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Abstract— This paper carries out a discussion on the super-
vised learning of a car detector built as a Discriminative Part-
based Model (DPM) from images in the recently published
KITTI benchmark suite as part of the object detection and
orientation estimation challenge. We present a wide set of
experiments and many hints on the different ways to supervise
and enhance the well-known DPM on a challenging and
naturalistic urban dataset as KITTI. The evaluation algorithm
and metrics, the selection of a clean but representative subset
of training samples and the DPM tuning are key factors to
learn an object detector in a supervised fashion. We provide
evidence of subtle differences in performance depending on
these aspects. Besides, the generalization of the trained models
to an independent dataset is validated by 5-fold cross-validation.

I. INTRODUCTION

Nowadays, vision sensors are employed in automotive
industry to integrate advanced functionalities that assist hu-
mans while driving. During the last years, a big research
effort has been made to design and study Advanced Driver
Assistance Systems (ADAS) and autonomous vehicles that
rely on cameras as sensing technology and source of data [1].
On the contrary, other sensing modalities as GPS, lidar and
radar have a well-established market as on board integrated
systems for navigation, active safety and primary obstacles
detectors [2], [3], [4], although information fusion is an open
field of research [5], [6].

The improvements in camera features, their price and size
reduction, added to the progress in machine learning and
computer vision approaches for intelligent vehicles, have
increased the appealing of vision systems to automotive
industry and researchers. Imaging devices provide a higher
level of abstraction and semantic information more natural
to interpret by humans compared to other sensors, e.g. light-
beam [7], intelligent parking [8] and vision [9]. Furthermore,
there are still many challenges on image scene understanding
and object recognition to obtain more precise information
for autonomous vehicles and driving assistance systems.
These challenges may include and are not limited to object
detection under occlusion [10], [11], estimation of objects
orientation on 3D scenes [12], detection at far distances [13],
determining geometric layout of the scene [14], [15], ap-
propriate modeling and parametric learning of complex
scenes [16] and large-enough and naturalistic datasets.
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Indeed, a lot of research effort lies on the existence of
public datasets and common evaluation metrics for advancing
the performance of visual recognition systems [17]. There are
many benchmarks, some of them also widening to a higher
number of categories non-restricted to road environments like
Caltech-101 [18], PASCAL VOC [19] and EPFL Multi-view
car [20] among others.

Fig. 1. Ground truth labeled samples from KITTI benchmark

In this paper, we are interested on the KITTI object
evaluation challenge [21] to detect and estimate the ori-
entation of Cars, Pedestrians and Cyclists on images from
road scenes (Fig. 1). This is a topic of a great research
interest [22], which implicitly requires dealing with the open
tasks that have been introduced before. The KITTI Vision
Benchmark Suite [23] provides a wide set of images on
urban environments with ground truth labeling and multiple
sensor data plus common evaluation protocols. In particular,
this paper carries out a discussion on the level of supervision
required to train a car detector built as a Discriminative Part-
based Model (DPM) [24]. This approach has been already
proposed by [23] and the contribution of our paper is not
on the theoretical point of view of a new detector, but on
the experimental nature of a more in-deep analysis during
learning (cleanliness of the data samples and parameter
tuning) and during the evaluation of predicted bounding
boxes (metrics and methodology). In Section III, we provide
evidence of subtle differences in performance depending on
three factors: the selected evaluation method (KITTI [21] vs
PASCAL [19]), the difficulty level of the training samples
and the DPM internal configuration.

II. DPM AND RELATED WORKS

DPM [24] classifies and locates objects at different scales
based on a pyramid of appearance features. It has been
successfully tested on PASCAL challenges [19] and applied
to many other works and datasets. In particular, we are
employing the release 4 of its open source code [25] to match
the format of the pre-trained models in [21].

Training. In DPM, the model of an object is a mixture
of components initialized from clusters on images’ aspect



ratios and it is represented by a set of filter weights for the
object parts and deformation weights for the spring-like star
topology that connects root and part filters. These weights are
learned by training a latent SVM classifier, where the latent
variables are the location, scale and model component of the
compositional parts. All the weights are concatenated in a
high-dimensional vector β [24]. For example, considering 16
components where each of them has 1 root part (variable size
depending on aspect ratio), 8 subparts of fixed size (6×6) and
a normalized gradient descriptor of 32 dimensions, the total
number of parameters to be learned is 170,624. A pictorial
representation is on Fig. 2.

Fig. 2. Learned weights for class ’Car’ in KITTI and viewpoint 5π/8 rad.
From left to right: root filters, part filters at twice resolution than root and
2D deformation parameters for parts placement

Detection. A feature scale pyramid is built and walked
through to generate the set of hypotheses. Then, the score
of one hypothesis [24] is calculated as in Eq. 1, reproduced
here for clarity. Afterwards, a maximum suppression filter
outputs the finally predicted bounding boxes.

s(z) =
144∑
i=0

Fi ·φv(H, z)−
144∑
i=17

di ·φd(dxi, dyi) + bias (1)

The limits of the sums correspond to the example before.
Fi represents all the learned weights of the root and part
filters and di the learned deformation weights. H is an image
scale pyramid, z are the latent variables, φv is the visual
feature map containing the HOG descriptors computed from
H , (dxi, dyi) is a relative 2D displacement of part i with
respect to root filter position and φd are deformation features.

Related works. A. Geiger et al. [15], [23] made an adapta-
tion of DPM for its testing on KITTI dataset. Basically, they
discretized the number of possible object orientations, i.e. 16
bins for cars, so that, every component of the mixture model
corresponded to one orientation. Besides, they enlarged small
examples by factor 3 and harvested random negatives from
positive images, keeping for training only those negatives
with a bounding box overlapping less than 20% with a
positive label. Two versions (supervised and unsupervised)
were reported on [21]. We will provide further evidence of
this supervised tuning in section III-C.

In [26], part-based models were evaluated for object
category pose estimation where some supervised adaptations
were proposed: fixing the latent component to the object pose
available in the ground truth, removing bilateral symmetry
and developing a modified training pipeline that regarded the
coordinate descent algorithm and the selection of negatives
examples from opposite views. Despite their improvement in
orientation estimation tested in four different datasets, KITTI

could not be compared concerning the joint challenge on
detection and orientation estimation. Thus, we provide results
and a discussion applying some of the suggestions from [26]
to learn a car detector from KITTI.

On the other hand, a new approach (OC-DPM) for explicit
occlusion reasoning [10] based on the DPM framework has
recently reported increased ratios, both in object detection
and orientation estimation of cars [21], but employing 12
viewpoints instead of 16. This is actually a very promising
approach to overcome the missed detections and false pos-
itives of DPM over KITTI as we point out in conclusions.
However, despite the benefits of occlusion modeling, it is not
yet clear whether the improvements came directly from it or
due to the decreased number of viewpoints.

Although the next topics are out of the scope of this
paper, more complex methods have proposed a higher level
of abstraction, i.e. to include a 3D cuboid model [27], in
which DPM is extended in the features and filters size to
learn objects 3D location and orientation from monocular
images. Differently, the reduction of the high computational
requirements of DPM has been studied in [28], which pre-
sented an efficient object detection with an algorithmically
enhanced version of the objects image search inside DPM.

III. EXPERIMENTS

Generalizing trained models to an independent dataset re-
quires a cross-validation that assesses on the best performing
algorithm or configuration. Indeed, four of the current entries
in [21] published results based on DPM [15], [24], but they
lack of a deeper analysis on the experiments carried out.
In our work, the comparative results are based upon 5-fold
cross-validation. Firstly, we review the evaluation criteria,
then, we give an insight on clean training data samples and
we conclude reporting results after tuning DPM.

A. Discussion on the evaluation criteria

Evaluation metrics. Geiger et al. [23] employed the Average
Precision (AP) and proposed Average Orientation Similarity
(AOS) as common evaluation metrics based upon [29]. The
predicted bounding boxes are sorted in decreasing order of
confidence (s) and precision (p) and recall (r) are computed
from the cumulative distribution of True Positives (TP), False
Positives (FP) and False Negatives (FN). Then, AP and AOS
are obtained as the Area under the Curve (AuC).

Evaluation algorithm. Despite the common metrics above,
counting TP, FP and FN differs from PASCAL [29] to
KITTI [23]. In fact, given a set of different experiments
and the corresponding sets of predicted bounding boxes, the
gradients in AP between the experiments yielded opposite
signs and the AP values differed up to 20 points in KITTI
vs PASCAL evaluations. Therefore, there is a high risk
of extracting misleading conclusions from the experiments
depending on the evaluation protocol. We bring here a de-
tailed analysis of KITTI vs PASCAL evaluation approaches
because there is no reference in the literature concerning this
issue. Next, the common aspects are presented:



• Intersection over Union (IoU) [29] measures the overlap
between predicted and ground truth bounding boxes.

• Every TP is the highest scoring detection with the highest
overlap. The remaining overlapped detections are FP.

• AP is obtained as the AuC from the “p-r curve”.

Additionally, KITTI follows these premises1:
• ’DontCare’ regions (usually far away and some occluded
objects) do not count as TP or FP when detected or as FN
when missed. Besides, their overlap is treated differently,
dividing by the area of the predicted bounding box instead
of the union. This favors partial overlapped predictions
around these ground truth regions of a relatively small size
(95% of them are below 50 pixels of height, which is a
13.3% of the image height representing the scene).

• Neighbouring classes (e.g. ’Van’ for class ’Car’, ’Cyclist’
for class ’Pedestrian’) do not count as TP, FP or FN.

• Three difficulty levels are evaluated (’easy’, ’moderate’
and ’hard’) [21]. The detections overlapping ground truth
objects of a difficulty higher than the one under evaluation
do not count as TP or FP. Similarly, they do not count as
FN when missed.

• The detections lower than 30 pixels in height are not
evaluated because at this scale they are more prone to error,
being a source of FP.

• To compute the final “p-r curve”, the recall points are
approximated to a linear function, being built from a
subsampled version of the sorted scores from TP list. By
default, KITTI computes 41 points and we observed small
variations in AP for higher number of points.
Attending to the first three premises, a detector is not

rewarded for detecting those labeled objects, but also not
penalized. Simply discarding the indicated ground truth
regions, does not count them as TP or FN. Indeed, these
training samples are marked as ignored such that predicted
bounding boxes fulfilling the minimum overlap constraint do
not count as FP either. This is the main source of variation
between the AP estimated by PASCAL vs KITTI. In general,
the KITTI evaluation [23] will lead to higher precision
estimates because of the FP subtraction. This filtering of
ground truth and detected samples during evaluation is also
supported by a recent pedestrian detection survey [30].

Minimum overlap requirement. Typically, most of the
works and datasets on object recognition [29], [30] impose
a minimum overlap requirement of 50% between ground
truth and predicted bounding boxes. In particular, KITTI [21]
imposes 70% for cars. Table I compares AP and AOS for
the same experiment evaluated with two distinct overlaps on
the 5th fold of a randomly balanced split of training cars.

The results are divided in the three evaluation categories
proposed in [21]. One of the experiments employs the pre-
trained LSVM-MDPM-sv for cars [21] and the other has
been trained using the remaining 4 folds of the cross-
validation on a selection of easy samples. As can be seen,

1Some premises of the KITTI evaluation protocol are in a text file inside
its development kit [21], but others are directly in the source code.

TABLE I
EVALUATING MINIMUM OVERLAP REQUIREMENT

70% 50%
AP % AOS % AP % AOS %

LSVM-
MDPM-sv
[21]

easy 72.02 64.95 98.07 88.45
mod. 55.95 51.01 78.87 70.70
hard 40.89 37.47 63.54 56.77

Easy train
(ours)

easy 83.56 81.88 98.16 96.06
mod. 47.79 45.52 66.08 63.80
hard 35.91 34.89 51.91 49.95

all cases yielded a boost in precision when reducing the
minimum required overlap, which comes from a reduction of
FN to a couple of miss-labeled ground truth ’easy’ samples
(AP ' 98%) and also due to a notable decrease in FP for
’moderate’ and ’hard’ categories (FN is still significant in
these categories due to smaller and/or occluded samples).
Thus, supervising the evaluation protocols and establishing
commonalities greatly influences the possible bias in the
conclusions obtained from the results.

B. Data cleanliness

Supervised training regards the selection of the training
samples such that, the cleaner data the better model learning.
However, it also depends on the complexity grade that the
model is designed to represent [16]. DPM is able to model
an object category at multiple scales, under small partial
occlusions, illumination changes and it is relatively flexible
to intraclass variability. Hence, to account for the perfor-
mance variability, we have carried out a set of experiments
increasing the complexity of the training samples.

Four training modalities: ’LSVM-MDPM-sv’ [21], ’Easy’
(cars labeled with height > 40 pixels, fully visible and trun-
cation < 15%), ’All’ (all labeled cars) and ’Medium’ (same
as ’easy’ plus 25 < height < 40 pixels and partly occluded
samples). Besides, we discretize in 16 viewpoints initializing
the model components in a supervised fashion. The results
are averaged from 5-fold cross-validation experiments and
evaluated into three categories [21] (columns in Fig. 3),
whilst the rows refer to AP and AOS calculation respectively.

Results analysis. As can be seen in the first column of
Fig. 3, training on ’Easy’ yields outstanding improvements.
Nevertheless, in the subsequent graphs (b, c, e, f), its
performance clearly degrades for more complex samples
showing higher precision at low recalls but plummeting
precision at medium recall. This is caused by a higher
number of both FN and FP, the latter one accentuated when
increasing recall. On the other hand, training on ’All’ obtains
the poorest curves, although showing less FN for heights
within 25 − 40 pixels and/or partially occluded cars. This
low performance is due to the lack of cleanliness in training
data: too small cars, severe occlusions and truncations, which
are an important handicap for parameter learning. Hence,
increasing the amount of data does not always produce better
results, unless the object model and training methodology
could learn complex part-based topologies and adapt to high
intraclass variability.
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(e) Moderate. AOS values
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Fig. 3. Precision-recall curves, AP and AOS values for cars detection and orientation estimation after 5-fold cross-validation. Every column corresponds
to one evaluation category [21]. Four different training modalities are compared on each plot: ’LSVM-MDPM-sv’ [21], ’Easy’, ’All’ and ’Medium’. These
graphs show the importance of selecting a clean dataset, but general enough to represent naturalistic urban scenes. ’All’ yields the worst results (red line),
while ’Easy’ (green line) outperforms only on the easy samples and downgrades for the remaining difficulty levels.

Attending to the distribution of difficult samples in terms
of height, occlusion and truncation, the majority of FN have
a truncation lower than 10%. On the contrary, small cars
(<40 pixels in height and sometimes under hard illumination
conditions) and small to medium occlusions are the source
of many missed cars. In addition, FP image patches (Fig. 4)
typically include cars viewed from the back, multiple cars
parked on the street, cars occluded by other cars in parkings
or traffic jams, parts of cars, loose fitting around the car and
a few samples of scene background.

Fig. 4. Examples of false positives for class car.

Finally, ’LSVM-MDPM-sv’ and ’Medium’ showed the best
stability at all evaluation categories. Our ’Medium’ training
curves are very close to the baseline ’LSVM-MDPM-sv’
because we employed a very similar training subset, but
without the additional modifications proposed in LSVM-

MDPM-sv [21]. Therefore, these modifications, which do not
increase model complexity, do not seem to provide a boost
in performance. However, a correct level of supervision can
provide subtle differences while training DPM, as it will be
shown in following experiments.

It must be noted that observing Fig. 3, an increasing
gap between AP and AOS appears when increasing the
complexity of the training subset. This gap is around 1.5%
for ’Easy’ (green lines) and 4-7% for the remaining plots
depending also on the evaluation category. This loss of pre-
cision in orientation estimation can be motivated by the less
informative features extracted from distant (small samples)
and partially occluded cars. These errors use to belong to
miss-classifications in neighboring viewpoints, which could
be mitigated by reducing the number of orientation bins,
although this also influences AOS values by definition [23].

C. DPM tuning

In this section, we report results (Fig. 5) on incremental
DPM modifications with the aim of tuning the parameter
learning to increase AP and AOS figures and get a bet-
ter knowledge of DPM strengths and weaknesses. Overfit-
ting is prevented by employing 5-fold cross-validation and
’Medium’ cars are employed as positive labeled samples,
based upon the results from previous section. It must be
noted that each experiment (5 trainings) can take 100-170
hours on an i7 CPU machine, depending on the experiment
configuration described next.
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Fig. 5. Precision-recall curves, AP and AOS values for cars detection and orientation estimation after DPM tuning and 5-fold cross-validation on ’Medium’
samples. Every column corresponds to one evaluation category [21]. Moreover, 8 different experiments are carried out, as described in the text.

- Medium-T1. Initialization to 16 components correspond-
ing to discretized car orientations. Bilateral symmetry as-
sumption disabled because most of the car views are asym-
metric. Besides, L-SVM regularization constant C=0.001.
Default root filter area limited to 3, 000− 5, 000 pixels.

- Medium-T2. Analyzing previous results, several small
cars are missed, then, we propose to allow smaller root fil-
ters (area > 1,000 pixels). This impacts during latent search
on the image scale pyramid and we observe a detection
improvement for the difficult samples (Fig. 5.b and 5.c).
However, this presents the shortcoming of some smaller
model components with lower level of detail, thus AP and
AOS decrease for easy samples (Fig. 5.a). Nevertheless,
there is a better orientation estimation at higher recalls for
the difficult samples (Fig. 5.e and 5.f).

- Medium-T3. Considering the comments above, we pro-
pose to also enlarge the upper limit to 6,000 pixels to favor
detection of ’easy’ samples. Besides, we impose a loose fit
for latent parts training in order to give more flexibility to
the model, moving their overlap requirement from 70% to
60%. As a result of this move, the learned parameters are
not representative enough causing a loss of precision for all
cases (continuous red plots in Fig. 5).

- Medium-T4. Consequently, we opt to fix a tighter con-
straint, i.e. 80% overlap during latent parts search. This
yields a medium gain for easy samples, but an important
boost for the difficult ones. However, the orientation es-
timation shows a slight gain in precision (actually below
previous curves at low and medium recalls) and AOS falls
a 7% for easy samples (yellow plots in Fig. 5).

- Medium-T5. Assuming the naturalistic features of the
KITTI urban dataset, most of the images have at least one
labeled car. Hence, the DPM internal restriction to only neg-
atives images for data mining is a handicap for the learning
process. We include further tuning to DPM cropping the
hard negatives during data mining, from strictly positive
images. These negatives must not overlap more than 20%
with a ground truth sample (like in LSVM-MDPM-sv [21]).
The first bootstrapping step of DPM remains harvesting
random negatives from strictly negative images. In spite
of the increase in training time, we achieve an enhanced
precision for all evaluation levels (magenta lines in Fig. 5)
thanks to the increased number of background samples
found during hard negatives mining. However, AP values
are similar to previous experiment due to an earlier drop
of precision at upper recalls. Although AOS replicates
previous observations, the gap between AP and AOS is still
too wide. Viewpoint discrimination is benefited for difficult
samples but not for easy ones given the modifications
carried out so far.

- Medium-T6. In order to generate more samples for all
viewpoints, which could favor model learning, we duplicate
the dataset by mirroring every sample and clustering them
on the corresponding mirrored viewpoint with respect to
π/2 and −π/2. Besides, we fix latent car viewpoints during
the merge of the model components relying on the ground
truth labels. Additionally, we mark ’DontCare’ labeled
regions as potential positives during hard negatives mining.
However, we observe a lower performance for all cases
(black plots in Fig. 5).



- Medium-T7 Interestingly, using Medium-T6 and reducing
back the overlap for latent parts to the original 70%, a
superior precision in orientation estimation is achieved (red
dashed plots in Fig. 5), but lower AP values.

- Medium-T8 Furthermore, tightening the same constraint
to 75%, we obtain a moderate AP and AOS increase at
all levels, which is better than the baseline LSVM-MDPM-
sv [21] for evaluation levels ’moderate’ and ’hard’.

IV. CONCLUSIONS AND FUTURE WORKS

This paper has presented a wide set of 5-fold cross-
validation experiments to train DPM [24] in a supervised
fashion for KITTI challenge [21]. In particular, this work has
shown the convenience of choosing a well-defined evaluation
protocol to correctly measure and analyze detection results.
We have compared PASCAL [29] vs KITTI [23] evaluation
methods that rely on the same metrics but different underly-
ing algorithms. Besides, 3 training modalities, regarding the
cleanliness of training data, have been compared with the
baseline LSVM-MDPM-sv [21], in which ’Medium’ yielded
similar “p-r curves”. In addition, we have proposed several
modifications during the learning of DPM weights, with the
aim of achieving higher AP and AOS while gaining a better
knowledge of DPM behavior. Three features proved to be the
most relevant: the overlap requirement during latent search
(75% as the best tradeoff); the harvesting of hard negative
samples from strictly positive images and fixing the latent
viewpoint during model components merging. After this
tuning, we observed a precision boost in both detection and
orientation estimation for the evaluated categories ’moderate’
and ’hard’, i.e. up to 10% for AP and 5% for AOS.

As future guidelines, we support the recent approaches
on DPM extensions to 3D [11], [12], [27], in order to
increment the level of supervision but also the complexity
of the models that could reduce false positives and could
also provide more accurate and non-discretized estimates of
the objects orientation. Similarly, difficult samples, i.e. small
and/or occluded ones, will require more cues to be detected,
in the form of better input features or more flexible models.
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