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Abstract—The extreme variability in the appearance of a
place across the four seasons of the year is one of the most
challenging problems in life-long visual topological localization
for mobile robotic systems and intelligent vehicles. Tradi-
tional solutions to this problem are based on the descrip-
tion of images using hand-crafted features, which have been
shown to offer moderate invariance against seasonal changes.
In this paper, we present a new proposal focused on auto-
matically learned descriptors, which are processed by means
of a technique recently popularized in the computer vi-
sion community: Convolutional Neural Networks (CNNs).
The novelty of our approach relies on fusing the image
information from multiple convolutional layers at several levels
and granularities. In addition, we compress the redundant data
of CNN features into a tractable number of bits for efficient
and robust place recognition. The final descriptor is reduced
by applying simple compression and binarization techniques
for fast matching using the Hamming distance. An exhaustive
experimental evaluation confirms the improved performance of
our proposal (CNN-VTL) with respect to state-of-the-art meth-
ods over varied long-term datasets recorded across seasons.

I. INTRODUCTION

Where am I? This is one of the most important questions
that any mobile robot or autonomous vehicle must solve,
with the aim of determining its location along the time and
facilitating a life-long navigation. The great advances reached
in computer vision in the last few years have allowed to
perform some of these complex localization tasks by means
of cheap image sensors, such as cameras. Unfortunately, the
performance of the major part of the proposed solutions com-
monly decreases when long periods of time are considered.
The main reason is related to the strong appearance changes
that a place suffers in long-term situations due to dynamic
elements, illumination or weather. More specifically, the
variations on the visual perception of a place across the four
seasons of the year are currently one of the most challenging
problems in camera-based localization, as can be observed
in the image examples depicted in Fig. 1.

Currently, several new concepts provided in computer
vision areas such as deep learning can help to robustly solve
the previously mentioned dilemmas associated with seasonal
visual localization. According to this, Convolutional Neural
Networks (CNNs) are one of the most commonly employed
techniques in deep learning over the last years [1]-[13].
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Fig. 1. Global system architecture of our approach for visual topological
localization. It must be noted that the internal architecture of the CNN
module is extensively described in Fig. 2. In this case, the sample images
correspond to the CMU-CVG Visual Localization dataset, where the extreme
changes that a place suffers across the seasons of the year can be perceived.

The popularization of CNNs is due to the great descriptive
power that they support in image recognition, which makes
them suitable for an immense variety of problems studied
by the computer vision community. Our goal is to also take
advantage of these deep learning concepts for the benefit
of the robotics community, especially in perception robotic
systems that depends on cameras, such as the designed for
the automation of visual localization in long-term scenarios.

In this paper, we contribute a new proposal that exploits
the advantages of powerful feature representations via CNNs
in order to perform a robust topological vision-based local-
ization across the seasons of the year, as introduced in the
graphical explanation of our approach given in Fig. 1. In
this topic, some of the most representative state-of-the-art
works [14]-[20] have been typically based on describing
locations by means of some traditional hand-crafted features,
such as SURF [21], BRIEF [22] or more recently LDB [23].



Inspired by the success of how image representations learned
with CNNs on large-scale annotated datasets can be trans-
ferred to other recognition tasks [12], we consider the possi-
bility of using pre-trained CNN features for the identification
of places in our visual localization approach.

Nevertheless, the main inconvenience of using CNNs is
that they usually are expensive in terms of computational
costs and memory resources, which sometimes is a prob-
lem for real-time performance. For this reason, we present
an efficient CNN model for computing our features that
provides not only a high precision in visual topological
localization across the seasons, but also a reduced con-
sumption of resources and processing costs. With the aim
of achieving this efficiency maintaining the effectiveness of
our approach, we provide several innovative proposals that
suppose a contribution regarding to the current state of the
art (more extensively described in Section II). These main
contributions are the following:

e An improved CNN architecture based on some of the
ideas of [1] and [3]. Our model is adapted and reduced
to the requirements of our visual localization system.
The CNN is pre-trained in a different dataset [2] with
respect to the used in tests to demonstrate how transfer-
able are the learned features [13] (see Section III-A).

o A novel fusion of the features obtained by the convolu-
tional layers that improves the performance. The redun-
dancy of this fused features is subsequently decreased
by applying feature compression (see Section III-B).

o A binarization of the final reduced features with the aim
of improving the matching of locations by computing
an efficient Hamming distance (see Section III-C).

o A wide set of results comparing our method against the
main state-of-the-art algorithms in three large datasets
with seasonal changes [15], [17], [24] (see Section IV).

o A discussion about the most relevant conclusions of our
work and future research lines (see Section V).

II. RELATED WORK
A. Convolutional Neural Networks (CNNs)

Nowadays, CNNs have revolutionized the computer vision
community, mainly due to the innovative work presented
by [1], which defined one of the most relevant CNN architec-
tures: AlexNet. It obtained impressive results in image clas-
sification over the challenging ImageNet dataset [2]. After
that, other works tested the power of CNNs by designing new
refined architectures based on AlexNet and widely compar-
ing them against other visual recognition methods [3]. In this
sense, the benefits of CNNs have been exhibited in a different
range of typical computer vision problems such as semantic
segmentation [4] or optical flow [5]. The popularization
and extension of these deep learning algorithms in varied
contexts has been also possible thanks to the useful open
toolboxes provided by some authors to the community, such
as Caffe [6] or MatConvNet [7]. Besides, other contributions
helped researchers to better understand the complex division
into layers behind CNNs and to visualize their features [8].

The application of CNNSs to learn robust visual descriptors
has been studied in works such as [9], where features are
processed for global image description. Moreover, other
proposals extract CNN features over a set of detected
points [10], like traditional hand-crafted local descriptors
such as SURF. Apart from general image recognition, there
are also approaches where deep descriptors are trained over a
specific database of places [11], with the aim of categorizing
concrete place scenes such as forests, coasts, rooms, etc.
On the other hand, some works analyze how transferable
is the knowledgement acquired in training by deep neural
networks [12], [13], which demonstrates that learned features
appear not to be specific to a particular dataset or problem,
they can be generalizable to several datasets and problems.

B. Life-long Visual Topological Localization

The major part of the state-of-the-art proposals for visual
topological localization are focused on description methods
that compute conventional hand-crafted features from single
images. Probably, the most popular algorithm in this line
is FAB-MAP [14], which uses vector-based descriptors like
SUREF jointly with bags-of-words. Global vector-based de-
scription methods like WI-SURF are also applied in topo-
metric localization [15]. Besides, the irruption of BRIEF and
similar binary features motivated place recognition proposals
based on a global binary description efficiently matched by
means of the Hamming distance, such as BRIEF-Gist [16].

Unfortunately, the previously mentioned approaches typ-
ically diminish their precision over long periods of time.
Due to this, algorithms such as SeqSLAM [17] improved the
accuracy in long-term scenarios using sequences of images
to define places instead of single images, jointly with a
customized descriptor based on image difference vectors
computed over pixels. More recently, new proposals obtained
a remarkable performance focusing on the challenge of
life-long topological localization across seasons, such as the
three versions of ABLE contributed for different types of
cameras: panoramic (ABLE-P [18]), stereo (ABLE-S [19])
and monocular (ABLE-M [20]). This approach presents
a visual description of locations based on sequences of
illumination invariant images represented by binary codes,
which are extracted from a global LDB descriptor that is fast
matched using an approximated nearest neighbor search.

However, methods based on CNN features can be a
promising alternative for a more precise place recognition
across seasons. Recent papers exhibited studies about possi-
ble utilities of pre-trained CNN features in visual topological
localization [25], [26]. On the other hand, the approach
defined in [27] performs end-to-end learning of a CNN for
identifying places. Other interesting models based on deep
learning are focused on pose regression for relocalization in
small-scale environments [28], in contrast to works where
images are matched under substantial appearance changes
exploiting GPS metric priors [29]. These recent proposals
have motivated our current work, with the aim of providing a
more robust and efficient life-long visual localization system
based on improved and simplified CNN features.
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Fig. 2. CNN-VTL architecture. The description process takes as input an image normalized to a size of 224x224x3 and returns as output a CNN feature.
Internally, our CNN is divided into different layers that capture image information at several levels and granularities, where five convolutions are computed.
The features obtained for each convolution are fused to form the final feature, which will be compressed and binarized in subsequent stages of our system.

III. OUR VISUAL TOPOLOGICAL LOCALIZATION
(CNN-VTL)

A. CNN architecture

The architecture designed for our CNN model follows
some concepts of the VGG-F presented in [3], which takes as
reference a similar structure to the one suggested by AlexNet,
but including some improvements for a faster processing.
To achieve a more efficient performance, VGG-F reduced
the number of convolutional layers originally proposed by
AlexNet to eight learnable layers, five of which are convo-
lutional, and the last three are fully-connected. In the results
provided by [3], it is corroborated how this simplification
does not have a significant impact in the effectiveness for
image recognition, but it greatly decrease the computational
costs. Inspired by these experiments, we implement a much
more simplified approach. We also take into account the
study about CNNs performance in place recognition carried
out by [26], which demonstrates that fully-connected layers
are not so effective as the convolutional ones in this task,
as certified by our own observations. For this reason, our
final model eliminates fully-connected layers and is mainly
based on five convolutions. According to all the previous
considerations, our Convolutional Neural Network for Vi-
sual Topological Localization (CNN-VTL) is graphically
described in Fig. 2.

Following the ideas exposed in [12], [13], our CNN-VTL
architecture is based on a pre-trained model over the
ImageNet dataset, in order to confirm the generalization
of the automatically learned features. This will demonstrate
that the description power acquired by the CNN features is
transferable to the specific datasets used in the tests of our
visual topological localization across seasons. Besides, this
evaluation is much fairer than processing training images
recorded in environments similar to the evaluated in the
datasets where our tests are registered.

The architecture designed in CNN-VTL is modeled thanks
to some of the functionalities provided by the MatConvNet

toolbox, which allows to create a great variety of different
wraps to define the layers in the network. As can be seen
in Fig. 2, our architecture is formed by three main types
of layers: convolutions, ReLLUs and pools. The mechanisms
for computing the information of each layer inside of our
CNN-VTL are not trivial. For this reason, now we must
provide a more detailed explanation about how the different
layers work in our specific model:

1) Convolutional layers (conv,): convolutions are the
basic layer in any CNN and they are usually the main
level in all the blocks. In the case of our CNN-VTL,
five convolutional layers are on the top of the five
blocks that form the proposed architecture. The deriva-
tives associated with convolutions are solved with tech-
niques of backpropagation. Each convolutional layer
receives an input map (x € RT*WxP) and a bank of
filters with multiple dimensions (f € RH W' xDxD"
returning the subsequent output (y € R xW"xD")
It must be noted that in our implementation any bias
input is processed. Taking into account the inputs and
the output, the internal computation of our convolu-
tions is represented by Eq. 1:
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2) ReLU layers (reluy): the Rectified Linear Unit (ReLU)
is an activation function used by our CNN model.
In CNN-VTL, a ReLU layer is located after all the
convolutional layers, except in the case of the last
convolution (convs), where it is unnecessary according
to our feature generation proposal. We choose the
ReLU activation function because it is very easily and
efficiently computed, in contrast to other more complex
functions, such as sigmoidals. The activation in ReLU
is simply thresholded at zero, as exposed in Eq. 2:

Yijk = max (0, z;;x) (2)



3) Spatial pooling layers (pool,): pools are an important
layer in the proposed architecture. Spatial pooling
decreases the amount of parameters and computational
costs over our CNN using a non-linear downsampling,
which also allows to control problems derived from
overfitting. CNN-VTL contains two pools in the lower
part of its two first blocks connected to conv, and
convsz, which are sufficient to achieve the desired
reduction of data. In our case, a max pooling operator
is implemented. It processes the maximum response of
each feature channel in a H' x W' patch. The internal
application of this layer is formulated in Eq. 3:

yi”j”k = xi//+i'717j'/+j/71,]€ (3)

max
1< <H’,1<5'<W’

B. Description of locations

The model defined by the layers of CNN-VTL allows
to carry out a strong visual description of places at differ-
ent image levels and granularities for the proposed visual
topological localization across seasons. The visual features
automatically learned by our network can be used now by
applying the designed convolutions.

In order to form a more robust final descriptor (d;,,,) from
our CNN-VTL, we concatenate (4 ) the vectorized features
obtained by the n different convolutional layers (d¢onw,, ):

dcnn = dconvl +- dconv2 +- dconv3 +- dconv4 +- dconv5 (4)

The goal of the strategy formulated in Eq. 4 is to conserve
the multiresolution information provided by each convolu-
tion, which acts as a local and translation invariant operator,
as stated in [7]. In works such as [25], only the features
generated by the third convolutional layer (dcon.,) are con-
sidered in the place description process, which produces a
loss of invariance. Due to this, [25] needs to use a complex
and expensive algorithm to obtain several region landmarks
per image and compute their respective CNN features in
order to maintain the robustness when revisited locations
have important changes on the field of view. On the other
hand, our method can directly use global images thanks to
the invariance procured by the fusion of the convolutional
outputs, which is a more efficient approach.

The different features contained in d.,, are initially
returned by the CNN in a float format. For this reason, with
the aim of facilitating a subsequent binarization, we cast
these features into a normalized 8-bit integer format (d*f,
by following Eq. 5, where min = 0 and maz = 255:
max — min

di™ = (depp —min(depy))

el +min
&)

The length of the descriptor (I, ) acquired after the fusion
of the five convolutional outputs can be calculated as exposed
in Eq. 6, where hcon,, » Weonw, » deonw,, are the height, width

and dimensions of each convolution, respectively:

max(deny,) — min(deny)

lcnn = hcon’un X Weonw,, X dcom)n (6)
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If we solve Eq. 6 using the output sizes of the convolutions
applied in our CNN-VTL architecture (see Fig. 2), we obtain
lenn = 503040 bytes. This length can be excessive for effi-
ciently performing the subsequent features matching. Due to
this, we apply reductions to this size in order to analyze how
they affect to the accuracy of our place recognition method.
This is motivated by works such as [30], which evidences
that a handful of bits is sufficient for conducting an effective
vision-based navigation. Besides, in very recent studies [31],
several traditional hand-crafted binary descriptors are tested
to conclude that a remarkable precision can be achieved
using a small fraction of the total number of bits from
the whole descriptor. We demonstrate in the experiments
presented in Section IV-B that the features extracted from
CNNs have a similar behavior to the observed in [31].

With the aim of reducing the size of our CNN descriptors
without losing a great accuracy, the redundant features can
be omitted to compress the final length. In works such
as [22] or [23], methods based on a random selection of
features have demonstrated to be an efficient and effective
alternative with respect to more complex algorithms. In fact,
the evaluation presented in the binary description performed
by LDB in [23] yielded surprisingly favorable results, where
the precision of a random feature selection is close to the one
achieved using more refined methods, such as entropy-based.

We also implement a similar random selection of features
in order to compress our CNN descriptor in an easy and
efficient way. This technique randomly chooses a specific
set of features and applies the same selection in all the
following descriptions to match the same correlative features.
A proportional number of features is randomly selected
for each layer to preserve as possible the multiresolution
provided by our fusion of convolutional features at different
granularities. Our compression proposal is supported by the
satisfactory results exposed in Fig. 3 (b) and Table 1.

C. Matching of locations

The bottleneck of our system is in the matching of
descriptors for identifying locations, because the number of
images to be matched is increased in each iteration, while
the description costs are constant along the time. Apart from
features compression, other techniques can be applied for
reducing the computational costs of matching tasks. One of
them is the usage of the Hamming distance for obtaining the
similarity between features, which is more efficient than the
Lo norm or the cosine distance used in works such as [25].
This efficiency is due to the simplicity of its calculation,
which consists on an elementary XOR operation () and
a basic sum of bits, as formulated in Eq. 7. According to
this, our CNN descriptors are binarized, because this is the
main condition to correctly use the Hamming distance. This
binarization is a trivial operation after the conversion of our
features to an 8-bit integer format (see Eq. 5). Finally, a
distance matrix (M) is computed by matching all the binary
features (d%" ) using the Hamming distance:

cnn

M; ; = bitsum(d%", @ d%" ) (7)

cnn; cnn;
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Fig. 3. Precision-recall curves comparing results about CNN-VTL in some of the most challenging sequences of the Nordland dataset (Winter vs Spring).

IV. EVALUATION IN LOCALIZATION ACROSS SEASONS
A. Datasets and Evaluation Methodology

With the aim of demonstrating the capability of our
CNN-VTL method, we carry out several evaluations using
three publicly available datasets, where several image se-
quences are recorded for a same route across the seasons of
the year: the Nordland dataset [24], the CMU-CVG Visual
Localization dataset [15] and the Alderley dataset [17]. These
tests allow us to analyze the long-term behavior of our
proposal over a distance of more than 3000 km and in the
different conditions associated with each dataset.

We compare the performance of our solution against some
of the main state-of-the-art works. For evaluating WI-SURF
and BRIEF-Gist, we use implementations of them based on
the SURF and BRIEF descriptors provided by the OpenCV
library [32]. FAB-MAP is tested using the OpenFABMAP
toolbox [33]. The experiments for SeqSLAM are performed
with OpenSeqSLAM [24]. ABLE-M evaluations are com-
puted thanks to the source code developed by authors [20].
Additionally, we implement the approach defined in [26]
based on the conws features obtained from an AlexNet
pre-trained in MatConvNet over the ImageNet dataset.

The results presented in this work for our proposal and
the state-of-the-art methods are compared by means of the
objective evaluation methodology more detailed in [19],
which is mainly based on precision-recall curves obtained
from the distance matrices processed in each test.

B. Results in the Nordland Dataset

The Nordland dataset comprises a train trip of 10 hours
across Norway, which is registered four times, once in each
season. Image sequences are synchronized and field of view
is always the same due to the invariant camera position. In
this paper, we present results obtained between the routes
recorded in winter and spring, which is one of the most

challenging evaluations because of the extreme variability in
visual appearance between both seasons in this dataset.

In Fig. 3 (a), it is corroborated how our approach focused
on using a fusion of features from convolutional layers
works much better than the features extracted from individual
layers, which are proposed in works such as [25] or [26]. In
this case, we also include a test for an added fully-connected
layer (fcg) to confirm its worse behavior in our problem.

Precision-recall curves depicted in Fig. 3 (b) validate our
approach for reducing the amount of redundant information
in our CNN features. Here, it is demonstrated that features
can be highly compressed maintaining a remarkable perfor-
mance. Table I presents a more detailed study, where it can
be seen how our initial CNN features can be reduced to 2048
bytes (a compression of 99.59%), losing only about a 2% of
precision. In higher reductions, (256 or 32 bytes) the loss
of accuracy is much more critical. Table I also details the
average speedups achieved in matching when features are
compressed, which is proportional to the magnitude of the
reduction.

The results in Fig. 3 (c) show that our CNN-VTL proposal
obtains a successful performance compared to state-of-the-art
algorithms based on traditional hand-crafted features. It must
be also noted that the precision yielded by CNN-VTL is
superior to the achieved in the curve computed for the
CNN-based method defined in [26] (AlexNet convs).

TABLE I
STUDY ABOUT THE PERFORMANCE OF COMPRESSED FEATURES.

Size Percentage of | Average speedup
. F-score . .
in bytes compression for matching
503040 0.899 0 % None

16384 0.894 96.74 % 30x

2048 0.872 99.59 % 245x

256 0.651 99.94 % 1965x

32 0.216 99.99 % 15720x
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Fig. 4. Precision-recall curves comparing our CNN-VTL against state-of-the-art algorithms in the CMU-CVG Visual Localization dataset.

C. Results in the CMU-CVG Visual Localization Dataset

This dataset contains several sequences of images acquired
by a car in different months of the year around a same
route in Pittsburgh (USA). In this case, apart from seasonal
variations, there are changes on the camera field of view
between the images recorded for a same place.

Now, we process results for sequences corresponding to
the four seasons of the year in the six possible combina-
tions (winter vs spring, winter vs summer, winter vs fall
spring vs summer, spring vs fall, summer vs fall). These eval-
uations are depicted by the precision-recall curves showed in
Fig. 4, where it can be observed how the different seasons
affect to performance in life-long visual topological localiza-
tion. In general terms, the sequence captured in winter is the
most problematic in our tests, due to the extreme changes

that a place suffers in this season: snow, less vegetation or
different illumination, among others.

The results presented in Fig. 4 compare again the precision
of CNN-VTL against state-of-the-art algorithms, but now in
an environment where changes on the field of view have a
negative effect in the accuracy of the major part of the meth-
ods. Our proposal obtains a better performance in this situ-
ation, because our fusion of CNN convolutional features at
different levels and granularities provides a higher local and
translation invariance with respect to approaches based on in-
dividual layers, such as [26]. Apart from this, precision-recall
curves computed in Fig. 4 yield much worse results for
algorithms based on traditional hand-crafted features using
single images (WI-SURF, BRIEF-Gist, FAB-MAP) than
using sequences of images (SeqSLAM, ABLE-M).



Moreover, Fig. 5 shows a distance matrix computed over
two sequences of the dataset by our CNN-VTL. It evidences
the reliable performance of our method, which is only unable
to match a low amount of images when a truck occludes the
camera view. Fig. 6 presents other complex situations where
our method correctly detects a revisited place. In these cases,
geometric change detection [34] could be applied to detect
the specific variations in the structure of the matched place.

Location incorrectly matched by CNN-VTL

Location correctly matched by CNN-VTL

12600

~N

(12706,14682)

(12758,14742)

Date: 01/10/10

Date: 01/09/10
Distance matrix

14900
Places on map

Fig. 5. A representative example of the distance matrix obtained by our
CNN-VTL in a part of the map between sequences recorded at 01/09/10 and
01/10/10 in the CMU-CVG Visual Localization Dataset. In almost all the
cases, it can be observed that locations are correctly matched (see red line in
distance matrix), except in a low amount of frames where a truck completely
occludes the camera view (see frames 12706 and 14682). Other complex
situations are correctly matched, such as locations with new buildings that
change the initial appearance of a place (see frames 12758 and 14742).

Fig. 6.
CNN-VTL in different sequences of the CMU-CVG Visual Localization
Dataset. The images show difficult cases with extreme changes over the
past appearance of a place: new buildings, constructions, dynamic elements,
important changes on the field of view or partial occlusions, among others.

More image pairs of complex locations correctly matched by our

D. Results in the Alderley Dataset

The Alderley dataset comprises two sequences of images
acquired in Brisbane (Australia). One of them is recorded
in a stormy winter night and the other one in a sunny
summer day. For this reason, apart from the typical seasonal
changes previously studied, we can now perform evalua-
tions under extremely variable illumination conditions. The
precision-recall curves exposed in Fig. 7 show an acceptable
accuracy for our CNN-VTL method in this challenging case.
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Fig. 7. Precision-recall curves comparing our CNN-VTL against state-of-
the-art algorithms in the Alderley dataset (Winter night vs Summer day).

V. FINAL DISCUSSION
A. Conclusions

Along this paper, our novel approach for life-long visual
topological localization using convolutional neural networks
(CNN-VTL) has extensively demonstrated its contribution to
the robotics and computer vision communities. The proposed
method has a valuable applicability in several fields related to
tasks such as camera-based place recognition or loop closure
detection, which are usually indispensable in any SLAM or
visual odometry system.

Our proposal is validated in challenging conditions derived
from the extreme changes that the visual appearance of a
place suffers across the four seasons of the year. A wide
set of results in varied long-term scenarios corroborates the
remarkable performance of our CNN-VTL compared against
the main state-of-the-art algorithms based on hand-crafted
descriptors, such as WI-SURF, BRIEF-Gist, FAB-MAP,
SeqSLAM or ABLE-M. Moreover, we have also evidenced
that our method reports a better precision than other very
recent approaches which have studied the application of
CNN s for place recognition in robotics [26]. This is mainly
due to our improved CNN architecture and to the fusion
of the features acquired in several convolutional layers, that
provides an enhanced local and translation invariance with
respect to [26], which is mainly based on CNN features from
a convs layer computed by a pre-trained AlexNet.



In addition, we have contributed an efficient model with
the aim of decreasing the costs associated with CNN de-
scriptors. We exposed how our compression of features can
reduce the redundancy of our descriptors in a 99.59%, while
precision is only decreased in about a 2%, achieving a
speedup in matching near to 245x in this case. Besides, our
binarization of features allows to use the Hamming distance,
that also represents a speedup to match locations.

B. Future research lines

Although the performance of our CNN-VTL can be con-
sidered quite satisfactory with respect to the main works
in visual topological localization, there are some interesting
future directions to follow such as:

o Test the application of sequences of images instead of

[3]

[4]

[5]

[7

—

[8]

[9]

[10]

(11]

[12]

single images in CNN-VTL, similarly to [17] and [20].
Study the compression of CNN features by means of
more refined techniques, such as Local Sensitive Hash-
ing (LSH) or Principal Components Analysis (PCA).
Perform end-to-end training of a CNN architecture such
as the one described in [27] and analyze its generaliza-
tion properties to different domains.

Evaluate the usage of change detection methods [34]
for updating the information about revisited places.
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