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Abstract— Tracking non-rigid objects from video is useful
in robotic systems such as HMIs or robotic manipulator arms
which interact with deformable objects. This paper proposes
a method for sequential model-based 3D reconstruction of
deformable objects and camera localization in real time. Non-
rigid SFM methods commonly process a video sequence offline
in a batch way. While there are real-time methods for rigid
models, reconstruction of deformable 3D shapes for real-time
applications is still unsolved. Dense approaches offer promising
results, but processing all frames in batch, offline. We propose
a real-time non-rigid reconstruction method based on a known
deformable model. Object shape and pose is tracked by real-
time estimation of camera pose and deformation coefficients. An
extensive evaluation of the algorithm on several data sets, and
comparison with state-of-the-art techniques is performed. The
tests include different outlier rates, noise levels and occlusions
handling.

I. INTRODUCTION

Understanding the deformations of non-rigid objects is vi-
tal for some robotic systems. For instance, Human-Machine
Interfaces (HMIs) must represent 3D shape and viewpoint
correctly when giving feedback to the user. Manipulators
need the 3D position of suitable contact points to grasp
deformable objects, and robotic surgery requires responsive
and accurate 3D reconstruction. A robust and real-time
reconstruction process is needed in all these cases, where
current non-rigid structure from motion methods cannot be
applied, as they work in batch mode. Hence, the development
of a real-time non-rigid 3D reconstruction technique by using
a single camera is justified. In this context, the real-time
constraint is defined by the interval between incoming frames
from a camera, which is between 33 and 66 ms.

Currently, most of the Non-Rigid Structure from Motion
(NR-SFM) approaches work in an offline mode [1], [2], [3],
[4]. The goal of these algorithms is to retrieve the camera
pose and the shape of a non-rigid object. The reconstruction
is cast as the problem of finding camera and shape parameters
that minimize the reprojection error over the whole sequence.
On the other hand, successful real-time 3D reconstruction
has been achieved for rigid scenes, where the 3D structure
captured by the camera does not change over time. Klein and
Murray [5] demonstrated a system for online reconstruction
which used no prior information about the scene structure or
camera motion. Nowadays, the most complex cases of rigid
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dense reconstruction from monocular video can be solved
in real-time [6], [7]. For the dense non-rigid case there are
some proposals in the literature such as [8]. The drawback of
this method is that, even using GPU technology, the authors
report a run-time of 8 seconds per frame. Thus, this approach
is not suitable for online applications.

For the feature-based non-rigid approach, Paladini et
al. [9] proposed a method to reconstruct each frame inde-
pendently, while updating the basis shapes as more frames
are processed. Although the method does not require a batch
process of the whole frames, each frame reconstruction is
computationally expensive, making it unsuitable for real-time
constraints.

Some non-rigid model-based approaches are able to simul-
taneously track feature points from images and reconstruct
the 3D shape [10], [11], by using a large training set of
labeled image data to train the model. Such training images
are synthetically created or often manually labeled, a time-
consuming task prone to errors. Model-free approaches to
non-rigid structure from motion do not rely on any prior
knowledge about the scene or the kinds of deformations
present. However, those methods require accurate feature
correspondences between frames, computed by a feature
tracking algorithm. This condition is difficult to be fulfilled
in real applications.

This paper proposes a sequential model-based method
for real-time 3D reconstruction of deformable objects from
unreliable feature correspondences by using monocular vi-
sion. Accurate tracking for non-rigid objects is a difficult
problem, as the visual appearance of feature points changes
due to shadows, reflections and self-occlusions caused by the
deformations.

II. RELATED WORK

Simultaneous reconstruction and tracking for rigid objects
is a mature area in which real-time methods have been
developed using sparse features [5] and dense maps [6], [7].

Tracking techniques for a known rigid object using SLAM
techniques are also developed. In the work by Pisacariu et
al. [12], the authors develop a method for model-based
segmentation and tracking based on the assumption that,
given an accurate 3D model of an object, its segmentation
from any given image is fully defined by its pose.

Non-rigid factorization was introduced by the seminar
work by Bregler et al. [13], modelling deformations as a
linear combination of basis shapes, resulting in specific
metric constraints on the factorization problem. Available
non-rigid factorization methods like Torresani et al. [4], [14]
use alternation and expectation-maximization (EM) as the



core of the 3D shape estimation. Paladini et al. [1] also
proposed an alternation method, with an additional projection
step to enforce the metric constraints. Other approaches like
Gotardo et al. [3], reformulate the problem, mixing multiple
trajectory and shape modelling, combining them to extract
the 3D shape deformation as a single smooth time-trajectory
within a linear space spanned by 3D basis shapes.

All the previous non-rigid approaches approximate the
camera with orthographic projection, which is not valid
when dealing with typical robotic applications. None of them
tackle the problem of outliers in the input 2D trajectories.
Recently, an approach to handle self occlusions and robust
reconstruction is taken by Pizarro et al. [15] using an
orthographic model.

In the work from [2] MLE+EM is replaced by a MAP
formulation. This algorithm is designed for perspective cam-
era model, which makes the algorithm easily applicable to
robotics, although it was tested with a small set of points per
model. This algorithm addresses the problem of noise and
outlier rejection, without the need of handling missing data,
since tracking points can change between frames.

In [10], a model-based 3D tracking algorithm is performed
by combining texture information for each projection, and the
3D deformation models, in a similar way to object tracking
using Active Appearance Models (AAM) [11]. This approach
is similar to the one used in this paper, although the point
tracks do not directly correspond to the model points.

An incremental solution for the problem of generating
a deformation model and tracking was introduced in [9].
The method constructs a model based on several initial
frames, and builds deformation modes as the reprojection
error reaches a threshold, adding more basis shapes as
needed. Another model-building strategy [16] consists of
forming several frame clusters and 3D reconstructions for
each cluster, later optimizing the whole model as a tree.

Dense methods such as the work of Garg et al. [8], can
build depth maps of the non-rigid shape by computing dense
optical flow. The principal drawback of this method is its low
frame rate, even using parallel processing on the GPU.

NR-SFM methods are computationally expensive, in terms
of memory and time, especially when the number of points is
high. These reasons make them unsuitable to be implemented
for real-time estimation of deformable objects. In this paper
we propose a real-time non-rigid reconstruction method
inspired by the real-time reconstruction algorithm in PTAM
(Parallel Tracking and Mapping) [5]. In brief, we extend
PTAM to include deformations in the 3D model inferred
from the camera motion.

III. ALGORITHM DESCRIPTION

Given a video sequence, a set of deformation bases and an
initial estimation of the pose and rigid shape, our algorithm
estimates the camera pose and 3D model deformations of an
object in the sequence for each frame, tracking some features
over the images.

We use the linear basis shapes model introduced by
Bregler et al. [13] for modelling deformations. The shape

is expressed as a linear combination of a fixed set of basis
shapes multiplied by time-varying coefficients:

SNR (f) = SR +

K∑
k=1

Lk (f)Bk (1)

where SNR ∈ R3×p is the (time-varying) shape for frame
f , where p is the number of points. SR ∈ R3×p is the average
rigid shape, L (f) ∈ RK are the K deformation weights for
frame f , and K is the number of basis shapes. The basis
shapes B ∈ R3K×p are fixed for the whole sequence and
are assumed to be known, normally learnt in an initial set-
up from a set of 3D training data.

Each point p of the non-rigid shape SNR is transformed
from world to camera coordinates as

Xp =
(
x y z

)T
= [R|T ] ∗ SNRp

(2)

The camera extrinsic parameters are represented by the
4x3 transformation matrix [R|T ] ∈ SE(3) , where R ∈ R3×3

specifies camera rotation, and T ∈ R3 is the camera trans-
lation vector. Points transformed in the camera coordinates
are projected with perspective projection as:

USp =

(
u
v

)
=

(
u0
v0

)
+ α

(
fu 0
0 fv

)(
x/z
y/z

)
(3)

US ∈ R2×p represents the set of shape points, (u0, v0)
T

are the camera center coordinates, (fu, fv) the focal length,
known from the prior calibration process, and α the radial
distortion function, described in [5].

A. Measurement model and matching

The measurement model is based on the detection of
sparse features on the image by using the FAST [17] detector.
The most challenging task in the tracking is the association
between detected features and projected shape points. In
order to address this task, the initial non-rigid shape is used
as a template.

The points of the model (SNR) are projected onto the
image plane, and a Delaunay triangulation is computed with
these projections, resulting in a set of connected vertices vi.
Feature points will not match the vertices of the model, but
can be expressed using barycentric coordinates. A tracked
point U

′

p = (u′v′)T has barycentric coordinates (a, b, c)
computed as in [2]: a

b
c

 = pinv

(
v1x v2x v3x
v1y v2y v3y

)
∗
(
u′

v′

)
(4)

Where pinv(·) is the matrix pseudo-inverse. Using the
barycentric coordinates we can define a set of interpolated
basis B

′
such that the 3D position of a feature point X

′

p

relates to the model basis shapes as:

X
′

p = aXv1 + bXv2 + cXv3

=
∑
k Lk (aBv1k + bBv2k + cBv3k) =

∑
k LkB

′

pk

(5)



Feature points detected in the image correspond to the
vertices of B

′
and are easier to track than the points given

by the known basis shapes model. This soft constraint applied
to the detected points provides flexibility to the tracking and
facilitates the matching of the points among frames, as there
is no need to strictly look for features near the initial model
points, but we use directly the detected points.

The detected features points on a frame are matched with
those detected in the previous frame by using an algorithm
similar to the one used in PTAM [5]. However, some
modifications are needed to deal with non-rigid features. For
each point, the following matching is followed:
• First, an affine warping is applied (based on point, patch

and pose), like in [5]. Most of the nearly rigid points
will be found using this approach.

• If this matching fails, it is usually due to deformations
in the search area. In this case, a multilevel correlation-
based approach is performed. The previous frame fea-
ture is looked up and matched in the top level of
the current frame pyramid, and refined by matching it
in the lower pyramid levels. Matching is discarded if
correlation is too low or if displacement is too large.
Married matching (current to previous frame) is applied
to discard false positives.

This matching approach fails for points with high de-
formed texture. The effect of these points is mitigated by
using all available matches on the model estimation in the
calculation of the deformation coefficients.

B. Motion model

In order to improve convergence in the tracking, a linear
motion model of the camera is computed. Then the pose is
updated as in (6).

velt = β/2 (velt−1 + µ)

[̂R|T ]
t

= exp (velt4t) [R|T ]
t−1 (6)

Where velt is the camera speed at frame t calculated using
the ESM homography between frames [18], β is the factor
that modules the influence of vel on the update, and µ is the
camera motion vector. The choice of the selected algorithm
comes from the original tracking in [5].

C. E-M optimization

Several estimation methods implement an Expectation
Maximization approach to compute deformation weights,
keeping the rest of the parameters fixed [4], [14], [19]. The
likelihood function is defined as,

fMLE (U ′, µ, L,B, SR) ∝
∑
p

∣∣∣U ′

p − proj
(
X

′

p

)∣∣∣ (7)

The parameters we want to estimate are the camera pose
vector µ = (φxφyφztxtytz) composed by the angles and the
translations in the 3 axes, and the coefficient vector L for
each frame.

We need to minimize (7) w.r.t. θ =
[
µ L

]
, the state

vector, which is formed by 6 +K components for pose and
deformation weights. We assume, B, SR and K fixed.

We run a maximum of 10 EM iterations per frame, al-
ternating between camera pose and deformation coefficients
optimization. The current number of iterations depends on
the RMS reprojection error. If the error is not significantly
reduced between frames the process is stopped. If the error
increases, the whole optimization algorithm is applied and, if
the error continues increasing, the estimation is stopped. The
best solution for the state vector is kept for the next frame.
Each estimation is performed by weighted least squares
minimization of (7).

1) E-Step. Coefficient estimation: In this step, the goal
is to estimate the set of K deformation coefficients to
improve the posterior pose estimation. A preliminary set
of coefficients are computed with the current estimation of
µt−1, SR and B

′
.

The E-step computes the lower bound for the observed
data likelihood fMLE given the previous (t− 1) state vector.
The M-step will find the best camera pose given L. The
bound is obtained by minimizing the reprojection error over
the current set of coefficients L, and taking into account the
motion model:

eLp =

(
u′

v′

)
− proj

(
[̂R|T ]

t∑
k

Lt−1k B
′

k

)
(8)

Where Lt−1 is the current value for the coefficients, eLp the
reprojection error for each point p in the current frame. We
weight the observed points using the Tuckey bi-weight M-
estimator function of the reprojection error, with a median-
based estimation of the standard deviation, in the same way
that the proposed in [5]. The M-estimator reduces outlier and
noise influence on the results, weighting each measurement
depending on its reprojection error. Only the detected points
from the matching are taken into account.

To compute the deformation weights, starting from (3), we
undistort each 2D measurement, and project the 3D shape on
the image plane. For the orthographic case, the 2D camera
coordinates are approximated to the first 2 transformed
coordinates, and the following expression is valid

proj

(∑
k

LkB
′

k

)
=
∑
k

Lkproj
(
B

′

k

)
(9)

However, in the case of perspective projection, (9) is not
valid because projected points depend also on the depth. To
compute the coefficients, we start from equations (2) and (3)
and expanding the projection function we reach:

 λu
λv
λ

 =


fu

(∑
k Lk~rxB

′

k + tx

)
− u0λ

fv

(∑
k Lk~ryB

′

k + ty

)
− v0λ∑

k Lk~rzB
′

k + tz

 (10)

Where R =
(
~rx ~ry ~rz

)T
, T =

(
tx ty tz

)T
are

the camera pose and λ the projection scale.



By grouping the terms Lk and writing the system in a
least squares form Ax = C, where x = L, ∆up = up − u0,
and ∆vp = vp − v0, we obtain:

A =


(∆u1~rz − fu~rx)B

′

11 · · · (∆u1~rz − fu~rx)B
′

1k

(∆v1~rz − fv~ry)B
′

11 · · · (∆v1~rz − fv~ry)B
′

1k

· · · · · · · · ·
(∆up~rz − fu~rx)B

′

p1 · · · (∆up~rz − fu~rx)B
′

pk

(∆vp~rz − fv~ry)B
′

p1 · · · (∆vp~rz − fv~ry)B
′

pk


(11)

C =


futx − tz∆u1
fvty − tz∆v1

...
futx − tz∆up
fvty − tz∆vp

 (12)

In the case that an average shape is given for the first frame
(SR), this will help to improve the algorithm convergence,
describing it as a function of the original basis shapes:

SR =
∑
k

LRk
Bk (13)

Where LR ∈ RK is the vector of coefficients that de-
scribe the average rigid shape. Computing the transformation
LNR = L− LR, we remove the rigid shape influence.

2) M-Step. Pose estimation: In this step, we compute
the camera pose by maximizing the likelihood (7) of the
observed data.

The maximum likelihood pose is estimated while keeping
the 3D shape fixed, again minimizing the reprojection error:

eµp =

(
u′

v′

)
− proj

(
exp

(
µt
)
[̂R|T ]

t∑
k

LtkB
′
k

)
(14)

Equation (14) is similar to (8), but in this case we search
for the minima w.r.t. µ instead of L.

We compute the µ update in the same way as done in [5].
Similarly to the E-step, the points not found are taken out
from the pose estimation on the current frame.

IV. EXPERIMENTS

Our algorithm has been tested on several commonly em-
ployed sequences of the state of the art. A summary of the
main features of these sequences are shown in Table I.

Seq. - Ref. #Points #Frames σ outl
CMUface - [9] 40 315 yes yes
Flag - [20] 540 450 yes yes
Rendered flag - [21] - 60 - -

TABLE I: Main features of the tested sequences

For data sets we set K=15. In order to perform a thorough
comparison from the motion captured data, an increasing
noise strength, σ = [0, 1, 2, 3, 4], and outlier percentage,
outl = [0, 5, 10, 20, 30, 40]% is added to the points.

The CMUface sequence comes from [9], the point wise
flag sequence from [20] and the rendered flag sequence is

presented in [21]. The last sequence consist of images and
dense 3D ground truth to evaluate the performance of optical
flow methods.

All the experiments were computed using a 4-core pro-
cessor at 2.4 GHz, with 4GB RAM. The algorithm is
implemented in c++, runs on Ubuntu Linux, using CGAL,
OpenMP and PTAM derived libraries. The experiments for
[9] and [3] are run with the default parameters in the
examples. For the experiments, we set the motion movement
constant β to 0.9 and the feature search radius to 15.

It must be noted that although the proposed method can
reconstruct non-rigid shapes in real-time given a deformation
model, current state-of-the art methods cannot because they
are not model-based, hence, a direct comparison is not
possible. Results from other non-rigid SFM methods are only
used to show qualitative differences.

In Table II a summary of results is shown, depicting
processing time (whole sequence without data loading and
rendering), 3D accuracy and 2D error. Our proposal gets the
best 3D accuracy and reprojection error for both sequences.
Also, note that for CMUface and Flag sequences, the data
association is directly given. Therefore, no transformed bases
are needed.

Sequence Method proc. T / Tpf 3D err (%) 2D err (px) model
CMUface ours 4,5 s / 0.7 ms 0.1 0.28 yes
CMUface [9] 14’/ 2.66 s 3.18 1.06 no
CMUface [3] 43 s / 136 ms 3.19 0.6 no
Flag ours 7.5 s / 2ms 0.6 1.99 yes
Flag [9] 20’ / 2.66 s 91.65 6.14 no
Flag [3] 36’ / 4.8 s 66.65 29.79 no

TABLE II: Summary of results for the sequences.

Sequence Method proc. T / Tpf / Tpp 2D err (pix) model
Rend. flag ours 2.5s / 30ms / 54µs 5.4 yes
Rend. flag [21] 8’1 / 8s / 890µs ≈1 no
Rend. flag [15] - ≈1.25 no

TABLE III: Summary of results for the sequences.

In Table III the results obtained for the Rendered flag are
shown, depicting processing time (total/per frame/per point),
and 2D reprojection error from the features or the flow.

A. CMUface sequence

This motion captured sequence represents a moving head
turning and talking. We add random noise and outliers to the
sequence for the different tests. Reconstruction results with
varying noise and outlier levels are shown in Fig. 1.

Our method obtains low 3D and reprojection errors for
all rates of noise and outliers. These results are due to
our method can handle outliers, whereas [9] minimizes
reprojection error as it assumes the tracks do not contain
errors. This continuous adaptation leads to an increment of
the error compared to the ground truth.

1as reported by the authors using GPU and server clusters



Fig. 1: Results for CMUface sequence. Continuous line represents
our results, dashed line represents results from[9].

B. Flag sequence

In this sequence a motion captured flag is bending with the
wind. The huge deformation of the flag makes this sequence
one of the most challenging. Moreover, the amount of points
in the sequence is significantly higher than other data sets.

Fig. 2: Results for Flag sequence. Results from our approach are
in continuous line, results from [9] are in dashed line

Looking at the processing times of state of the art ap-
proaches (Table II), it gives an idea of the data set complex-
ity. This table shows that current solutions to model-free NR-
SFM cannot recover a correct 3D shape for the flag sequence.
Moreover, the speed reached by our method is quite faster
than the other approaches.

It can be seen on Fig. 2 that the performance difference
between methods is high and even higher than in Fig. 1 due
to the sequence complexity and the same reason pointed out
in the previous point. Comparison with [3] is not shown as
the results are worse than for [9].

C. Rendered flag sequence

The flag sequence is interpolated and rendered using
isometric projection, in Garg et al. [21]. We re-rendered this
sequence with perspective projection.

Initialization of the model and pose is provided to the
tracking algorithm. As shown on Fig. 3.a the tracking is
focused on the detected (in magenta) and matched points
(in red). The shape composed of the current coefficient
estimation and the prior basis is also represented, to have
an idea of how the estimation fits on the image (cyan grid).

On Fig 3.b the obtained 2D error is shown for frames
20, 30 and 60 and warped to the first (reference) frame (0-
10 px). The 3D error is shown on Fig. 3.c (0 - 15%). As
we can see on Fig. 3, the unmatched areas of the image
are prone to have a high reprojection error, as there are no
correct measurements to estimate coefficients correctly.

The results given after processing this sequence are de-
picted in Table. III. Our reprojection error is about 5 times
higher than the other methods, being the 3D reconstruction
error of the sequence below 3.5%. The processing time of
this method is more than 200 times lower than [21]. It must
be noted that we are using just one core, except for the
matching, where OpenMP library is utilized. The authors
of [21] are using clusters and GPU technology.

a)

b)

c)
frame 20 frame 30 frame 60

Fig. 3: Results from Rendered flag sequences. a): processed
sequence output. b): 2D error map (px). c) 3D error map (%).

a)

b)

c)

Fig. 4: 2D error comparison for Rendered flag sequence (0-10 px).
a) current approach. b) Garg et al. [21] approach. c) Pizarro et
al. [15] approach.

On Fig. 4 a comparative study between our approach, [21]



and [15] is shown in terms of reprojection error. Even though
our error is higher, the tracking is not lost in any frame. On
the other hand, our method can be run in real time. Thus,
the balance between processing time and precision is clearly
favorable to our proposal

V. CONCLUSIONS AND FURTHER WORK

This paper has presented a sequential approach to solve
the structure and motion estimation for non rigid objects. It
takes the best from the PTAM algorithm [5], and extends
it to include deformations in the 3D model inferred from
the camera, showing that it is able to deal with strong
deformations.

Current state-of-the-art non rigid methods are not focused
on real time implementation, since they are not sequential
and require the whole data set.

The proposed method is able to deal with noise and
outliers, which is important when facing real applications.

Even though the reprojection error is worse than some
state-of-the-art approaches for real sequences, the 3D error
is below 3.5% and the processing time is more than 200
times faster without using GPU computation. Our model-
based approach provides a balance between performance and
accuracy, which makes it suitable to be included on a robotic
tracking system when it has to deal with deformable surfaces
and elastic objects.

When the pose is highly variant, the balance between the
pose and the deformation estimation is not accurate enough,
resulting in a tendency to model the deformations better
than the pose. Shape and time priors could be introduced
to penalize strong deformations between frames.

When the 2D-3D correspondences are not given before-
hand, an alternative data association procedure is needed,
like the ones in [2], [15]. A matching that handles difficult
and deformed texture points in a fast way is required, as the
better the points are matched, the better the estimations will
be.

Descriptor-based matching will be included in the near
future to improve tracking, as the non-detected points of the
most deformed areas are critical to get a proper reconstruc-
tion and to minimize the reprojection error.

A good initialization is crucial to get accurate results,
which is a drawback for several real applications. Further
works will be focused on this line, trying to automatically
initialize a model, basis and pose after several frames.
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