’ ’ ’ —e— LSURF (64)

L] N Pl H F

0ss | H A T — . — |

Correct Match Fraction

os e b : :
: ; i ; —o— GL-SURF (54)

Descriptor Liberty | Notre Dame o7 i 0’? s ;"_ “'8'525“28’ )
GU-SURF (64) 19.78 18.95 In.correct Métch Fractidn . .
MGU-SURF (64)| 12.55 10.19
NGU-SURF (64) 2205 2522 Figure 12: ROC curves for local image descriptors. Notre Daataset. Best
. : viewed in color.
MU-SURF (64) 16.88 13.17
U-SURF (64) | 36.49 34.18
U-SIFT (128) | 21.92 17.75

Table 2: Local image descriptors results. 95% error rateth, the number of
descriptor dimension in parenthesis.
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According to the results, we can observe that the lowest in- Even though this is a simple visual categorization prob-
correct match fraction rate for the 95% recognition rates walem, we want to evaluate if G-SURF based descriptors can ex-
obtained by the MGU-SURF (64) descriptor. This descriptorhibit higher recognition rates than traditional first-ardpatial
uses the same square grid configuration, two Gaussian weigltderivatives based approaches due to the extra invaridtered
ing steps and subregions overlap as proposed éhfpr the by using gauge derivatives. Figut8 depicts three image pairs
MU-SURF descriptor. In typical large-scale 3D SfM scengyrio of the diferent categories that we used in our evaluation. In
there exist non-planar transformations and illuminatisarges  particular, we can expect a higher confusion between thesfac
resulting from viewing a truly 3D scenel(]. In addition, and camels categories. This is because in some images of the
second-order derivatives are more sensitive to persgeotiv camels dataset we can observe some human faces as shown for
affine changes than first-order ones. Therefore, in those scenaxample in Figurel3(f), and also that camel and human faces
ios where the fline changes or changes on perspective are sigshare some degree of similarity.
nificant, the two-steps Gaussian weighting and subregiesis o
lap seem to have a goodfect on the descriptor performance.
This is the reason why in this evaluation we obtained better
results for MGU-SURF (64) and MU-SURF (64) against GU-
SURF (64) and NGU-SURF (64), that do not use any kind of
subregion overlap or Gaussian weighting steps. U-SIFT)(128
also obtained good results, always better than NGU-SURF (64
and very similar results compared to GU-SURF (64), slightly
better for the Notre Dame dataset. U-SIFT (128) also uses
bilinear interpolation between the bins of the descriptisr h
togram [L4]. When comparing, gauge-derivatives based de-
scriptors and first-order local derivatives ones, withawt sub-
region overlap nor any Gaussian weighting step, we canabser
that GU-SURF (64) obtained much better results than NGU=rigure 13: Three pairs of images from the Caltech dataset) Eaces (b,e)
SURF (64). As expected, the worst results were obtained fohirplanes (c,f) Camels. Notice the possible confusion betwthe faces and
the U-SURF (64) descriptor, since in this descriptor comfigu camels categories.
tion the single Gaussian weighting step smoothes in a vety hi
degree the descriptor information, yielding in lower reaitign In order to perform an evaluation of thefldirent local de-
rates. scriptors, we used our own implementation of the visual bag

Besides, in the OpenGSUREF library, the user can choosef keypoints method described ig][ This implementation has
between the SIFT-style clipping normalization and unitteec been successfully tested before in an occupant monitoyisg s
normalization of the descriptor. This normalization careseh  tem based on visual categorizatiod?]. Basically, we used
a big impact on the matching performance of the descriptorghe standard Fast-Hessian detector to detect featureteodsh
as demonstrated ir89, 10], where one can obtain lower error at different scale levels, and then we computeftedent local
rates considering the SIFT-style clipping normalizatietow-  descriptors. In this experiment, we only show a comparissn b
ever, in order to avoid the influence of this normalizatioflest tween 64 dimensional descriptors in its upright form (U-$JR
in our results, we just show results using the standard @it v MU-SURF, GU-SURF, NGU-SURF). Once the descriptors are
tor normalization, except for the SIFT descriptor, in whigk  extracted, the visual vocabulary is constructed by meatiseof

use its default SIFT-style clipping normalization. standarck-meanglustering schemedf3]. This clustering algo-
rithm proceeds by iterated assignments of keypoints descsi
6.4. Application to Visual Categorization Problems to their closest cluster centers and recomputation of thstet

In this experiment, we show that G-SURF based descriptorgemers' The selection of the number of clusters and thalinit
can be usedfgciently in typical visual image categorization or 1Zation of the centers are of greatimportance in the perimee
object recognition problems. Bay et al. have shown in presio ©f the algorithm. Finally, the visual categorization is edy
works [40, 33, 5] that SURF-based descriptors can be uséd e using a simple [dive Bayes classifiedl]. In order to reduce

ciently in these kind of applications. Nowadays, SURF ofTSIF the influence of the clustering method on the final results, we
invariant descriptors are of common use in typical visuaéca decided to use a small number of clusters 20 and performed

gorization or object recognition schemé. [In a similar way a random initialization of the cluster centers. To avoidstdu

to [41], we performed our tests considering the Caltech facednitialization problems, the clusters were randomly adized
airplanes and camels data&eFirstly, we resized all the images (€N times in each of the experiments, reporting categaoizat
to a 640¢480 resolution and selected the 25% of all the imagegesults just for the cluster initialization that obtainethmnum

(randomly distributed among the three categories) foningi ~ COMPactness measure. .
The rest of the images was used for test evaluation. Tables3, 4, 5 and6 show information about the performance

of each of the dferent descriptors in the test evaluation. Simi-
lar to [2], we used three performance measures to evaluate the
httpy/www.vision.caltech.edhitml-filegarchive.html performance on visual categorization: the confusion mgtne
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overall error rate and the mean ranks. For more information True Classes Faces Airplanes Camels
about the meaning of these performance measures, we recom- Faces 80.6122 0.3267 20.0000
mend the reader to check the experiments sectio®]in [ Airplanes 1.36054 93.3551  10.0000
Camels 18.0272 6.31808  70.0000
True Classes Faces Airplanes Camels ’ Mean Ranks [ 1.2074 1.0882 1.3 |
Airplanes 1.3605 91.5033  12.0000
Camels 15.9864 7.6252 69.0000
’ Mean Ranks ‘ 1.1973 1.1154 1 310q Table 6: Confusion matrix, mean ranks and overall error rat&f8U-SURF
: : - (64).
| Overall Error Rate | 0.1352 \

Table 3: Confusion matrix, mean ranks and overall error rat&)fSURF (64).

True Classes Faces Airplanes Camels
Faces 79.2517 0.3267 25.5000
Airplanes 0.6802 93.6819 7.0000
Camels 20.0680 5.9912 67.5000
| MeanRanks | 1.2142  1.0824 1.3250 |
| Overall Error Rate | 0.1303 \

Table 4: Confusion matrix, mean ranks and overall error rateMfd-SURF

(64).

True Classes Faces Airplanes Camels
Faces 85.3741  0.2178 22.5000
Airplanes 0.3401 91.8301 5.5000Q
Camels 14.2857 7.9520 72.0000
] Mean Ranks [ 1.1564 1.1132 1.2800 |
| Overall Error Rate | 0.1232 \

Table 5: Confusion matrix, mean ranks and overall error ratesld-SURF

(64).

6.5. Implementation Details and Timing Evaluation

In this section, we describe some implementation details of
G-SURF descriptors and perform a timing evaluation. One of
the criticisms about using second-order derivatives inctire
text of local descriptors, is the higher computational ¢bat
sometimes is not accompanied by a better performance. In
this section, we show that by means of using gauge derigative
we can obtain much better performance than first-order based
methods with comparable computational cost. Tabkhows
timing results for descriptor computation and also the neimb
of the most important operations in the process of buildirey t
upright SURF based descriptors. All timing results were ob-
tained on an Intel i7 2.8GHz computer.

In Table 7, the number of integral image areas means the
number of areas that we have to obtain in order to compute the
descriptor. Based on OpenSURF’s implementation detb#s [
one can estimate first-order Haar wavelegslLy with just the
difference of two areas of the integral image for each of the first-
order wavelets. For each of the second-order Haar wavelets
Lxx Lyy it is necessary to compute two areas of the integral im-
age and sum these areas in a proper way. Finally, the most
consuming Haar wavelet isyy, since it requires the compu-
tation of 4 areas of the integral image. For example, for the
U-SURF (64) case, the total number of areas of the integral im
age that we need to compute is:x{4)-(5x5)- (2+2) = 1600.

Due to the extra-padding oB2the MU-SURF (64) case yields:

With respect to the confusion matrix, we can observe thaf4x4)-(9x9)-(2+2) = 5184. On the other hand, the GU-SURF

GU-SURF (64) descriptor obtained higher recognition rétes

(64) case yields: (44)-(5x5)-(2+2+2+2+4) = 4800. How-

the faces (85.3741%) and camels (72.0000%) categories: Howver, the core observation is that for the GU-SURF (64) diescr
ever, the MU-SURF (64) descriptor obtained a higher recognitor one can obtain substantial speed-up for those pointsein t
tion rate for the airplanes (93.68%) dataset. In the same wayectangular grid where the gradient is equal to zero. Faseho
GU-SURF (64) obtained the lowest mean ranks for the facesases we do not need to compute the second-order wavelets,
(1.1564) and camels (1.2800) datasets and MU-SURF (64) otsince gauge coordinates are not defined for these points. Thi

tained the lowest one for the airplanes dataset (1.0824jaiide
ing the overall error rate, GU-SURF (64) was the descriftat t
achieved the lowest error (0.1232). There is a reductiohén t

corresponds to regions of the images of equal value, and-ther
fore these regions are non-Morse.
Using the same settings as described in Tablee can show

overall error rate of the 8.88% with respect to U-SURF (64),the fraction of non-Morse points among all the points where
5.45% with respect to MU-SURF (64) and 2.22% with respectHaar wavelets were evaluated. For example, for the follgwin
to NGU-SURF (64). Even though the experimental evaluatiorimages the ratio is: Leuven Image 1 (36%), Bikes Image
was a simple visual categorization problem, we can concludé (17.73%) and Iguazu Image 1 (38%). Another computa-

that G-SURF based descriptors can be ugidiently in these

tional advantage of the G-SURF descriptor is that it is nat ne

visual recognition schemes. In addition, G-SURF descripto essary to interpolate the Haar wavelet responses with cespe
can also obtain lower error rates and higher recognitioesrat to a dominant orientation, since gauge derivatives ardioota
than traditional approaches that are based only on firgrord invariant.

local derivatives.

As explained above, the number of operations for U-SURF



Case U-SURF | MU-SURF | MGU-SURF | GU-SURF | GU-SURF | GU-SURF
Dimension 64 64 64 36 64 144
# First-Order Wavelets 800 2592 2592 648 800 1152
# Second-Order Wavelets 0 0 3888 972 1200 1728
# Gaussian Weights 800 2608 2608 0 0 0

Square area 20x 20 24x 24 24x 24 18x 18 20x 20 24x 24
# Integral Image Areas 1600 5184 15552 3888 4800 6912
Time (ms) 0.03 0.16 0.30 0.06 0.07 0.10

Table 7: Descriptor Building Process: Number of operatisgsiare area and average computation time per descriptorikeéypo

(64) is the smallest, yielding a small computation time per d scenarios where the image transformation is small in tefims o
scriptor, but the performance is the worst compared to therot change in viewpoint or the image transformation is related t
SURF-based cases. NGU-SURF (64) descriptor has simildslur, rotation, changes in lighting, JPEG compression af ra
computation times than the U-SURF descriptor, with the addom Gaussian noise. Our upright descriptors GU-SURF (64)
vantage that no Gaussian weighting operations are negessand GU-SURF (36) are highly suited to SfM and SLAM ap-
and exhibiting much better performance. The modified versio plications due to excellent matching performance and cempu
of the descriptors introduces more computations in thergesc tational dficiency. Furthermore, the rotation invariant form of
tor building process, since the square area isx224s. This  the descriptors is not necessary in applications wheredghe ¢
yields higher computation times per descriptor. In paléicu era only rotates around its vertical axis, which is the tspic
for the MGU-SURF (64) descriptor, the number of integral im- case of visual odometrylll, 45] or SLAM [46] applications.
age areas is the highest (15552), and also the associated cowiie also showed successful results of our family of desasgpto
putation time per descriptor (0.30 ms). However, thisdpsar  in large-scale 3D SfM applications and visual categorizati
only offers small advantages in performance against GU-SURPBroblems.

(36), GU-SURF (64) and GU-SURF (144) when we have se- Another i tant lusion that h din thi
guences with strong changes in viewpoints and non-planar ro nother important conclusion that we showed in this papet,
tations (e.g. Wall, Griti, Liberty and Notre Dame datasets). Is that descriptors based on gauge-derivatives can exhilsh

In addition, GU-SURF (36), GU-SURF (64) and GU-SURF higher performance than first-order local derivatives Hate

(144) are faster to compute than MU-SURF (64) and also ex3criptors. This is possible, due to the extra invariarfered by

hibit much better performance. For the U-SIFT (128) descripgauge—derivatives. and also our G-SURF descriptors have com
tor, we obtained an average computation time per keypoint o(?arable computational cost with respect to other appr@ache

0.42 ms. Besides, for any SIFT-based descriptor one needs to As future work we are interested in testing the usefulness of
compute the Gaussian scale space since the gradients are p@SURF descriptors for more challenging object recognitio
computed for all levels of the pyramid4]. Pre-computing the  tasks (e.g. The PASCAL Visual Object Classes Challenge). In
scale space is a highly consuming task in contrast to the fagiddition, we also plan to incorporate our descriptors iet-r
integral image computation. We obtained a computation timeime SfM applications and evaluate them in loop closuredete
of 186 ms for the SIFT scale space generation, whereas for thin problems such as id}]. Future work will aim at optimiz-
SURF integral image we obtained2 ms. For the CVU-SURF ing the code for additional speed up and also we will exploit
case, we obtained an average computation time per keypoint ¢he use of gauge coordinates in the detection of featuresrin n
0.05 ms. linear scale spaces. Moreover, we would like to introduce ou
According to these results, it is clear that image matchsig u gauge-based descriptors on a DAISY-like framewatg] [for
ing the G-SURF descriptors can be accomplished in real-timegyerformance evaluation onftirent computer vision applica-
with high matching performance. For example, we think thations.
GU-SURF (36) and GU-SURF (64) are of special interest to be
used diciently in real-time SfM and SLAM applications due to
excellent matching performance and computatioffatiency.

According to the obtained results and other successful ap-
proaches such agometric bluywe hope that in the next future
we can break with the standard scale-space paradigm in com-
puter vision algorithms. In the standard scale-space farad
the true location of a boundary at a coarse scale is not tjirect
available in the coarse scale image. The reason for thisjgi

We have presented a new family of multiscale local descripbecause Gaussian blurring does not respect the naturatiboun
tors, a novel high performance SURF-inspired set of descriparies of objects. We believe that introducing new invarfaat
tors based on gauge coordinates which are easy to implemettres that fully exploit non-linear ffusion scale spaces (both in
but are theoretically and intuitively highly appealing. dge  detection and local description of features) can represtemt
matching quality is considerably improved relative to s~ forward improvements on traditional image matching and ob-
SURF and other state of the art techniques, especially éseth ject recognition applications.
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