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Abstract: One of the main challenges of aerial robots navigation in indoor or GPS-denied
environments is position estimation using only the available onboard sensors. This paper presents
a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and
environment map of different low-cost commercial aerial platforms, whose onboard computing
capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial
robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial
measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory
configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU)
and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods
(LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and
providing additional information to the EKF. When payload and computational capabilities permit,
a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and
a footprint estimation of the robot position that improves the 6D pose estimation through the EKF.
We present some experimental results with two different commercial platforms, and validate the
system by applying it to their position control.

Keywords: aerial robots; SLAM; sensor fusion

1. Introduction

Research on autonomous aerial robots has advanced considerably in the last decades, especially in
outdoor applications. Enabled by MEMS inertial sensors and GPS, Unmanned Aerial Vehicles (UAVs)
that show an awesome set of flying capabilities in outdoor environments have been developed, ranging
from typical flight manoeuvres [1], to collaborative construction tasks [2] or swarm coordination [3],
among many other applications.

Although technological progress has made possible the development of small Micro Aerial
Vehicles (MAVs) capable of operating in confined spaces, indoor navigation is still an important
challenge for a number of reasons: (i) most indoor environments remain without access to external
positioning systems such as GPS; (ii) the onboard computational power is restricted and (iii) the
low payload capacity limits the type and number of sensors that can be used. However, there is a
growing interest in indoor applications such as surveillance, disaster relief or rescue in GPS-denied
environments (such as demolished or semi-collapsed buildings). In these stages is often preferable to
use low-cost MAVs that can be easily replaced in case of breakage, damage or total loss.
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From the navigation point of view, state estimation of the six degrees of freedom (6-DoF) of
the MAV (attitude and position) is the main challenge that must be tackled to achieve autonomy.
The inaccuracy and high drift of MEMS inertial sensors, the limited payload for computation and
sensing, and the unstable and fast dynamics of air vehicles are the major difficulties for position
estimation. So far, the most robust solutions are based on external sensors, as in [4], where an external
trajectometry system directly yields the position and orientation of the robot, or in [5], where an
external CCD camera provides the measurements. However, these solutions require a previous
preparation of the environment and are not applicable to unknown spaces, in which the MAV must
rely on its own onboard sensors to navigate.

The problem of building a map of an unknown environment from onboard sensor data while
simultaneously using the data to estimate the robot’s position is known as Simultaneous Localization
and Mapping (SLAM) [6]. Robot sensors have a large impact on the algorithm used in SLAM.
In the last ten years, a large amount of research has been devoted to 2D laser range finders [7,8],
3D lidars [9,10] and vision sensors [11,12]. Recent research pay attention to many other alternatives
that can be leveraged for SLAM, such as light-emitting depth cameras [13], light-field cameras [14], and
event-based cameras [15], as well as magnetic [16], olfaction [17] and thermal sensors [18]. However,
these alternative sensors have not yet been considered in the same depth as range and vision sensors
to perform SLAM.

Although there have been significant advances in developing accurate and drift-free SLAM
algorithms for ground robots using different sensors and algorithms [6,19], attempts to achieve similar
results with MAVs have not been as successful. MAVs face a number of specific challenges that
make developing algorithms for them much more difficult: limited sensing payload and onboard
computation, indirect relative position estimation, fast dynamic, need to estimate velocity and constant
motion, among others.

In aerial navigation, sensors must be carefully chosen due to mobility, design and payload
limitations. All aerial robots are endowed with an Inertial Measurement Unit (IMU) that combines
accelerometers, gyroscopes and sometimes magnetometers to measure orientation, angular rate and
accelerations. However, tracking the MAV position using dead reckoning based on the IMU (which is
known as Inertial Navigation System—INS) produces large errors and drifts [20], so the solution always
involves fusing these measurements with other extereoceptive sensors. When GPS is available, the
fusion of IMU and GPS information results in INS/GPS systems that yield satisfactory results in outdoor
environments [21]. Nevertheless, in GPS-denied environments other alternatives should be explored.

Due to their low weight and consumption, most commercial MAVs incorporate at least one
monocular camera, so Visual SLAM (VSLAM) methods have been widely used [22–25]. However, most
of these works have been limited to small workspaces with definite image features and well lit, and thus
may not work as well for general navigation in GPS-denied environments. In addition, computational
time is too high for the fast dynamics of aerial robots, making difficult to control them. Furthermore,
despite their greater consumption and weight, range sensors such as RGB-D cameras [26,27] or 2D
range sensors [28] have also been used on MAVs due to their direct distance detection. Especially, the
high working rate of current 2D laser scanners, along with their direct and accurate range detection,
make them a very advantageous sensor for indoor aerial navigation. Several works, such as [29,30],
fuse laser an IMU measurements to obtain 2D maps and to estimate the 6-DoF pose of the MAV.

In this paper, we propose a SLAM system for GPS-denied environments that can be easily
configured according to the onboard sensors of low-cost MAVs. This work is motivated by a recent
research line of the RobeSafe Research Group [31] of the University of Alcalá (Spain), whose final
aim is the development of a heterogeneous swarm of robots for disaster relief. The swarm consists of
an Unmanned Ground Vehicle (UGV) and one or more MAVs for accessing difficult areas. Low-cost
MAVs and their on-board sensors have been chosen in order to be easily replaced in the event of
breakage or loss. Besides, the SLAM system is executed by a remote PC onboard the UGV, offsetting
the low onboard computing capacity of MAVs and facilitating their replacement.
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This paper focuses on the development of the SLAM system for the MAVs based on IMU, vision
and laser sensors (depending on their availability) and fusing different state-of-the-art SLAM methods.
The system robustly obtains the 6-DoF pose of the MAV within a local map of the environment.
We consider a minimum sensory configuration based on a frontal monocular camera, an IMU and an
altimeter. Two recent and robust monocular VSLAM techniques (LSD-SLAM [32] and ORB-SLAM [33])
have been tested and compared when applied to aerial robots, whose onboard sensors permit to
solve scale ambiguity and to improve pose estimation through an Extended Kalman Filter (EKF).
When available, a 2D laser sensor is used to obtain a local 2.5D map and a footprint estimation of the
pose of the MAV, that improve pose estimation in environments with few visual features and/or in low
light conditions. The system has been validated with two low-cost commercial drones with different
sensor configurations and a remote control unit using a distributed node system based on Robot
Operating System (ROS) [34]. The experimental results show that sensor fusion improves position
estimation and the obtained map under different test conditions.

The paper is organized as follows: Section 2 describes the overall system, including hardware
platforms used and software architecture. The SLAM approach is explained in detail in Section 3.
Section 4 presents the experimental results. Finally, in Sections 5 and 6 the discussion and conclusion
of this work are presented.

2. System Overview

We face the problem of autonomous MAV state estimation as a software challenge, focusing
on high-level algorithms integration rather than specific hardware. Some state-of-the-art SLAM
methods have been tested, compared and fused under different sensor configurations and environment
conditions, allowing to obtain conclusions about their capability to be applied to aerial robots. For this
reason, we use low-cost commercial platforms and an open-source development environment (ROS),
so that drivers of sensors and some algorithms can be used without development.

2.1. Assumptions and Notation

We consider a quadrotor freely moving in any direction in <3 × SO(3). The three main coordinate
frames considered are: (1) the drone coordinate frame {D} attached to its body; (2) the drone stabilized
frame {S}, whose attitude (roll/pitch angles) are corrected to be parallel to the floor; and (3) the world
coordinate frame {W}, that matches the initial position of the drone and is always at ground level.
All the coordinate systems are right handed defined, as shown in Figure 1. Orientation is specified in
Euler XYZ (roll-pitch-yaw) angles notation, (φ,θ,Ψ).
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Throughout this document, the following notation is used to distinguish actual, measured and
commanded variables: the actual variable is indicated without emphasis, while the corresponding
measured variable is emphasized with “–”accent, and the commanded one with “ˆ” accent.
For example, v̂z is the commanded vertical velocity, while vz and vz are the measured and the
actual vertical velocities respectively.

2.2. Hardware Platforms

One of the main specifications of the proposed SLAM system is that it can be configured to
be implemented with different low-cost MAVs, using their onboard sensors. Usually, the software
running onboard a commercial MAV is not accessible, and the control software is neither open-source
nor documented in any way. Indeed, many low-cost MAVs are primarily sold as high-tech toys and
only can be commanded from their own applications running on a Smartphone or a laptop. However,
other platforms provide a Software Development Kit (SDK) for programming applications by sending
commands through an ad-hoc wireless LAN network set up by the drone, opening the door to research
works. Some of these MAVs, whose drivers are available as ROS packages to be easily used, are the
Pelican and Hummingbird quadrotors of Ascending Technologies [35], the CrazyFlie of Bitcraze [36],
the Matrice 100 of DJI [37], the Erle-copter of Erle Robotics [38], or the AR-Drone and Bebop drones of
Parrot [39].

On the other hand, most commercial MAVs incorporate an IMU, a sensor for measuring height
(ultrasound and/or barometer) and at least one monocular horizontal camera. It conforms the
minimal onboard sensor configuration required by our proposed SLAM system. Some drones with a
limited onboard computational capacity and a greater payload can easily incorporate a light 2D laser
rangefinder, which will be considered as an additional sensor that will greatly improve the results of
the SLAM system under certain environment conditions.

For our experiments, we have chosen two commercial platforms that meet the following
requirements: (1) low-cost and small dimensions; (2) minimal onboard sensory configuration consisting
of IMU, altimeter and frontal camera; and (3) SDK for programming applications by sending commands
and reading sensors through a wireless local network (and in both cases, with driver available in ROS
framework). These platforms, shown in Figure 2, are:

1. The Parrot Bebop (Parrot, Paris, France). This is a light (400 g) and small (33 × 38 × 3.6 cm)
drone, ideal for indoor applications. It is equipped with a frontal “Fisheye” camera, and another
vertical camera, which is internally used for stabilization and horizontal velocity estimation.
Besides, it has an ultrasonic altimeter, a 3-axis accelerometer, two gyroscopes and a barometer.
It incorporates an onboard controller (dual-core Parrot P7 processor), a quad-core graphic
processor, flash memory of 8 Gb and a Linux distribution. ROS framework provides the
bebop_autonomy package [40] as a driver for communicating with the drone through its wireless
local network.

2. The Erle-Copter (Erle Robotics, Vitoria, Spain). This drone weights 1.3 kg and its size is
36 × 34 × 9.5 cm. It has a greater payload than Bebop (1 kg) and an onboard open-brain
(ErleBrain2) based on a Raspberry PI with the ROS framework and the APM autopilot. This‘allows
to board a light 2D laser sensor such as the Hokuyo URG-04LX, and we have added the
hokuyo_node ROS package [41] to easily read and transmit the laser measurements to the remote
processor. The Erle-Copter can be accessed and commanded from ROS using the mavros
package [42].
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Figure 2. Commercial low-cost platforms used for our experiments, with the required minimal onboard
configuration: (a) Bebop Drone of Parrot; (b) Erle-Copter of Erle Robotics.

It is important to remark that the proposed SLAM approach can be applied to other similar
platforms and so we treat the drone as a black box, using only the available W-LAN communication
channels to access and control it. Namely, the following inputs/outputs are used in our SLAM system:

• A command output channel, to send the drone control packages u with the desired velocities
of x and y axis, vertical speed and yaw rotational velocity, all them defined respect to the drone
stabilized frame {S}:

u = (v̂x, v̂y, v̂z,
.̂
ψ) (1)

• A video input channel, to receive the video stream of the forward facing camera.
• A navigation input channel, to read onboard sensor measurements. The minimum data required

by our system are:

- Drone orientation as roll, pitch and yaw angles
(
φ, θ, ψ

)
respect to the world frame {W}.

- Drone height h, obtained from the altimeter.

Other measurements can be incorporated to the SLAM system when available. For example,
the Bebop drone incorporates a downward camera that, by means of an optical-flow based motion
estimation algorithm calculated onboard, allows relative precise estimated horizontal velocities in the
stabilized coordinate frame {S}, (vx, vy). This measurement can be easily incorporated through the
Extended Kalman Filter, as will be shown in a future section. Even more importantly, the availability
of an onboard 2D laser rangefinder, as in the case of the Erle-copter (Figure 2b), allows to introduce
these measurements to a scan matcher module of the SLAM system that will notably enhance the
estimation results.

2.3. Software Architecture

As stated above, the developed system is distributed between the flying unit (MAV) and a remote
ground station, as it is shown in Figure 3. The flying unit is treated as a black box, and includes at least
one onboard controller/processor that executes an autopilot and performs the reading and sending of
onboard sensors measurements. When a laser sensor is present, as in the Erle-Copter, it is connected to
the onboard processor that needs to be able to read and send these measurements through the network
created by the drone. The SLAM module is executed in the ground station, as well as the control and
planning modules, the last one being out of the scope of this paper. The use of ROS as development
framework facilitates the setting of this distributed system.

The SLAM system consist of three major modules [43]: (1) a scan matching algorithm that uses
laser readings to obtain a 2.5D map of the environment and a 3-DoF pose estimation of the footprint of
the MAV on the map; (2) a monocular visual SLAM system that obtains a 6-DoF pose estimation and
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(3) an Extended Kalman Filter that fuses the last estimations with the navigation data provided by the
onboard sensors of the MAV to obtain a robust 6-DoF estimation of the position of the robot.

In order to test the SLAM system in autonomous flying conditions, a simple PID controller
has been developed. This controller allows the MAV to reach selected reference poses in order to
autonomously track a desired path.
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with continuous line correspond to minimum sensory configuration and blue blocks with dashed line
to optional sensors) and (2) receives commands for the autopilot (green block). The ground station
executes the SLAM system (yellow blocks), the controller (red block) and the planner, that is out of the
scope of this paper.

3. SLAM Method Description

In the following subsections, we describe the modules of the SLAM system shown in Figure 3.
For the scan matcher and VSLAM modules, we analyze and compare state-of-the-art techniques that
can be applied to aerial robots. The estimates of these modules are integrated with the rest of onboard
sensors using the EKF module.

3.1. Monocular Visual SLAM

In order to perform the simultaneous localization and mapping of the environment by means of
visual information, the process of Visual Odometry (VO) must be accomplished. VO is the process
of determining the position and orientation of a robot by analyzing the associated camera images,
thus, to estimate the 6-DoF position of the MAV. The VO approaches can be classified into two main
categories based on the number of cameras used [44]: monocular and stereo VO methods. A stereo pair
is applied as minimum number configuration of cameras for solving the scale ambiguity problem [45].
So, monocular VO methods used for single-camera MAVs have the implicit problem of scale ambiguity.
In this work, a method for calculating the scale of the estimated pose and map based on additional
MAV sensors is proposed.

On the other hand, monocular VSLAM methods that simultaneously recover camera pose
and scene structure from video can be divided into two classes [46]: (a) feature-based methods,
that firstly extract a set of feature observations from the image, and then compute the camera
position and scene geometry as a function of these feature observations and (b) direct methods
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(dense or semi-dense), that optimize the geometry directly on the image’s pixels intensities, which
enables using all information in the image.

Most monocular VO algorithms for MAVs [47–49] rely on PTAM [50]. PTAM is a feature-based
VSLAM algorithm that achieves robustness through tracking and mapping many (hundreds) of
features (Figure 4a). It runs in real-time by parallelizing the mapping and motion estimation tasks.
However, PTAM was designed for augmented reality applications in small desktop scenes and it does
not work properly in large-scale environments.
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Recently, more robust and efficient monocular VSLAM methods have been proposed in the
literature [51]. In [52], a semi-direct monocular visual odometry algorithm, Semi-direct Visual
Odometry (SVO) is presented. This algorithm has been successfully applied to MAVs with a
downfacing camera and outputs a sparse 3D reconstructed environment model, but it is not designed
to work with forward facing cameras. In [32], the authors describe a direct monocular VLAM
algorithm for building consistent, semi-dense reconstructions of the environments, the LSD-SLAM
method (Figure 4b). LSD SLAM employs a pose graph optimization which explicitly allows for scale
drift correction and loop closure detection in real-time. LSD SLAM employs three parallel threads
after initialization takes place: tracking, depth map estimation, and map optimization. A modified
version of LSD-SLAM was later presented in [53] for a stereo camera setup. Later, Dense Piecewise
Parallel tracking and Mapping (DPPTAM) [54], was released as a semi-dense direct method similar
to LSD-SLAM but including a new thread that performs dense reconstructions using segmented
super-pixels from indoor planar scenes. Finally, in [33], a keyframe-based monocular VSLAM system
with ORB features that can estimate the 6-DoF pose and reconstruct a sparse environment model
is presented (ORB-SLAM—Figure 4c). The main contributions of ORB-SLAM are the usage of ORB
features in real-time, re-localization with invariance to viewpoint and a place recognition module that
uses bags of words to detect loops.

After a study of these state-of-the-art monocular VSLAM methods [51], we decided to implement
and compare two of these algorithms in our system [55]: LSD-SLAM and ORB-SLAM, both available as
ROS packages and with good execution-times to be implemented on MAVs. Scale ambiguity problem,
implicit in both monocular methods, has been overcomed by using measurements of other onboard
MAV’s sensors and comparing them with the VSLAM ones. Taking into account that scale factor is
different for x, y and z axis, the best solution is to use the altimeter for estimating the z-axis scale,
and the laser sensor, when available, to estimate x-axis and y-axis scale as follows:

scalez =
haltimeter
hVSLAM

; scalex =
dxlaser

dxVSLAM
; scaley =

dylaser
dyVSLAM

; (2)

xreal−scale = xVSLAM·scalex (3)

yreal−scale = yVSLAM·scaley (4)
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zreal−scale = zVSLAM·scalez (5)

where haltimeter is the direct altimeter measurement, dxlaser and dylaser are the laser range measurements
in x and y directions, and hVSLAM, dxVSLAM and dyVSLAM are the equivalent estimates of the VSLAM
system. As hVSLAM = zVSLAM, it can be seen that zreal-sale is directly the altimeter measurement, that
is very accurate. If laser is not available, we suppose the same scale factor for the three axis, and
estimate it using the altimeter. The error committed under this assumption is negligible in narrow
environments, as the indoor ones to which our SLAM system has been designed. However, it could be
increased in wider outdoor environments. The scale factors are updated at each iteration of the SLAM
system, because they may change over time.

In the following subsections, we show some partial results of the VSLAM module with scale
factor correction using the two chosen algorithms, so that some conclusions can be obtained about
their performance when applied to aerial robots.

3.1.1. VSLAM with LSD-SLAM

LSD-SLAM performs a highly accurate pose estimation from direct image alignment, and obtains in
real-time a 3D reconstruction of the environment as pose-graph of keyframes with associated semi-dense
depth maps. We use these maps as local information for VO but, due to their computational and memory
requirements, we discard these dense maps for reconstructing the environment. When laser is available,
we chose to use the 2.5D laser map for planning and control because its better accuracy and lower
computational requirements are more appropriate to control a fast dynamic plant as a MAV.

In order to make an initial assessment about the performance of LSD-SLAM in visually adverse
scenarios, we have chosen two test environments. The first one, shown in Figure 5a, is a storage area
of our building with poor lighting. Figure 6a shows a view of the second scenario, that consists of a
room followed by two L-shaped corridors. Corridors are visually unfavourable scenarios due to the
lack of features. Figures 5c and 6c show the results for both scenarios, consisting in the 3D semi-dense
map and pose estimation obtained by the LSD-SLAM technique with scale correction.

As a coarse evaluation, and using some metrics of the actual MAV trajectory, we obtain the following
undesirable effects: (1) in the storage area, the lack of light causes a clear lengthening in the estimation
of the second segment of the trajectory, from 4 to 5.5 m approximately; (2) by contrast, in the corridor
environment the pose estimation is highly accurate in the initial room, but a clear shortening effect of
around 25% is observed in the corridors (from 22 m to 16 m in the first corridor and from 16 to 12 m in
the second one), due to the loss of visual features. Furthermore, LSD-SLAM is very sensitive to pure
rotational movements as the one at the end of the first corridor, where an error of about 15◦ is observed.
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Figure 5. Initial results of state-of-the art SLAM algorithms in a storage area (poorly lit environment). 
(a) View of the test environment; (b) Results of “Hector-mapping”: black points represent the 2D map 
and the blue line shows the estimated trajectory; (c) Results of “LSD-SLAM” with scale correction: 
grey points conform the semi-dense map, the green line represents the estimated trajectory and the 
blue marks are the camera’s poses where a new keyframe was captured; (d) Results of “ORB-SLAM” 
with scale correction: the sparse map of ORB-features is coloured in red, the green line represents the 
estimated trajectory and the blue marks are the camera’s poses where a new keyframe was captured. 

 
Figure 6. Initial results of state-of-the-art SLAM algorithms in a corridor area (a poorly featured 
environment). (a) View of the test environment; (b) “Hector-mapping” results: black points represent 
the 2D map and the blue line shows the estimated trajectory ; (c) “LSD-SLAM” results with scale 
correction: grey points conform the semi-dense map, the green line represents the estimated trajectory 
and the blue marks are the camera’s poses where a new keyframe was captured; (d) “ORB-SLAM” 
results with scale correction: the sparse map of ORB-features is coloured in red, the green line 
represents the estimated trajectory and the blue marks are the camera’s poses where a new keyframe 
was captured. 

3.1.2. VSLAM with ORB-SLAM 

Figures 5d and 6d show the initial results obtained with ORB-SLAM with scale correction in the 
same test environments. They show in red colour the ORB-features map and in green colour the 
estimated trajectory. As a featured-based method, the greatest weakness of ORB-SLAM lies again in 

Figure 5. Initial results of state-of-the art SLAM algorithms in a storage area (poorly lit environment).
(a) View of the test environment; (b) Results of “Hector-mapping”: black points represent the 2D map
and the blue line shows the estimated trajectory; (c) Results of “LSD-SLAM” with scale correction:
grey points conform the semi-dense map, the green line represents the estimated trajectory and the
blue marks are the camera’s poses where a new keyframe was captured; (d) Results of “ORB-SLAM”
with scale correction: the sparse map of ORB-features is coloured in red, the green line represents the
estimated trajectory and the blue marks are the camera’s poses where a new keyframe was captured.
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Figure 6. Initial results of state-of-the-art SLAM algorithms in a corridor area (a poorly featured
environment). (a) View of the test environment; (b) “Hector-mapping” results: black points represent
the 2D map and the blue line shows the estimated trajectory ; (c) “LSD-SLAM” results with scale
correction: grey points conform the semi-dense map, the green line represents the estimated trajectory
and the blue marks are the camera’s poses where a new keyframe was captured; (d) “ORB-SLAM”
results with scale correction: the sparse map of ORB-features is coloured in red, the green line represents
the estimated trajectory and the blue marks are the camera’s poses where a new keyframe was captured.

3.1.2. VSLAM with ORB-SLAM

Figures 5d and 6d show the initial results obtained with ORB-SLAM with scale correction in
the same test environments. They show in red colour the ORB-features map and in green colour the
estimated trajectory. As a featured-based method, the greatest weakness of ORB-SLAM lies again in
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poorly featured areas as corridors. In this case, corridors are also shortened about a 35%, from 22 to
14 m the first one, and from 16 to 10 m the second one. However, this method is more accurate than
LSD-SLAM in well-lit rooms and in the storage room scenario. In the latter case, the second segment is
also lengthened due to poor illumination, but in this case only from 4 to 4.4 m. Besides, ORB-SLAM is
more precise than LSD-SLAM in pure rotational movements.

3.1.3. Comparison

In order to have a clearer comparative of both algorithms in terms of accuracy, an external public
benchmark has been applied. The chosen benchmark is “RGB-D SLAM Dataset and Benchmark” [56]
of the Computer Vision Group from Technische Universität München (TUM). This benchmark
provides some datasets with measurements from different sensors and the ground-truth pose of
the camera. As output, it delivers a variety of measures of translational errors. For our tests, the dataset
rgbd_dataset_freiburg1_xyz has been used. This dataset contains a video recorded from a monocular
camera that describes smooth and rotation free movements that are perfect for an initial comparison of
translational errors. In the results section of this paper a more thorough analysis is performed with our
own datasets and benchmark.

Table 1 shows the median of the results obtained when executing the two VSLAM algorithms
five times each with the mentioned dataset. As the real scale cannot be calculated by the monocular
algorithms by themselves, the estimations extracted from the dataset were pre-processed. Thanks to it
the real-scale was calculated with a Matlab script and added as an argument in the online tool. Each of
the methods has a different number of compared pairs because not all of the estimated poses are
compared, but only those whose timestamps match the given by the ground truth.

Table 1. Absolute translational error comparison between both monocular VSLAM algorithms using
the “RGB-D SLAM Dataset and Benchmark” of the Computer Vision Group from Technische Universität
München [56].

LSD-SLAM ORB-SLAM

Compared pose pairs 782 283
RMSE 1 8.09 cm 6.9 cm
Mean 6.74 cm 5.10 cm

Median 5.57 cm 3.85 cm
Standard Deviation 5.82 cm 4.61 cm

Min 3.30 cm 0.23 cm
Max 27.92 cm 26.08 cm

1 RMSE: Root-mean-square deviation.

According with these results, ORB-SLAM is slightly more accurate than LSD-SLAM in terms
of translational errors. In addition, ORB-SLAM is more robust facing pure rotational movements.
This conclusion has been reached by means of the trial-and-error approach (LSD-SLAM loses the
tracking more times than ORB-SLAM when the camera suffers pure rotational movements). However,
the dataset used has many visual features to extract, which benefits feature-based methods as
ORB-SLAM. LSD-SLAM, as direct method, achieves better results in poorly featured environments.
Besides, the initialization of LSD-SLAM is self-acting from initial random values given to the depth
map, while ORB-SLAM needs a specific initialization stage to build a points map of the environment
before starting the tracking.

As the SLAM system has been designed to execute the VSLAM module in a ground station (in our
tests an Intel Core i7-3635QM, 2.4 GHz), these execution times (with median speeds of 36.2 ms for
LSD-SLAM and 32.2 ms for ORB-SLAM) are both feasible for tracking the fast dynamics of a MAV.
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3.2. Scan Matcher

When a 2D laser rangefinder is available on the MAV, it can be used to substantially improve the
pose and map estimation under certain environment conditions. It is clear that VSLAM methods cannot
work in low light conditions and their results are poor in featureless environments such as corridors.
By contrast, laser sensors work properly under all light conditions and provide high-frequency and
direct range measurements of the environment. So, this sensor not only provides redundancy, but also
complementarity, and can be easily included in the bayesian framework of our SLAM system through
the Extended Kalman Filter, as it is shown in Figure 3.

The Scan Matcher module aligns consecutive scans from a laser to improve the MAV’s motion
estimation of the EKF. Although lots of scan matching techniques have been developed and applied to
SLAM for ground robots moving on flat surfaces [57], most of them require odometric information
that is not available in MAVs. One of the simplest and most commonly used algorithm for laser
scan-matching is Iterative Closest Point (ICP) [58]. The main drawback of most ICP-based methods is
the expensive search for point correspondences, which has to be done at each iteration. As a solution,
methods based on feature-to-feature correspondences [59] or likelihood maps [60] have also been
proposed. One of the benefits of the last ones is that they do not require explicit correspondences to be
computed, and can be easily integrated into probabilistic SLAM techniques. Thus, one of the most
reliable working solutions for laser-based SLAM is Gmapping [57], based on likelihood maps and
Rao-Blackwellized particle filters. This algorithm is available as open source software, and provides
successful results in ground robots moving in typical planar indoor scenarios. However, it relies
on sufficiently accurate odometry (not available in aerial robots) and is not applicable to platforms
with significant roll and pitch motion. However, the HectorSLAM project, developed by the Team
Hector [61] of the Technische Universität Darmstadt, presents a system for fast online generation of
2D maps that uses only laser measurements and a 3D attitude estimation system based on inertial
sensing [62]. This method requires low computational resources and it is widely used by different
research groups because of its availability as open source based on ROS. More recent methods have
been suggested in the last years, such as the one proposed in [8], an initial-free 2D laser scan matching
method based on point and line features detection. This method, however, requires a pre-processing
stage to detect features from scans that reduces the working rate and is not optimal for fast systems as
a MAV.

In this work, we adapt the HectorSLAM system to our scan matching module. It allows the
system to obtain a 2.5D map and a 3-DoF estimation of the MAV’s footprint pose within the map,
consisting in the (x,y) coordinates and yaw angle Ψ in the world coordinate frame {W}.

The 3-DoF pose estimation is based on optimization of the alignment of beam endpoints with
the map obtained so far [62]. The endpoints are projected into the current map and the occupancy
probabilities are estimated. The scan matching is solved using a Gaussian-Newton equation, which
finds the rigid transformation that best fits the laser beams with the map. A multi-resolution map
representation is used to avoid getting stuck in local minima. In addition, an attitude estimation
system based on the IMU measurements transforms the laser readings from the drone body frame
{D} to the drone stabilized frame {S} (horizontal to the ground, as can be seen in Figure 1) in order to
compensate the roll and pitch movements when obtaining the 2.5D map.

Figures 5b and 6b show the map and footprint pose estimation obtained by the scan matcher
in the same environments of VSLAM. Although HectorSLAM provides good results in confined
environments (Figure 5b), the lack of odometry information to detect horizontal movements (the only
measurement used by the algorithm from the IMU is attitude, in order to stabilize laser measurements
into the {S} coordinate frame) results in undesirable effects, such as shortening of corridors (from 22 m
to 20 m in the first corridor of Figure 6b).

These drawbacks will be compensated in our whole proposed SLAM system due to the addition
of visual and other onboard sensors information, as well as prediction estimates, as will be shown in
the results section.
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3.3. Data Fusion with EKF

In order to fuse all available data, we use an EKF [63]. This EKF is also employed to compensate for
the different time delays in the system, arising from wireless LAN communication and computationally
complex visual processing. The proposed EKF uses the following state vector:

χt : (xt, yt, zt, vxt, vyt, vzt, φt, θt, ψt,
.
ψt)

T
∈ <10 (6)

where (xt, yt, zt) is the position of the MAV in m, (vxt, vyt, vzt) the velocity in m/s, (φt, θt, ψt) the
roll, pitch and yaw angles in degrees, and

.
ψt the yaw-rotational speed in deg/s, all of them in world

coordinate frame {W}. In the following sections, we define the prediction and observation models.

3.3.1. Prediction Model

The prediction model is obtained from the full motion model of the quadcopter’s flight dynamics
and reaction to control commands derived in [49]. This model establishes that the horizontal
acceleration of the MAV is proportional to the horizontal force acting upon the quadcopter, that
is, the accelerating force minus the drag force. The drag is proportional to the horizontal velocity of the
quadcopter, while the accelerating force is proportional to a projection of the z-axis onto the horizontal
plane, resulting in the following equations:

.
vxt = K1(K2(cos φt sin θt cos ψt + sin φt sin ψt)− vxt) (7)

.
vyt = K1(K2(cos φt sin θt sin ψt − sin φt cos ψt)− vyt) (8)

On the other hand, the influence of the sent control command u = (v̂x, v̂y, v̂z,
.̂
ψ) is described by

the following linear model, taking into account the angle direction criterions shown in Figure 1:

.
φt = −K3(K4 ˆvyt + φt) (9)

.
θt = K3(K4 ˆvxt − θt) (10)
.

vzt = K5(K6 ˆvzt − vzt) (11)
..
ψt = K7(K8

.̂
ψt −

.
ψt) (12)

We estimated the proportional coefficients K1 to K8 for the different platforms from data
collected in a series of test flights. From Equations (7) to (12) we obtain the following overall state
transition function:

xt+1

yt+1

zt+1

vxt+1

vyt+1

vzt+1

φt+1

θt+1

ψt+1.
ψt+1


←−



xt

yt

zt

vxt

vyt

vzt

φt

θt

ψt.
ψt


+ ∆t



vxt

vyt

vzt

K1(K2(cos φt sin θt cos ψt + sin φt sin ψt)− vxt)

K1(K2(cos φt sin θt sin ψt − sin φt cos ψt)− vyt)

K5(K6 ˆvzt − vzt)

−K3(K4 ˆvyt + φt)

K3(K4 ˆvxt − θt).
ψt

K7(K8
.̂
ψt −

.
ψt)



(13)

3.3.2. Navigation Data Observation Model

This model relates the state vector with the onboard measurements obtained through the
navigation channel of the MAV (that we called “Navdata” in Figure 3). According to the minimal
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onboard sensor configuration described in Section 2.2, this Navdata channel must at least provide
the drone’s height h obtained from an altimeter (ultrasonic sensors in our both platforms) and the
drone’s orientation as roll, pitch and yaw angles

(
φ, θ,ψ

)
obtained from the gyroscope. It results in the

following minimal measurement vector:

zNAVDATA,t =
(

ht, φt, θt, ψt

)T
(14)

When other onboard measurements are available, this measurement vector can easily be enlarged
in order to incorporate them. This is the case of the Bebop drone, which provides a measurement of
the horizontal velocities of the drone (vx, vy) in the stabilized coordinate frame {S} obtained through
the downfacing camera:

zNAVDATA,t =
(

ht, φt, θt, ψt, vxt, vyt

)T
(15)

The roll and pitch angles measured by the gyroscope can be considered as direct observations of
the corresponding state variables. Furthermore, we differentiate the height and yaw measurements to
be used as observations of their respective velocities. And if present, the velocity measurements of the
downfacing camera have to be transformed from the stabilized coordinate frame {S} into the world
frame {W}. The resulting measurement vector zNAVDATA and observation function hNAVDATA(χt) are:

zNAVDATA,t =
(

ht − ht−1 + zt−1, φt, θt, ψt − ψt−1 + ψt−1, vxt, vyt

)T
(16)

hNAVDATA(χt) :=



zt

φt

θt

ψt

vxt cos ψt + vyt sin ψt

−vxt sin ψt + vyt cos ψt


(17)

3.3.3. VSLAM Observation Model

When the VSLAM module successfully tracks a video frame, its 6-DoF pose estimation is
transformed from the coordinate system of the front camera to the coordinate system of the drone {D},
leading to a direct observation of the drone’s pose given by:

zVSLAM,t = f (EDCEC,t) (18)

hVSLAM(χt) := (xt, yt, zt, φt, θt, ψt)
T (19)

where EC,t ε SE(3) is the estimated camera pose, EDC ε SE(3) the constant transformation from the
camera to the quadcopter coordinate system and f : SE(3)·<6 the transformation from an element of
SE(3) to the position and roll-pitch-yaw representation.

3.3.4. Scan Matcher Observation Model

The scan matcher obtains a 3-DoF estimation of the MAV’s footprint pose, that is considered
as a direct observation of the corresponding state variables, as it is shown in the following linear
observation model:

zLASER,t =
(

xt, yt, ψt
)T (20)

hLASER(χt)·(xt, yt, ψt)
T (21)
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3.4. PID Controller

Once the estimated position of the MAV is provided by the EKF, a PID controller has been
designed to control de movements of the MAV. A reference (x̂, ŷ, ẑ, ψ̂) is needed as the desired position
of the drone in world coordinates. The EKF will bring the estimation of the pose, as shown in Figure 3.
The difference between the reference and the estimated pose is the error that will be minimized by the

PID controller, by sending to the MAV an appropriate control command u = (v̂x, v̂y, v̂z,
.̂
ψ), that is

calculated in the following way:

v̂xt = cos ψt
[
Kp(x̂t − xt) + Kd· .xt

]
+ sin ψt

[
Kp(ŷt − yt) + Kd· .yt

]
(22)

v̂yt = − sin ψt
[
Kp(x̂t − xt) + Kd· .xt

]
+ cos ψt

[
Kp(ŷt − yt) + Kd· .yt

]
(23)

v̂zt = Kp·(ẑt − zt) + Kd· .zt + Ki·
∫
(ẑt − zt) (24)

.̂
ψt = Kp(ψ̂t −ψt) (25)

It allows the algorithm to drive the MAV along a series of points in the world coordinate frame
{W}, so it can follow a specific trajectory, as will be shown in the results section.

3.5. Delay Compensation

For controlling a quickly reacting system such as a MAV, an accurate and delay-free state
estimation is required. The delays in the estimation lead to a poor control even if the estimation
is correct. When using a low-cost MAV, the delay caused by the wireless communication channel must
be taken into account, mainly in the transmission of the compressed camera images. The time required
between the instant a frame is captured and the instant the respective calculated control signal is
applied (i.e., the time required for encoding the image on the drone, transmitting it via wireless LAN,
decoding it on the PC, applying visual SLAM, data fusion and control calculations and transmitting the
resulting control signal back to the drone) lies between 160 ms and 300 ms. Fortunately, these delays
can be easily compensated within the EKF framework.

Firstly, we chose an execution period for our SLAM system that ensures that a new video
frame would be processed on each iteration of the system. The VSLAM algorithm takes a median
of 35 ms depending on the selected method, while the execution time of the scan matcher is about
10 ms. The EKF and PID controller execution times are much lower, of only a few milliseconds. So,
an execution period of T = 50 ms has been chosen, so that tSLAM+PID < T.

The amount of time that (1) a new frame captured by the frontal camera needs to be transmitted
via wireless LAN to the ground station tvideo_trans and (2) a calculated control command needs to
reach the MAV and take effect tcommand_trans, depend on the bandwidth used by nearby wireless LAN
networks. If the onboard processor of the MAV is open-access (as in the case of the Erle-Copter), these
times can be estimated by measuring two latency values using an echo signal to the drone, and they
can be updated in regular intervals while the connection is active. In our tests environment, tvideo_trans
typically lies between 50 ms and 200 ms and tcommand_trans between 30 ms and 100 ms. In our system,
these delays are rounded to an integer multiple of the SLAM execution period T, being:

n = round
(

tvideo_trans
T

)
(26)

m = round
(

tcommand_trans
T

)
(27)

As the measurements of the Navdata channel are transmitted each 5 ms, and the readings and
processing of the scan matcher are performed in less than 10 ms, these delays are neglected because
they are lower than the execution period T.
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Figure 7 shows a time diagram with the main times and delays involved in one iteration of
the SLAM system at time t = kT. The video frame processed by the VSLAM module at that time
was captured by the drone in a time corresponding to n iterations before, and so it must be used
to correct the estimation of the state χt=(k−n)T = χ(k− n). After that, the EKF is rolled forward up
to the current time t = kT, using the prediction stage with buffered previously sent commands and
the correction stage with laser and navdata buffered previous measurements to estimate the current
state χt=kT = χ(k). Then, only the prediction stage is used to estimate the future pose of the MAV
χt=(k+m)T = χ(k + m) when the control command reaches the MAV at t = (k + m)T. This estimate is
used to calculate the control command ut=(k+m)T = u(k + m) that is sent to the MAV and stored in the
buffer for future predictions.Sensors 2017, 17, 0802; doi:10.3390/s17040802 15 of 26 
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4. Experimental Results

In this section, we present the experimental results that validate our proposed SLAM system.
Firstly, we show some practical aspects about our test bed that include the software implementation
and the ground truth system used for validating the estimation results. After that, we show the
experimental results obtained with the minimal configuration of the SLAM system that includes
only VSLAM, IMU and an altimeter. Finally, some tests that include laser measurements are shown,
comparing the effect of using the different sensors separately and fused in the proposed EKF.

4.1. Implementation and Ground Truth System

Two different low-cost commercial MAVs have been used in our experiments: the Bebop drone
(Figure 2a) and the Erle-Copter (Figure 2b), whose main features were detailed in Section 2.2. It proves
that the proposed SLAM system can be implemented in different commercial platforms with different
sensory configurations, with only minor modifications. In order to achieve this scalability, a node-based
software network has been developed based on the ROS framework, using well-tested packages
when available.

Figure 8 shows this software implementation. Green blocks correspond to a priori available ROS
packages: (a) “bebop_autonomy” [40] and “MAVROS” [42] for communicating with the autopilots of
Bebop and Erle-Copter respectively, sending control commands and receiving onboard sensor data;
(b) “hokuyo_node” [41] to provide access to the Hokuyo laser range finder; (c) “hector_mapping” as a
part of the Hector-SLAM stack [64] to implement the scan matcher module; and (d) “ORB-SLAM” [65]
or “LSD-SLAM” [66] as implementations of the two tested VSLAM methods. The custom blocks
provided to the SLAM and control systems, also as ROS nodes, are shown in red color.
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One of the major difficulties of the experimental setup was to design a ground truth system to
validate the pose estimation based on an external sensor. Since a motion capture system that could
obtain a reliable measurement of the actual six degrees of freedom position of the MAV was not
available, we have used a simplified system that allows us to approximately estimate some coordinates
of the MAV’s pose under certain assumptions. The value of this ground system is that it has not
accumulative error. It is based on a monocular camera on the ceiling of the test area, as it is shown
in Figure 9a. Adding a pair of distinguishable artificial markers to the MAV (two coloured circles,
as it is shown in Figure 9b), it is possible to estimate the (x,y,z) and Ψ coordinates of the MAV, using
some basic geometric relationships under the assumption that the drone is always in an horizontal
plane (which is quite realistic because we configured the drone to move slowly in the horizontal plane).
Under this assumption, the distance between markers gives the height z of the MAV, and the x, y and
Ψ coordinates can be easily extracted.
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Figure 9. (a) Ground truth system based on a monocular camera on the ceiling; (b) Example of tracking
of the MAV flight: blue crosses represent the locations of the blue marker, green crosses the green
marker ones, and purple crosses the calculated center of the MAV.

As a disadvantage of this ground truth system, it only covers an open test area of 5 × 5 m. This is
sufficient for testing the SLAM system with the minimal sensor configuration (based on VSLAM and
onboard sensors), by commanding some square trajectories to the control system and comparing
the estimated trajectories with the ground truthed ones. However, this test environment (that we
call “Ground-truthed test environment”) is not suitable to validate the SLAM system when using
also laser measurements, because walls are so far to be detected with our laser sensor. For this
reason, we have used two other different scenarios to validate the complete SLAM system, coinciding
with the two environments in which we performed the initial tests of the VSLAM and scan matcher
modules. These are the storage area shown in Figure 5 (called “Storage room test environment”) and
the lab and corridors sequence shown in Figure 6 (called “Corridors test environment”). In these last
environments we do not have a ground truth system, but we can use some metric measurements to
validate trajectory estimations.

4.2. Results with the Minimal Sensor Configuration: VSLAM, IMU and Altimeter

In this section we include some experimental results obtained with the Bebop drone in the
ground-truthed test environment. In this case we use the minimal sensor configuration of the
proposed SLAM system that includes the horizontal camera, IMU and altimeter. The objective of these
experiments is to compare the ability of LSD-SLAM and ORB-SLAM when they are applied to a MAV,
by solving the scale ambiguity and improving the state estimation fusing the IMU and altimeter data
in the EKF. In these tests, the PID controller receives a series of points that conform a rectangle of
120 cm × 60 cm as reference path, maintaining the reference orientation of the drone constant along
this path.

Firstly, we show the results of using all the stages of the EKF with the two different VSLAM
methods in order to compare them. Figure 10 shows the experiment with LSD-SLAM. At the left,
Figure 10a displays the view of the frontal camera with the obtained depth map and, below it, the
estimated trajectory embedded in the environment’s cloud points map. On the right, Figure 10b shows
the desired track projected in the XY plane (magenta colour), the ground truth track obtained with
the external camera (blue colour) and the path estimated with the SLAM system (red colour). It can
be seen that, as expected in a fast dynamic system as a MAV, there are some deviations between the
reference trajectory and the actual one that could be mitigated with more sophisticated control laws.
However, the position estimated by the proposed SLAM system is good enough to control the MAV.
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Firstly, we show the results of using all the stages of the EKF with the two different VSLAM 
methods in order to compare them. Figure 10 shows the experiment with LSD-SLAM. At the left, 
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estimated trajectory embedded in the environment’s cloud points map. On the right, Figure 10b 
shows the desired track projected in the XY plane (magenta colour), the ground truth track obtained 

Figure 10. Results obtained with the minimal sensor configuration using LSD-SLAM. (a) shows
the view of the frontal camera with the obtained depth map at the top and the estimated trajectory
embedded in the cloud points map below; (b) shows the desired track projected in the XY plane
(magenta colour), the ground truth path obtained with the external camera (blue colour) and the path
estimated with the SLAM system (red colour).

Figure 11 shows the same experiment using ORB-SLAM. Figure 11a displays the obtained marks
cloud that conform the map and the estimated trajectory, while Figure 11b shows the projection onto
the XY plane of the desired (magenta), actual (red) and estimated (blue) trajectories.
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LSD-SLAM presents tracking problems with fast rotational movements, which leads us to choose 
ORB-SLAM as first choice in sufficiently illuminated and featured environments. 

On the other hand, the main contribution of the proposed SLAM system is multi-sensor fusion, 
exploiting the typical onboard sensors of commercial drones. The usage of IMU and altimeter 
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Figure 11. Results with the minimal sensor configuration using ORB-SLAM. (a) shows at the top the
view of the frontal camera with the obtained marks and below, the points cloud map and the estimated
trajectory; (b) shows the desired track projected in the XY plane (magenta colour), the ground truth
path obtained with the external camera (blue colour) and the path estimated with the SLAM system
(red colour).
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In order to compare both VSLAM methods with our own sensor and ground truth data, we have
calculated the same translational error measures that we obtained with the external benchmark and
dataset used in Section 3.1.3. Five tests were made using each VSLAM algorithm, and median results
are shown in Table 2. In addition to the results obtained in Section 3.1.3, these new tests confirm that
ORB-SLAM is more accurate than LSD-SLAM in well-lit environments with sufficient visual features.
Besides, the errors are smaller than those obtained when using only the VSLAM algorithm with scale
correction, thanks to the prediction and correction stages of the EKF. Table 3 presents the error between
the estimated yaw angle and the one obtained from the ground truth system using ORB-SLAM. It can
be seen that this error is kept within close tolerances with this method. On the contrary, LSD-SLAM
presents tracking problems with fast rotational movements, which leads us to choose ORB-SLAM as
first choice in sufficiently illuminated and featured environments.

Table 2. Absolute translational error comparison between both monocular VSLAM algorithms using
the complete SLAM system with the minimal sensor configuration.

LSD-SLAM ORB-SLAM

Compared pose pairs 210 348
RMSE 6.74 cm 5.32 cm
Mean 4.83 cm 3.90 cm

Median 3.21 cm 2.79 cm
Standard Deviation 4.69 cm 3.61 cm

Min 0.22 cm 0.61 cm
Max 18.23 cm 14.52 cm

Table 3. Absolute yaw error using ORB-SLAM in the complete SLAM system with the minimal
sensor configuration.

ORB-SLAM

Compared pose pairs 348
RMSE 6.53◦

Mean 5.34◦

Median 4.88◦

Standard Deviation 0.60◦

Min 2.53 × 10−5◦

Max 15.37◦

On the other hand, the main contribution of the proposed SLAM system is multi-sensor fusion,
exploiting the typical onboard sensors of commercial drones. The usage of IMU and altimeter
measurements, all them integrated into an EKF that also takes into account the commanded velocities
through its prediction stage, greatly improves the estimation results of either of the VSLAM techniques.

In Figure 12, red crosses show the actual trajectory of the drone when following the previously
established reference points, obtained with the ground truth system. The light blue trajectory is the
estimated position of the MAV using only the proprioceptive information of the drone, namely the
Navdata measurements and the prediction model of the EKF. Since in this case no external reference is
used to correct the estimation, a large deviation respect to the actual trajectory is addressed. In dark blue
and green we show the results of both VSLAM techniques, LSD-SLAM and ORB-SLAM respectively,
using the altimeter sensor only for scale correction.

In these cases, only the visual correction model is used in the EKF and we can see that the
estimation results are very poor. Black line shows the estimated trajectory when fusing all the
information in the EKF. It is easily observable that estimation results are clearly improved. Table 4
shows a comparison of the translational errors, demonstrating that they are drastically reduced to the
half, getting an RMSE error of around 5 cm.
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Figure 12. Results with different SLAM configurations: (1) using only proprioceptive sensors (Navdata)
and the prediction in the EKF (light blue line); (2) using only VSLAM with scale correction, LSD-SLAM
is shown in dark blue and ORB-SLAM in green; (3) fusing all the measurements and the prediction
in the EKF (black line). Red crosses show the actual trajectory of the drone obtained with the ground
truth system.

Table 4. Translational errors in the “ground-truthed test environment”.

Only Navdata and
Prediction

Only VSLAM
(ORB-SLAM)

Complete SLAM
System

Compared pose pairs 332 158 332
RMSE 11.52 cm 10.71 cm 5.32 cm
Mean 9.42 cm 8.49 cm 3.97 cm

Median 8.78 cm 6.87 cm 3.05 cm
Standard Deviation 6.63 cm 6.52 cm 3.54 cm

Min 0.08 cm 0.12 cm 0.01 cm
Max 23.49 cm 29.89 cm 14.82 cm

4.3. Results Including the Laser Sensor

In this section we show the experimental results obtained with the Erle-Copter drone using the
complete multi-sensorial SLAM system (laser, vision, IMU and altimeter). As it was stated, these
experiments have been performed in confined test environments in which walls can be detected by
our URG-04LX sensor (Hokuyo, Osaka, Japan) whose detection range is 4 m. In these environments
we do not have a ground truth system, so we use some metrics of the followed trajectory on the XY
plane to validate the estimations.

Firstly, the results obtained in the storage room test environment are shown in Figure 13. The blue
line represents the metrics of the actual path followed by the drone. Three different estimations are
shown in the same figure. The magenta trajectory corresponds to the estimation of the VSLAM module
using ORB-SLAM. As previously noted, the poor lighting in this area yields to a wrong estimation of
the length of the second and third segments of the path. The green trajectory shows the estimation
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performed by the scan matcher module. As it is a confined space with easy features as corners,
this estimation is better than the visual one, but, even so, a shortening effect is observed. Finally,
the red trajectory shows the estimation obtained as output of the EKF with our complete SLAM system.
In this case, laser and visual estimations are fused with the measurements of IMU and altimeter, and
combined with the prediction stage of the EKF. This results in a much more accurate pose estimation,
as it is shown in Table 5, that displays the translational errors of the three estimations.
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Figure 13. Results obtained in the “storage room test environment”. Blue line represents the metrics
of the actual followed path. Magenta line shows the estimation of the VSLAM module. Green line
corresponds to the estimation of the scan matcher module. Red line is the trajectory estimated by the
complete SLAM system.

Table 5. Translational errors in the “storage room test environment”.

Only Laser
(Hector-Mapping)

Only VSLAM
(ORB-SLAM)

Complete SLAM
System

Compared pose pairs 206 156 287
RMSE 23.81 cm 28.85 cm 9.44 cm
Mean 17.84 cm 12.71 cm 7.82 cm

Median 10.31 cm 6.60 cm 7.81 cm
Standard Deviation 15.76 cm 25.90 cm 5.30 cm

Min 0.26 cm 0.03 cm 0.03 cm
Max 61.82 cm 154.14 cm 25.88 cm

Finally, we show in Figure 14 the results obtained in the corridors test environment. In this case,
the followed path starts in a well-lit room, and continues along two L-shaped corridors in which
nearly all doors were closed, hindering laser features detection. Again, blue line is the actual followed
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path, magenta and green lines are the estimations of the VSLAM module and scan matcher module
respectively. The red path is the estimation of our complete SLAM system. The three estimations
provide good results in the initial room, because it is a well-lit confined area. However, it is observed
that both laser and vision produce a shortening effect in the estimation of the length of the corridors.
This effect is also reflected in the laser map that is constructed by the scan matcher module using only
laser measurements. Although the estimation of the laser module is much more accurate, it cannot
compensate the harmful effect of VSLAM in the corridor. So, translational errors become quite large
in this environment, as can be verified in Table 6. Anyway, the scan matcher module allows a clear
improvement in the results of the estimation. This experiment proves that pose estimation along
corridors continue to be a challenge in indoor navigation of aerial robots that do not dispose of classical
odometric systems based on direct contact with the environment.Sensors 2017, 17, 0802; doi:10.3390/s17040802 22 of 26 
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Figure 14. Results obtained in the “corridors test environment”. Blue line represents the metrics of the
followed path. Magenta line shows the estimation of the VSLAM module. Green line corresponds to
the estimation of the scan matcher. Red line is the trajectory estimated by the complete SLAM system.

Table 6. Translational errors in the “corridors test environment”.

Only Laser
(Hector-Mapping)

Only VSLAM
(ORB-SLAM)

Complete SLAM
System

Compared pose pairs 104 88 93
RMSE 73.71 cm 179.38 cm 103.71 cm
Mean 46.73 cm 103.86 cm 49.82 cm

Median 16.82 cm 40.87 cm 10.73 cm
Standard Deviation 57.00 cm 146.25 cm 90.96 cm

Min 2.07 cm 0.88 cm 0.10 cm
Max 175.6 cm 615.80 cm 332.63 cm

Taking these results into account, the authors of this paper are currently working on a module that
automatically detects and classifies the environment using different visual and structural descriptors
(“corridor”, ”hall”, ”well-lit”, ”poorly-lit”, etc.). This classifier will use the onboard sensors of the MAV
(laser and vision) as source information. The result of the classification will be used to automatically
adapt the SLAM system parameters to obtain the best results in each situation. For example, in corridor
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environments could be useful to compensate the shortening effect of both main sensors (laser and
vision) by overestimating the movement of the MAV in the prediction stage of the EKF, and/or
increasing the covariance matrixes of laser and vision observation models. Indeed, it may be desirable
to completely discard VSLAM in poorly lit environments or the scan matcher estimation in wide
environments out of the detection range of the laser sensor.

5. Discussion

Estimating the movement of a MAV relative to its environment is a hard challenge. In indoor
and GPS-denied environments, systems that achieve similar results to classical odometric methods for
ground robots have not been yet developed.

The SLAM system proposed in this paper has to be evaluated in the context of the application to
which it is intended. As we stated in the introduction, a small low-cost MAV with very limited onboard
computational capacity moves near a ground robot with a powerful remote unit which executes the
SLAM algorithms. So, execution time is not a constraint in this case. However, only typical onboard
sensors can be used and communication delays must be taken into account.

One of the requirements imposed to our system is sensor configurability, that we achieve using
an EKF for sensor fusion. A minimal sensor configuration that adds the monocular camera to
typical proprioceptive sensors (IMU and altimeter) has been supposed. We have demonstrated
that state-of-the-art monocular VSLAM methods can be applied to aerial robots taking advantage of
onboard sensors to solve scale ambiguity and to improve the pose estimation through the EKF. So far,
PTAM has been the most popular choice for implementing VSLAM in aerial robots. In this work,
we have compared two more recent and precise methods as ORB-SLAM and LSD-SLAM, proposing
a scale correction method based on altimeter and laser (if available) measurements. ORB-SLAM has
demonstrated to be a more accurate method in visually positive environments, such as well-lit and
sufficiently featured ones. It also provides better results with rotational movements, while LSD-SLAM
could be a better choice in featureless environments. In any case, our SLAM proposal fuses the estimate
of VSLAM with the onboard sensor measurements and a prediction model, and this is proven to
provide a substantial improvement in the pose estimation. As a future work line, the VSLAM method
could be automatically chosen as a function of the characteristics of the environment and the trajectory.

When available, a 2D laser rangefinder is a highly suited sensor for MAVs in indoor environments,
due to its fast and direct range detection, so a scan matcher module has been added to our EKF-based
SLAM framework, based on the Hector Mapping algorithm. It has been demonstrated that in most
environments, the fusion of visual and laser information with onboard sensors and prediction models
provides a better estimation result. However, some environments as corridors are still a major challenge
because both sensors (vision and laser) tend to short their length. Although this is compensated with
IMU measurements and the prediction model, estimation results are still poorer than in more featured
environments. As a future research, we are working on detecting and classifying the environment into
some types to adjust the covariance matrixes of the EKF to minimize these undesired effects.

It is important to note that we use SLAM as a framework for robust pose estimation and tracking.
Obtaining a global and consistent map is not within the objectives of this work. So, depth maps or
point clouds are used only as local maps for localization, and discarded once the MAV obtains a new
keyframe. Furthermore, loop detection and closure methods have not been added to our system. As a
future research line, we are working on integrating visual 3D maps with laser 2.5D maps to obtain
wide global and consistent maps.

Therefore, the importance and contributions of this paper are focused on the fusion of several
sensors for solving the SLAM problem of a complex robot platform as a MAV. We have applied
successful state-of-the-art algorithms in order to advance the research in the fusion and control
topics. We have developed specific models for fusing the estimations of all the sensors of the MAV
(vision, laser, altimeter and IMU) and a prediction model to improve the estimates with respect to
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those made independently by any of the sensors. We have demonstrated that the proposed SLAM
architecture can be used in real time for controlling the movements of the MAV.

6. Conclusions

This paper shows a multi-sensorial SLAM system that successfully tracks the 6-DoF pose of
low-cost MAVs in GPS-denied environments using a remote control station. To do this, several
state-of-the art SLAM algorithms have been applied and compared. The fusion of monocular vision
with laser measurements (when available) and other typical onboard sensors (IMU and altimeter)
by means of an EKF framework simplifies the configurability of the system. Using two commercial
platforms, it has been demonstrated with experimental results that the proposed SLAM system
improves the results of the baseline techniques when estimating the trajectory of the MAV in different
environment conditions.
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