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An essential requirement in the fields of robotics and intelligent transporta-

tion systems is to know the position of a mobile robot along the time, as 

well as the trajectory that it describes by using on-board sensors. In this 

paper, we propose a novel approach focused on the use of cameras as per-

ception sensors for visual localization in unknown environments. Our sys-

tem allows to perform a robust visual odometry, where correction algo-

rithms based on loop closure detection are applied for correctly identifying 

the location of a robot in long-term situations. In order to satisfy the pre-

vious conditions, we carry out a methodological improvement of some 

classic computer vision techniques. In addition, new algorithms are im-

plemented with the aim of compensating the drift produced in the visual 

odometry calculation along the traversed path. According to this, our main 

goal is to obtain an accurate estimation of the position, orientation and tra-

jectory followed by an autonomous vehicle. Sequences of images acquired 

by an on-board stereo camera system are analyzed without any previous 

knowledge about the real environment. Several results obtained from these 

sequences are presented to demonstrate the benefits of our proposal. 

1 Introduction 

In recent years, the estimation of the pose of an autonomous robot or ve-

hicle using computer vision techniques has become a topic of a great inter-

est in the robotics community. This is due to the improvements in cameras 

features and to their reduced costs with respect to other sensors traditional-

ly used for localization tasks, such as GPS, IMU, range-based or ultra-
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sounds, among others. Besides, the proliferation of visual SLAM systems 

(Bailey et al., 2006) has extended the application of camera-based ap-

proaches for determining the global location of a mobile robot in an un-

known environment. 

 

In this context, visual odometry (Nister et al., 2004) has the goal of 

estimating the position and orientation of a robot or vehicle by analyzing 

an image sequence acquired by cameras without previous information 

about locations. Each pair of images is considered to match their keypoints 

and calculate the translation and rotation between two poses of the vehicle. 

Unfortunately, visual odometry typically accumulates a drift when long 

periods of time are taken into account. This problem makes that the locali-

zation tasks could not be completely reliable in these cases. For this rea-

son, in extended trajectories the information provided by standard visual 

odometry algorithms gives errors in long-term conditions. 

 

According to the previous considerations, in this work we propose 

a novel approach based on loop closure detection using ABLE (Arroyo et 

al., 2014) for correcting the drift in visual odometry, which is initially 

processed by means of the LIBVISO library (Kitt et al., 2010). With the 

aim of solving the problems related to the drift, our system recognizes re-

visited places and recalculates a corrected pose. We contribute a method 

that uses this information to estimate the deviation between the revisited 

pose and the previous one. In order to validate our proposal, image se-

quences from the publicly available KITTI dataset (Geiger et al., 2013) are 

employed. 

2 Method for Visual Odometry: The LIBVISO Algorithm 

The visual odometry algorithm provided by LIBVISO allows to determine 

the six degrees of freedom (rotation and translation) in a visual localization 

system. In our work, stereo cameras are employed in image acquisition. 

Due to this, intrinsic and extrinsic camera parameters are needed to cor-

rectly perform the matching between the stereo images. In our case, the 

tests performed in the KITTI dataset are carried out using the specific 

camera parameters defined in (Geiger et al., 2013). The application of a 

stereo camera approach provides a higher robustness to our global system, 

because it avoids the scale ambiguities that are common when monocular 

cameras are used for visual odometry computation. 
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The methodology behind our implementation derived from 

LIBVISO is mainly based on a trifocal geometry between the images. In-

itially, some keypoints are detected and their main features are extracted 

and matched for each two consecutive pair of images, as shown in the ex-

ample presented in Fig. 1. Taking into account the obtained matches, the 

movement of the autonomous robot or vehicle is estimated by processing a 

trifocal tensor that associates the keypoints between three frames of a same 

static scene. 
 

   
 

Fig. 1. A representation of the movement estimated over an example image using 

visual odometry, jointly with a diagram of the applied trifocal tensor.  

 

In addition, the implementation of LIBVISO detects outliers using 

RANSAC (Scaramuzza et al., 2009), which allows to reject the atypical 

values obtained by erroneous matches and to improve the odometry results 

with respect to schemes without this filtering technique. However, this is 

not sufficient to avoid the drift along the time, as will be evidenced in the 

section of results. For this reason, we contribute a more robust approach 

based on a refined correction of the poses using loop closure information. 

3 Method for Loop Closure Detection: The ABLE Algorithm 

Some previous studies recently carried out by our research group in the 

topic of visual loop closure detection (Arroyo et al., 2014) are now applied 

to correct the drift derived from the previous visual odometry computation 

stage. The developed method for identifying when a place is revisited is 

named ABLE (Able for Binary-appearance Loop-closure Evaluation). 

 

The main goal of this algorithm is to visually describe places in 

order to give similarity measurements between them for elucidating if a 

loop closure exists or not. Typically, ABLE computes global LDB binary 

features (Yang et al., 2012) for image description. In this case, disparity in-

formation obtained from the stereo images is also added to the descriptor. 

Apart from this, a variant of the description method initially designed in 
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ABLE is contributed in this paper, where the recently proposed AKAZE 

features (Alcantarilla et al., 2013) are tested as core of the global descrip-

tion approach instead of LDB. We implement it to evaluate the robustness 

and efficiency of AKAZE, which adds gradient information in a nonlinear 

space to obtain a description invariant to scale and rotation. 

 

After describing the images, the binary features (�) computed for 

each frame are matched to see if they are similar enough to consider a revi-

sited place. In the case of binary descriptors such as LDB or AKAZE, the 

Hamming distance can be applied in matching, which provides a great ef-

ficiency, because it consists on a simple XOR operation (⊕) followed by a 

basic sum of bits, as formulated in Equation (1). The obtained similarity 

values are stored on a distance matrix (�). These values are used to detect 

the loop closures when high similarity measurements are obtained. 
 

�(�, �) = 	�(�, �) = bitsum(�(�) ⊕ 	�(�))                    (1) 

4 Our Proposal for Visual Odometry Correction 

The information about the loops identified in the previous system stage is 

now used to correct the visual odometry. Here, we contribute the formula-

tion of our method to perform these corrections. After a revisited place is 

detected in a specific frame, the drift of the pose currently estimated by the 

visual odometry algorithm is compensated by taking into account the pose 

obtained when the place was previously traversed. In this case, we consid-

er corrections for the plane xz, where the deviation (∆) between the current 

pose (�) and the previous one (�) is calculated as follows: 
 

∆�(�) = |�(�) − �(�)|                                    (2) 
 

∆�(�) = |�(�) − �(�)|                                       (3) 
 

Then, the current poses are updated (�(�)�, �(�)�) in the � and � 

axes using the previously estimated deviation: 
 

�(�)� = �(�) + ∆�(�)                                     (4) 
 

�(�)� = �(�) + ∆�(�)                                      (5) 
 

Besides, an average deviation (∆����, ∆����) is subsequently 

computed after detecting the first pose corresponding to a loop closure. 

This information is employed to correct the poses in the rest of the trajec-

tory, where � is the number of processed frames: 
 



VISUAL ODOMETRY CORRECTION BASED ON LOOP CLOSURE DETECTION       

 

∆���� =
∑ ∆�(�)�
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∆���� =
∑ ∆$(�)�

 !"

#
                                       (7) 

 

After calculating the average deviations in the loop zone, the poses 

in the remaining frames are updated according to the following equations: 
 

�(�)� = �(�) + ∆����                                     (8) 
 

�(�)� = �(�) + ∆����                                     (9) 
 

 The application of the formulated corrections in poses improves 

the accuracy initially obtained by only using a visual odometry without 

consider the progressive drift, as corroborated in the next section of results. 

5 Evaluation and Main Results 

Our proposal is evaluated in the KITTI Odometry dataset (Geiger et al., 

2013). It contains 22 sequences recorded on different car routes around 

Karlsruhe (Germany). GPS ground-truth measurements are available. A 

ground-truth for loop closure was also defined in (Arroyo et al., 2014). 

 

In Fig. 2, it can be seen how the visual odometry measurements 

obtained by LIBVISO without correction have a considerable drift with re-

spect to the GPS ground-truth. The maps presented correspond to some 

significant sequences from the KITTI dataset, which are also presented in 

Fig. 3 to show the matches of the loop closures detected using ABLE. 

 

In addition, Fig. 4 depicts some examples of distance matrices 

processed by means of ABLE using LDB and AKAZE descriptors as core. 

The detected loop closures correspond to the diagonals in the matrices. Be-

sides, Fig. 5 introduces precision-recall results about ABLE performance 

in loop closure detection depending on the descriptor used as core. Apart 

from LDB and AKAZE, we also test other typical descriptors such as 

HOG (Dalal et al., 2005), SURF (Bay et al., 2008), BRIEF (Calonder et 

al., 2010) and ORB (Rublee et al., 2011). These results demonstrate the 

better performance of LDB and the new approach based on AKAZE. 

 

Finally, Fig. 6 evidences the better accuracy of our proposal based 

on a visual odometry with loop closure corrections, where it can be seen 

how the drift is reduced with respect to the original visual odometry. 
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                   (a) Sequence 00                         
 

Fig. 2. Results for visual odometry without correction in the KITTI dataset.

                   (a) Sequence 00                    
 

Fig. 3. Results for loop closure detection in the KITTI dataset.
 

               (a) � ground-truth     
 

Fig. 4. Examples of distance matrices from the Sequence 06 of 
 

 

Fig. 5. Precision-recall curves obtained for 

Open Conference on Future Trends in Robotics 

        

Sequence 00                              (b) Sequence 02                               (c) Sequence 08

Results for visual odometry without correction in the KITTI dataset.
 

        

Sequence 00                               (b) Sequence 02                             (c) Sequence 08

Results for loop closure detection in the KITTI dataset. 

        

truth                            (b) � using LDB                         (c) � using AKAZE

Examples of distance matrices from the Sequence 06 of the KITTI dataset

 

recall curves obtained for the Sequence 00 of the KITTI dataset.

 

(c) Sequence 08 

Results for visual odometry without correction in the KITTI dataset. 

 

(c) Sequence 08 

 

using AKAZE 

the KITTI dataset. 

of the KITTI dataset. 
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                                    (a) Sequence 05                                                  
 

Fig. 6. Results for visual odometry with loop
 

6 Conclusions and Future Works

In this work, we have

visual odometry estimation 

posed along the paper demonstrate the benefits of this 

visible reduction of the progressive drift

 

The contributions presented can be divided into three

First of all, the implementation of the initial stereo visual odometry system 

based on LIBVISO. 

detection, including a new 

ly, the formulation of a complete

try estimations using the information about

 

In future works, we 

using optimizations based on algorithms 
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